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Abstract
Predator–prey relationships are important ecological interactions, affecting biotic 
community composition and energy flow through a system, and are of interest to 
ecologists and managers. Morphological diet analysis has been the primary method 
used to quantify the diets of predators, but emerging molecular techniques using 
genetic data can provide more accurate estimates of relative diet composition. This 
study used sequences from the 18S V9 rRNA barcoding region to identify prey items 
in the gastrointestinal (GI) tracts of predatory fishes. Predator GI samples were taken 
from the Black River, Cheboygan Co., MI, USA (n = 367 samples, 12 predator species) 
during periods of high prey availability, including the larval stage of regionally threat-
ened lake sturgeon (Acipenser fulvescens Rafinesque 1817) in late May/early June of 
2015 and of relatively lower prey availability in early July of 2015. DNA was ex-
tracted and sequenced from 355 samples (96.7%), and prey DNA was identified in 
286 of the 355 samples (80.6%). Prey were grouped into 33 ecologically significant 
taxonomic groups based on the lowest taxonomic level sequences that could be 
identified using sequences available on GenBank. Changes in the makeup of diet 
composition, dietary overlap, and predator preference were analyzed comparing the 
periods of high and low prey abundance. Some predator species exhibited significant 
seasonal changes in diet composition. Dietary overlap was slightly but significantly 
higher during the period of high prey abundance; however, there was little change in 
predator preference. This suggests that change in prey availability was the driving 
factor in changing predator diet composition and dietary overlap. This study demon-
strates the utility of molecular diet analysis and how temporal variability in commu-
nity composition adds complexity to predator–prey interactions.
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1  | INTRODUC TION

Characterization of predator diets and food web interactions is im-
portant to the understanding of community functioning and man-
agement of freshwater systems (Thompson, Dunne, & Woodward, 
2012; Vaughn, 2010).

Quantifying the dietary composition of predator fishes in the 
context of relative prey availability in the environment is necessary 
to investigate the ecological relationships between predators and 
their prey and to determine predator–prey preference. Traditionally, 
diet analyses have been conducted through morphological identi-
fication of prey collected from predator gastrointestinal contents, 
but identification of diet contents using these methods is often in-
accurate (Buckland, Baker, Loneragan, & Sheaves, 2017; Schooley 
et al., 2008). More recent molecular methods have been applied to 
overcome some of these shortcomings (Berry et al., 2015; Carreon‐
Martinez, Johnson, Ludsin, & Heath, 2011; Sheppard & Hardwood, 
2005). Application of a molecular approach to quantify diet compo-
sitions of multiple species in a predator community, combined with 
data on prey resource availability, can lead to greater understanding 
of possible competitive interactions between predators as well as 
how changes in prey abundance affect these interactions.

Predator preferences and dietary overlap among predators are 
driven in part by the prey relative abundance. High abundance of 
prey leads to higher encounter rates and in some cases can cause 
abundant prey taxa to be targeted by predators (i.e., positive fre-
quency dependence; Ims, 1990; Murdoch, 1969). High abundance 
of prey can reduce interspecific competition, allowing predators to 
coexist despite high dietary overlap (Gray, Boltz, Kellogg, & Stauffer, 
1997; Kelling, Isermann, Sloss, & Turnquist, 2016; Michaletz, 1997). 
Seasonal fluctuations in prey abundance and species composition 
are common features of riverine communities (Brown & Armstrong, 
1985; Gray et al., 1997; Smith & King, 2005). Synchronized emer-
gence and dispersal of larval fishes and aquatic macroinvertebrates 
may be an adaptive strategy to swamp predators, leading to periods 
where foraging predators are saturated by prey (Frank & Leggett, 
1983; Ims, 1990). The seasonal influx of prey, comprised of the early 
life stages of river spawning fishes and emergence of certain aquatic 
macroinvertebrate taxa, can alter trophic interactions between pred-
ators and prey, and change the diet composition and dietary overlap 
of the predatory fishes in rivers. Understanding how the variation 
in the prey community affects these relationships is important to 
conservation, as predator preference can indicate what members 
of the community act as important energetic links between trophic 
levels (Chesson, 1978; Ivlev, 1961), and estimates of diet similarity 
between two predator species may indicate the degree of interspe-
cific resource competition (Schoener, 1970).

DNA‐based molecular methods are useful tools for analyzing 
the diets of fishes in freshwater food webs with greater accu-
racy and resolution than traditional morphology‐based methods 
(Carreon‐Martinez & Heath, 2010; Pompanaon et al., 2012). 
Metabarcoding is one molecular technique, utilizing conserved 
regions of DNA to amplify sequences in samples that are unique 

in different taxa (King, Read, Traughott, & Symondson, 2008). 
Molecular techniques have advantages over morphological anal-
yses of diets that require visual identification of partially digested 
prey items. Molecular barcoding is capable of identifying prey 
items to a greater taxonomic resolution and for longer periods 
after consumption (Berry et al., 2015; Carreon‐Martinez et al., 
2011; Schooley et al., 2008; Sheppard & Hardwood, 2005). The 
greater diet breadth and taxonomic resolution that can be achieved 
through metabarcoding diet analysis can allow characterization 
of the degree of niche partitioning among species, revealing how 
predators can partition resources to reduce interspecific competi-
tion (Albaina, Aguirre, Abad, Santos, & Estonba, 2016; Katzinel et 
al., 2015; Leray, Meyer, & Mills, 2015). Dietary overlap estimated 
by molecular methods could also be significantly different than 
nonmolecular studies estimated depending on the prevalence 
of soft‐bodied prey items in predator diets (Gebremedhin et al., 
2016; Soininen et al., 2015), which are often difficult to detect in 
morphological diet studies due to rapid digestion times (Carreon‐
Martinez et al., 2011; Ley et al., 2014).

In temperate streams in northern Michigan, USA, where this 
study was conducted, the period of high prey dispersal in the drift 
(mid‐May to early June) is predominated by the emergence of larval 
suckers (Family: Catostomidae) and larval lake sturgeon (Acipenser 
fulvescens Rafinesque 1817), a species of conservation concern 
(Auer & Baker, 2002; Smith & King, 2005). This period also coincides 
with the emergence of several aquatic insects, including families 
Heptageniidae, Isonychiidae, and Perlidae (Scribner, unpublished 
data). This study examined associations between abundance of prey 
in the drift and the diet composition of predators that prey upon lar-
val lake sturgeon. The goals of this research were to (a) characterize 
the diets of predatory fish during and after the high prey biomass 
drift period using metabarcoding molecular diet analysis, (b) mea-
sure dietary overlap between predator species during and after the 
drift period, and (c) quantify predator diet preferences and changes 
in preference using metabarcoding diet data combined with compo-
sition estimates from stream surveys of the prey community.

2  | MATERIAL S AND METHODS

2.1 | Study area and sample collection

Sampling was conducted in the Upper Black River (UBR; Cheboygan 
County, MI, USA), the largest tributary of Black Lake, a 4,100 ha in-
land lake in the northern lower peninsula of Michigan. Black Lake 
supports a population of ~1,200 adult lake sturgeon (Pledger, 
Baker, & Scribner, 2013), which spawn solely in the UBR. Larval 
lake sturgeon disperse from the UBR in late spring, often coincid-
ing with the outmigration of larval white suckers [Catostomus com‐
mersonii (Lacepède, 1803)] and silver redhorse [Moxostoma anisurum 
(Rafinesque, 1820)], and the emergence of several species of aquatic 
insects (e.g., Families: Heptageniidae, Isonychiidae, Perlidae), leading 
to a high abundance and diversity of available prey for predatory 
fishes in the system. This high prey abundance contrasts with the 
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comparatively lower abundance of available prey present in the drift 
by mid‐summer in the UBR.

Sampling of drifting prey was conducted during 2015 at four sites 
downstream of lake sturgeon spawning sites. Two sites consisted 
of predominately habitats composed of gravel substrate (Figure 1; 
PD1 and PD3), and two sites further downstream were located in 
habitats composed predominately of sand substrate (Figure 1; PD4 
and PD5). Sampling dates were divided into two periods. The first 
period, “drift,” occurred when larval lake sturgeon and catostomids 
were observed in survey samples. “Drift” samples were collected for 
five days during the lake sturgeon and catostomids drift period in 
2015 (24 May, 4–7 June). The second period, “postdrift,” occurred 
when larval lake sturgeon and catostomids were no longer observed 
in the survey samples. The “postdrift” period began 2 days after no 
larval lake sturgeon or catostomids were observed in the drift sur-
veys and included drift sampling on two nights (3 July, 5 July). The 
abundance of drifting larval lake sturgeon and co‐distributed larval 
fish and macroinvertebrate prey taxa was quantified using D‐frame 
drift nets (Auer & Baker, 2002). Beginning at 21:00, five D‐frame 
drift nets with 1,600 µm mesh and detachable cod ends were set at 
one of the sampling sites each night. To estimate the proportion of 
the river sampled by the drift nets, total river discharge (m3/s) and 
the discharge entering nets were measured using a Marsh McBurney 
Flow‐Mate 2000 (Hach Company, Loveland, CO, USA). Contents 
of the cod ends were collected hourly between 22:00 and 02:00. 
Larval lake sturgeon were counted on site and returned to the river. 
5% subsamples of the cod end contents were collected for each hour 
and preserved in 95% ethanol. Sucker larvae and invertebrates in the 
preserved samples were later counted and macroinvertebrate lar-
vae were morphologically identified to the family level. Dry weight 
biomass estimates for individual fish and aquatic insect larvae were 
collected for most families observed during drift sampling (Table 1). 
These estimates or the estimate from a closely related family were 
used to estimate total nightly catch biomass by multiplying the 
nightly catch counts by the individual dry weight biomass for each 
taxon and adjusting for subsample size (Figure 2).

Electrofishing surveys were conducted the day following drift 
sampling to collect diet samples of predatory fishes (n = 367 samples 
from 12 predator species). A barge electrofishing unit including a 
three‐person crew sampled a 0.5 km stream transect directly down-
stream of the site where drift sampling was conducted the previous 
night (Figure 1; Transects A, B, C, and D). Electrofishing voltage and 
amperage were set to 400 V at 4 A, respectively. Two crew mem-
bers carried anodes and collected fish, and the third crew member 
moved the barge upstream and stored captured fish in a live well. 
Predator fish were sacrificed with an overdose of MS222 (0.4 mg/
ml). Total length and species of all fish captured during the survey 
were recorded. Sacrificed fish were placed in Whirl‐Paks (Nasco, 
Fort Atkinson, WI, USA) and stored in a −20°C freezer within 2 hr. 
Predators were dissected, the entire GI tracts were removed, and 
contents were carefully extracted to minimize the amount of preda-
tor tissue in the sample. Diet samples were preserved in 95% ethanol 
and stored at −20°C prior to DNA extraction.

2.2 | DNA extraction and sequencing

Diet samples were mixed by hand, and pieces of tissue were broken 
apart with forceps and sterile toothpicks and thoroughly vortexed 
to homogenize the samples and to ensure representative subsam-
pling. About 50–100 mg of tissue from the GI tract diet samples was 
used in each DNA extraction and washed with sterile water to re-
move excess ethanol. This was usually the entire diet sample. DNA 
was extracted according to a modified version of the QIAamp Stool 
Mini Kit (QIAGEN, Hilden, Germany) protocol. Lysis in InhibitEx 
Buffer from the QIAmp Stool Mini Kit was extended to 30 min at 
72°C. Samples were also further homogenized with a 10‐min bead‐
beating step using 0.70 mm garnet beads (MOBIO, Carlsbad, CA, 
USA) after lysis buffer and proteinase K were added to the sample. 
DNA was eluted, and DNA concentration was quantified using an 
ND‐1000 nanodrop spectrophotometer (NanoDrop Technologies 
Inc., Wilmington, DE, USA). If the nanodrop spectrophotometer 
revealed a high concentration of contaminants (260/280 < 1.7) in 
the sample, a salt precipitation using cold 100% ethanol and 0.15 M 
sodium acetate was used to clean samples. All samples were diluted 
using sterile water to a standard concentration of 20 ng/µl of DNA. 
An empty microcentrifuge tube was used as a negative control for 
each extraction, and three negative controls were randomly se-
lected for sequencing.

The coding region for 18S V9 rRNA (~200 bp; Stoeck et al., 
2010) was amplified with universal eukaryotic primers 1391F 
(5′‐GTACACACCGCCCGTC‐3′; Lane, 1991) and EukB (5′‐
TGATCCTTCTGCAGGTTCACCTAC‐3′; Medlin, Elwood, Stickel, & 
Sogin, 1988). PCR amplification of the 18S V9 region was carried out 
in 50 µl reactions using 20 ng of template DNA, 0.5 µmol of each 
primer, 200 µmol of dNTPs, 5 U of Taq polymerase, and 1X Taq re-
action buffer (Invitrogen, Carlsbad, CA, USA). Reactions were am-
plified starting with an initial 5 min incubation at 95°C, followed by 
30 cycles of 94°C for 30 s, 57°C for 45 s, and 72°C for 60 s before a 
final elongation step of 72°C for 2 min. These primers were chosen 
for their relatively short target sequence (~200 bp), the large tax-
onomic breadth encompassed, and because preliminary screening 
indicated sequences from lake sturgeon, suckers, and all major in-
vertebrate families identified in UBR drift survey samples for the tar-
get region were available on GenBank (NCBI). Samples were sent to 
the Research Technology Support Facility (RTSF) at Michigan State 
University (East Lansing, MI, USA) for DNA sequencing. Sequencing 
libraries were created using a two‐step PCR approach, first amplify-
ing the targeted sequences with the 18S V9 primers with CS1 and 
CS2 tag sequences (Fluidigm, South San Francisco, CA, USA) added 
to the primers. Second, these amplicons could now be uniquely 
indexed with sample‐specific barcodes and Illumina adaptor se-
quences in a subsequent PCR reaction. Indexed amplicons were 
normalized using a SequalPrep Normalization plate (Invitrogen) and 
pooled for sequencing. Sequencing was performed using 150 bp 
paired‐end reads using an Illumina MiSeq v2 flow cell sequencing 
platform with a 500 cycle v2 reagent cartridge (http://rtsf.natsci.
msu.edu/genomics).

http://rtsf.natsci.msu.edu/genomics
http://rtsf.natsci.msu.edu/genomics
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observed OTUs (Supporting Information Figure S1). Twelve sam-
ples with insufficient sequence numbers were discarded from fur-
ther analysis.

OTUs appearing in the 2,500 most common unique OTU se-
quences were identified to the lowest taxonomic classification identi-
fiable from matches on GenBank (>95% sequence similarity with 100% 
sequence coverage), with family being the lowest taxonomic classifi-
cation used if lower classifications met these criteria. Only bilaterian 
DNA sequences were considered as potential prey items, as microbial 
sequences were more likely parasites or incidentally ingested. Prey 
taxa were divided into ecologically significant units (ESUs) based on 
the lowest taxonomic level that could be confidently identified. The 
number of OTU sequences from the same ESU was summed together 
within each sample. Sequences matching the identity of the predator 
the GI tract sample was taken from were removed from that sample, 
but retained in samples from predators of different taxa. Rarefied GI 
tract diet samples with <20 sequences (1% of sequences) from likely 

2.3 | DNA sequence processing

Sequences were processed in mothur v 1.38 (Schloss et al., 2009). 
Similar paired‐end reads (<2 bp difference) were merged to gener-
ate a list of unique sequences. Sequences were screened for qual-
ity by removing sequences that were longer than the target size 
after primer sequences were trimmed (>175 bp), unique sequences 
that appeared only once, sequences with homopolymer regions 
≥8 bp, and chimera checking. Sequences were clustered into 
unique OTUs if there were ≤2 bp differences between sequences. 
To standardize sequence sampling coverage between samples, all 
samples were rarefied to 1950 sequences. Rarefaction subsamples 
a consistent number of reads from each sample to standardize each 
sample to the same number of sequences while still accurately re-
flecting the relative abundance of each unique sequence present 
in the sample. Rarefaction curves for all samples were created to 
ensure the rarefaction did not artificially reduce the number of 

F I G U R E  1   Map of the study area 
highlighting the D‐frame drift net survey 
sites of the prey community (black points; 
PD1, PD3, PD4, and PD5) and the 0.5 km 
predator electrofishing transects (bold 
gray lines; A, B, C, and D) in the upper 
Black River, Cheboygan County, MI. 
Transects A and B were characterized by 
gravel substrate and transects C and D 
were characterized by sand
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diet items were removed from the dataset. These samples were likely 
taken from fish with empty or near empty stomachs, so most reads 
came from their own tissue, ingested environmental DNA, or resident 

parasites in their GI tract. All remaining samples were standardized so 
sequences of each diet item were represented as the proportion of all 
prey sequences in a sample.

TA B L E  1   Dry weight biomass (g) estimates for individual prey for each family represented in the D‐frame drift net surveys and the  
estimated catch biomass of each prey family for each night. Some prey families were grouped together under the same ecologically  
significant unit (ESU), indicated in parentheses after the family name

Prey families

Catostomidae Acipenseridae

Heptageniidae 
(ESU—Other 
Ephemeroptera) Baetidae

Ephemerellidae 
(ESU—
Ephemerelloidea)

Isonychiidae  
(ESU—Other  
Ephemeroptera)

Siphlonuridae (ESU—Other 
Ephemeroptera)

Ephemeridae (ESU—Other 
Ephemeroptera)

Brachycentridae 
(ESU—Trichoptera)

Glossosomatidae 
(ESU—Trichoptera)

Helicopsychidae 
(ESU—Trichoptera)

Individual dry mass (mg) 1.193 8.5 1.768 0.366 1.255 4.145 6.829 5.578 1.458 6.948 0.914

23/5/15 estimated catch 
biomass (g)

8.42 1.65 1.03 0 0.15 2.98 0 0 0 0 0.02

4/6/15 estimated catch 
biomass (g)

1.89 4.71 0.74 0.02 0.18 2.98 0 0 0 0 0

5/6/15 estimated catch 
biomass (g)

3.53 2.21 0.57 0.02 0.08 0.50 0.14 0 0 0.14 0.53

6/6/15 estimated catch 
biomass (g)

36.70 0.66 0.46 0.05 0.18 0.08 0.14 0.11 0 0.14 0.02

7/6/15 estimated catch 
biomass (g)

7.90 0.12 0.57 0.01 0.13 0.33 0 0 0.03 0.14 0

3/7/15 estimated catch 
biomass (g)

0.67 0 0.18 0.14 0 0.33 0 0 0.26 0 0

5/7/15 estimated catch 
biomass (g)

0.84 0 0.53 0.07 0.03 0.58 0 0 0.12 0 0

Average catch biomass 
“drift” (g)

11.69 1.87 0.67 0.02 0.14 1.38 0.05 0.02 0.01 0.08 0.11

Average catch biomass 
“postdrift” (g)

0.75 0 0.35 0.10 0.01 0.46 0 0 0.19 0 0

Prey families

Hydropsychidae 
(ESU—
Trichoptera)

Lepidostomatidae 
(ESU—Trichoptera)

Leptoceridae 
(ESU—
Trichoptera)

Limnephilidae 
(ESU—
Trichoptera)

Perlidae 
(ESU—
Plecoptera)

Perlodidae 
(ESU—
Plecoptera) Chironomidae Simuliidae

Sialidae 
(ESU—
Megaloptera)

Amphipoda 
(ESU—
Talitroidea)

Elmidae 
(ESU—
Coleoptera)

Psephenidae 
(ESU—
Coleoptera)

Cordulegastridae 
(ESU—Odonata)

Gomphidae 
(ESU—Odonata)

Total catch 
biomass (g)

Individual dry mass (mg) 5.92 3.00 0.81 1.27 27.6 5.61 0.15 0.21 3.13 0.59 1.10 3.77 16.0 16.0 —

23/5/15 estimated catch 
biomass (g)

0.83 0.30 0.18 0 1.10 0.22 0.01 0 0 0.01 0.09 0.08 0 0.96 18.03

4/6/15 estimated catch 
biomass (g)

1.07 0.18 0.13 0 1.66 0 0.02 0 0 0 0.18 0 0 0.64 14.40

5/6/15 estimated catch 
biomass (g)

0.83 0.60 0.19 0.03 0.55 0.11 0.04 0 0 0 0.20 0.08 0.32 0.32 10.99

6/6/15 estimated catch 
biomass (g)

0.47 0.18 0.06 0 1.10 0 0.10 0 0.06 0.01 0.26 0.08 0 0.64 41.50

7/6/15 estimated catch 
biomass (g)

0.59 0 0.02 0 3.87 0.11 0 0 0 0.02 0.02 0 0 1.92 15.78

3/7/15 estimated catch 
biomass (g)

0.59 0 0.03 0 1.10 0 0.02 0.01 0 0 0.07 0 0 0.32 3.72

5/7/15 estimated catch 
biomass (g)

1.07 0 0.11 0 2.21 0 0.02 0.01 0 0.01 0.22 0 0 0 5.82

Average catch biomass 
“drift” (g)

0.76 0.25 0.12 0.01 1.66 0.09 0.03 0 0.01 0.01 0.15 0.05 0.06 0.90 20.14

Average catch biomass 
“postdrift” (g)

0.82 0 0.07 0 1.66 0 0.02 0.01 0 0.01 0.14 0 0 0.16 4.75
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TA B L E  1   Dry weight biomass (g) estimates for individual prey for each family represented in the D‐frame drift net surveys and the  
estimated catch biomass of each prey family for each night. Some prey families were grouped together under the same ecologically  
significant unit (ESU), indicated in parentheses after the family name

Prey families

Catostomidae Acipenseridae

Heptageniidae 
(ESU—Other 
Ephemeroptera) Baetidae

Ephemerellidae 
(ESU—
Ephemerelloidea)

Isonychiidae  
(ESU—Other  
Ephemeroptera)

Siphlonuridae (ESU—Other 
Ephemeroptera)

Ephemeridae (ESU—Other 
Ephemeroptera)

Brachycentridae 
(ESU—Trichoptera)

Glossosomatidae 
(ESU—Trichoptera)

Helicopsychidae 
(ESU—Trichoptera)

Individual dry mass (mg) 1.193 8.5 1.768 0.366 1.255 4.145 6.829 5.578 1.458 6.948 0.914

23/5/15 estimated catch 
biomass (g)

8.42 1.65 1.03 0 0.15 2.98 0 0 0 0 0.02

4/6/15 estimated catch 
biomass (g)

1.89 4.71 0.74 0.02 0.18 2.98 0 0 0 0 0

5/6/15 estimated catch 
biomass (g)

3.53 2.21 0.57 0.02 0.08 0.50 0.14 0 0 0.14 0.53

6/6/15 estimated catch 
biomass (g)

36.70 0.66 0.46 0.05 0.18 0.08 0.14 0.11 0 0.14 0.02

7/6/15 estimated catch 
biomass (g)

7.90 0.12 0.57 0.01 0.13 0.33 0 0 0.03 0.14 0

3/7/15 estimated catch 
biomass (g)

0.67 0 0.18 0.14 0 0.33 0 0 0.26 0 0

5/7/15 estimated catch 
biomass (g)

0.84 0 0.53 0.07 0.03 0.58 0 0 0.12 0 0

Average catch biomass 
“drift” (g)

11.69 1.87 0.67 0.02 0.14 1.38 0.05 0.02 0.01 0.08 0.11

Average catch biomass 
“postdrift” (g)

0.75 0 0.35 0.10 0.01 0.46 0 0 0.19 0 0

Prey families

Hydropsychidae 
(ESU—
Trichoptera)

Lepidostomatidae 
(ESU—Trichoptera)

Leptoceridae 
(ESU—
Trichoptera)

Limnephilidae 
(ESU—
Trichoptera)

Perlidae 
(ESU—
Plecoptera)

Perlodidae 
(ESU—
Plecoptera) Chironomidae Simuliidae

Sialidae 
(ESU—
Megaloptera)

Amphipoda 
(ESU—
Talitroidea)

Elmidae 
(ESU—
Coleoptera)

Psephenidae 
(ESU—
Coleoptera)

Cordulegastridae 
(ESU—Odonata)

Gomphidae 
(ESU—Odonata)

Total catch 
biomass (g)

Individual dry mass (mg) 5.92 3.00 0.81 1.27 27.6 5.61 0.15 0.21 3.13 0.59 1.10 3.77 16.0 16.0 —

23/5/15 estimated catch 
biomass (g)

0.83 0.30 0.18 0 1.10 0.22 0.01 0 0 0.01 0.09 0.08 0 0.96 18.03

4/6/15 estimated catch 
biomass (g)

1.07 0.18 0.13 0 1.66 0 0.02 0 0 0 0.18 0 0 0.64 14.40

5/6/15 estimated catch 
biomass (g)

0.83 0.60 0.19 0.03 0.55 0.11 0.04 0 0 0 0.20 0.08 0.32 0.32 10.99

6/6/15 estimated catch 
biomass (g)

0.47 0.18 0.06 0 1.10 0 0.10 0 0.06 0.01 0.26 0.08 0 0.64 41.50

7/6/15 estimated catch 
biomass (g)

0.59 0 0.02 0 3.87 0.11 0 0 0 0.02 0.02 0 0 1.92 15.78

3/7/15 estimated catch 
biomass (g)

0.59 0 0.03 0 1.10 0 0.02 0.01 0 0 0.07 0 0 0.32 3.72

5/7/15 estimated catch 
biomass (g)

1.07 0 0.11 0 2.21 0 0.02 0.01 0 0.01 0.22 0 0 0 5.82

Average catch biomass 
“drift” (g)

0.76 0.25 0.12 0.01 1.66 0.09 0.03 0 0.01 0.01 0.15 0.05 0.06 0.90 20.14

Average catch biomass 
“postdrift” (g)

0.82 0 0.07 0 1.66 0 0.02 0.01 0 0.01 0.14 0 0 0.16 4.75
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2.4 | Examination of relationship between sequence 
count and biomass

To test for bias due to differences in copy number of prey rRNA or 
differential amplification of prey sequences by the 18S rRNA uni-
versal primers and to empirically demonstrate the relationship be-
tween relative sequence abundance and biomass for a number of 
prey taxa, a homogenate of invertebrate and fish tissue was created 
using 16 of the most abundant families collected during the drift sur-
vey. Preserved samples were removed from ethanol and air‐dried for 
24 hr. Three mixtures of roughly equal biomass from each of family 
were held at −80°C for 1 hr and mechanically homogenized with a 
mortar and pestle for 20 min (Table 2). When possible, insect heads 
and limbs were used to create the homogenate to avoid possible 
PCR inhibitors and contaminants in digestive tracts. Two 100 mg 
subsamples were taken from each mixture for DNA extraction using 
the same process as described previously. DNA sequencing of the 
drift homogenate was the same as described for the diet samples. 

Sequences were processed in mothur v 1.38 with the same proto-
col described previously with the only difference being that sample 
were rarefied to 9,450 sequences (the number of sequences present 
in the sample with the fewest sequences) instead of 1,950.

Relative correction factors (RCFs) were calculated for each fam-
ily based on the relative abundance of sequences compared to the 
relative biomass in the samples (Thomas, Deagle, Eveson, Harsch, & 
Trites, 2016; Equation (1).

where RCFt is the relative correction factor for the target family (t), 
St is the sequence proportion for the target family in a sample, Sm 

is the sequence proportions for other families in a sample, Bt is the 
biomass proportion of the target family in a sample, and Bm is the 
biomass proportion of other families in a sample. RCFs >1 indicate 
a family was overrepresented by sequence abundance and RCFs <1 
indicate a family was under‐represented by sequence abundance.

(1)RCFt=StS
−1
m

×BmB
−1
t

TA B L E  2   Mean percentages of biomass and sequences and the relative correction factor (RCF) for 15 families used to test differential 
amplification of the universal primers in homogenized mixed samples of tissue. RCFs >1 indicate a family was overrepresented by sequence 
abundance and RCFs <1 indicate a family was under‐represented by sequence abundance

Major groups Family Biomass (%) Sequences (%) RCF

Fish Acipenseridae 8.68 15.49 1.928

Catostomidae (Otomorpha) 7.18 3.72 0.499

Centrarchidae (Perciformes) 6.77 7.00 1.037

Insects Ephemerellidae 3.10 3.02 0.973

Isonychiidae/Siphlonuridae/Heptageniidae (Other 
Ephemeroptera)

21.79 39.80 2.373

Hydropsychidae/Leptoceridae (Trichoptera) 14.72 8.02 0.505

Chironomidae 1.03 1.60 1.548

Elmidae 7.30 0.96 0.123

Perlidae 7.49 0.87 0.108

Gomphidae 8.88 0.09 0.009

Crustaceans Cambaridae 6.42 19.34 3.495

F I G U R E  2   Estimated catch dry weight 
biomass (g) for aquatic macroinvertebrate 
and larval fish ecologically significant units 
(ESUs) observed during each night of the 
survey during the drift (23 May to 7 June) 
and postdrift periods (3 July to 5 July), and 
averages for each period
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2.5 | Statistical analysis

Multivariate analyses were conducted in R Statistical Software v. 
3.2.2 (R Core Team, 2015) using the vegan library (Oksanen et al., 
2016). A principal coordinates analysis (PCoA) was conducted on 
the proportions of diet items in each diet sample using Bray–Curtis 
distances. Correlations between the original matrix of diet item pro-
portions and the eigenvectors of the first two principal coordinates 
were calculated to analyze which prey items were explaining most of 
the variation in the diet. The first two principal coordinates were also 
plotted by predator species and by time period collected with 80% 
confidence intervals around each category.

To test the effects of predator species, sampling period, and sub-
strate on the diet composition among members of the predator com-
munity, a PERMANOVA analysis was performed on the Bray–Curtis 
distance matrix of the diet proportions using the adonis function 
(Oksanen et al., 2016). Each PERMANOVA was run with 1,000 per-
mutations. Predator species, sampling period, and substrate were all 
treated as fixed effects and all interactions among the fixed effects 
were analyzed. If the three‐way interaction was not significant, the in-
teraction was removed and the model was fit again. The model was fit 
again if none of the two‐way interactions between fixed effects was 
significant. If an interaction was significant, separate PERMANOVAs 
were performed on the data from each level of one the interacting 
factors, testing the effect of the other interacting factor.

Dietary overlap between each species was calculated for both 
the drift and postdrift sampling periods. The diets from fish preda-
tors of the same species and sampled during the same time period 
(drift or postdrift) were pooled together, proportions of each prey 
ESUs were calculated in the pooled predator diets, and Schoener's 
index (α; Equation (2); Schoener, 1970) was calculated from the 
pooled diets of each pairwise comparison of predator species within 
each of the sampling periods.

where p is the proportion of sequences from the ith prey taxa (in this 
case, the ith ESU) in the pooled diets, and x and y represent different 
predator species. A Schoener's α of 0 indicates no dietary overlap, 
a Schoener's α of 1 indicates complete dietary overlap, and a value 
of 0.6 is typically assumed to indicate substantial biologically rele-
vant dietary overlap (Schoener, 1970). To compare dietary overlap 
between the drift and postdrift periods, a permutation test was con-
ducted. Schoener's α values were first paired with the Schoener's 
α value for the same pairwise species comparison from the other 
period, and the mean of the paired differences between the two pe-
riods was calculated as the observed value. The permutation test 
distribution was created by randomly inverting the assigned sam-
pling periods for each pair of Schoener's α values. For each permuta-
tion, each pair of Schoener's α values comparing the dietary overlap 

(2)�=1−0.5× (Σ|pxi−pyi|)

Predator species
Three‐letter 
species code

Sample size 
Drift, postdrift

Sample size 
Sand, gravel Total

Blackside darter (Percina 
maculata)

BSD 11, 6 12, 5 17

Burbot (Lota lota) BUR 9, 7 10, 6 16

Central mudminnow (Umbra 
limi)

CMM 7, 7 7, 7 14

Common shiner (Luxilus 
cornutus)

CMS 3, 2 3, 2 5

Creek chub (Semotilus 
atromaculatus)

CRC 7, 6 4, 9 13

Hornyhead chub (Nocomis 
biguttatus)

HHC 36, 13 39, 10 49

Logperch (Percina caprodes) LOP 14, 7 21, 0 21

Pumpkinseed (Lepomis 
gibbosus)

PUS 8, 5 0, 13 13

Rainbow darter (Etheostoma 
caeruleum)

RAD 27, 18 28, 17 45

Rock bass (Amblopites 
rupestris)

ROB 28, 9 16, 21 37

Smallmouth bass 
(Micropterus dolomieu)

SMB 24, 2 11, 15 26

White sucker (Catostomus 
commersonii)

WHS 5, 5 5, 5 10

Yellow perch (Perca 
flavescens)

YEP 14, 7 9, 12 21

Total 192, 95 165, 122 287

TA B L E  3   Predator species caught 
during electrofishing surveys and sample 
sizes for diet samples collected during 
each sampling period (“drift” during larval 
lake sturgeon dispersal from spawning 
sites from late May to June, and “post‐
drift” after dispersal in early July). Sample 
sizes only include samples from fish that 
could be rarefied to 1950 sequences 
contained >1% of sequences from prey 
taxa
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of the same two predators species had an equal chance to retain the 
same order, or be reversed (i.e., the postdrift value was now treated 
as the drift period value and vice‐versa). The mean difference of the 
paired values was then calculated using the same method used to 
calculate the observed mean difference value. This process was it-
erated 99,999 times to generate a distribution. The observed mean 
difference of paired Schoener's α was compared to the distribution 
of permutation mean difference values to estimate a p‐value and de-
termine significance.

Selectivity was analyzed using Chesson's selectivity index (ε; 
Equation (3); Chesson, 1983).

where m is the number of prey types in the environment and αi is the 
Manly's selection index for the ith prey type (Equation (4); Manly, 
1991).

(3)�= (m×�i−1)× ((m−2)×�i+1)−1

where r is the proportion of the ith prey taxa in the predator diet 
(by proportion of sequence reads in the diet sample), and n is the 
proportion of the ith prey item in the environment (by biomass in 
the drift samples). Chesson's ε varies on a scale from −1 to 1, with 
negative values indicating negative selection, and positive values 
indicating positive selection for a given prey item. Fourteen of the 
33 ESUs detected in fish diets were captured during the drift sur-
vey, so biomass estimates and selectivity could only be calculated 
for these ESUs (Figure 2). Chesson's ε was calculated with the av-
erage diet of a predator species for each day a predator species 
was sampled during the electrofishing survey. A PERMANOVA 
was performed on Euclidean distance matrix of the daily Chesson's 
ε values, testing how predator species, sampling period, substrate, 

(4)�= (ri∕ni)× (Σrj∕nj)
−1

F I G U R E  3   Taxonomic relationships 
of the prey and predator taxa identified 
by DNA sequencing of the 18S V9 rRNA 
gene in predator GI tracts. The 39 ESUs 
(in black) are the lowest taxonomical unit 
to which OTUs could be identified with 
>95% identity. All predators fell into the 
Otophysi and Perciformes clades and 
were subject to intraguild predation by 
other predator taxa
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and interactions between factors affected selectivity values. If 
interactions were not significant, a new PERMANOVA was per-
formed without the interactions to test for significance of fac-
tors. Principal components analysis (PCA) was performed on the 
Euclidean distance matrix and the first two principal coordinates 
were plotted.

3  | RESULTS

3.1 | DNA sequencing

Metabarcoding analysis of diet samples successfully amplified se-
quences of prey items from 287 predators collected during the elec-
trofishing survey. Of the total fish collected, 355 GI tract samples 
(96.7%) successfully amplified the target 18S region. Of the sam-
ples that successfully amplified, 68 (19.4%) contained <1% of prey 
DNA and were removed from further analysis. Diet samples from 12 
predator species (Table 3) were successfully amplified and contained 
prey DNA (n = 287).

Samples rarified to 1,950 sequences contained 10,597 unique 
OTUs. Of the 2,500 most abundant OTUs, 375 were identified as 
potential prey items based on alignment to reference sequences 
on GenBank. Suspected predator DNA accounted for 43.05% of 
the total sequence reads and was removed from further anal-
yses. Prey sequences accounted for 17.74% of all sequences 
from the GI tract samples. Prey sequences from these samples 
were grouped into 39 ESUs based on the lowest taxonomic 

classification that could be determined from Genbank (Figure 3). 
The most abundant sequences in the pool of potential prey were 
identified as Ephemeroptera (27.96%), Otomorpha (10.32%), 
and Simuliidae (10.03%). The 15 ESUs that were represented in 
the drift biomass data used to examine selectivity account for 
76.57% of the sequence reads from the 39 prey ESUs (12.88% 
of total sequences).

3.2 | Relationship between biomass and 
sequence abundance

Sequences of larval fish and invertebrates were recovered from all 
subsamples of the homogenates collected during the drift surveys. 
Samples rarified to 9,450 sequences contained 413 unique OTUs. 
Of these, 398 (96.4%) were identified as sequences from the prey 
items included in the homogenate based on alignment to refer-
ence sequences on GenBank. Sequences from three families of 
Ephemeroptera (Isonychiidae, Siphlonuridae, and Heptageniidae) 
could not be distinguished from each other, so these were com-
bined into one category. Likewise, two families of Trichoptera 
(Leptoceridae and Hydropsychidae) could not be distinguished from 
each other by sequence and were combined into one category.

Sequence abundance was correlated with biomass in the sample 
(Pearson's correlation, R2 = 0.389, p < 0.001). RCFs ranged from 3.495 
to 0.009, indicating the 18S rRNA universal primers were biased to-
ward certain taxa (notably Families: Acipenseridae, Cambaridae, and 
Isonychiidae/Siphlonuridae/Heptageniidae; Table 2).

F I G U R E  4   Principal coordinates analysis (PCoA) of diet compositional variation from all diet samples highlighted by each predator species 
compared to all other predators. Variation in PC1 is mainly associated with higher prevalence of Ephemeroptera (right) or fishes and rotifers 
(left) sequences in diet samples. Variation in PC2 is mainly associated with higher prevalence of Otomorpha (top) or Simuliidae (bottom) 
sequences in diet samples. Each diet sample is represented by a point and color identifying predator species, with the species named in the 
title above each plot in red and all others in gray
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3.3 | Diet characterization

Predator diets contained between 1 and 10 diet items from differ-
ent ESUs (mean = 3.8). The average proportion of reads from each 
ESU was calculated for each species of predator (Table 4). PCoA 
of the diet proportions revealed that diets segregated mainly by 
prevalence of a handful of prey items (Figure 4). High prevalence of 
mayflies versus fish and rotifers was the most important prey taxa 
contributing to the variation in diet composition across all species, 
explaining 21.1% of the variation (PC1; Figure 4). The second most 
important distinction in diet composition was between diets that 
contained more otomorph fishes (encompassing the cyprinids and 
catostomids observed in this study) compared to diets which con-
tained more simuliid fly sequences (PC2; Figure 4).

PERMANOVA results indicated that there was no significant 
three‐way interaction between substrate, sampling period, and 
predator species in influencing predator diets (pseudo‐F = 1.04, 
p = 0.351). With the three‐way interaction removed, there were sig-
nificant interactions between the predator species and sampling 

period (pseudo‐F = 1.46, p = 0.001; Figure 5a) and between sub-
strate and sampling period (pseudo‐F = 2.22, p = 0.013; Table 5). 
PERMANOVA results for separate predator species testing the effect 
of sampling period on diet composition revealed that three predator 
species had significantly different diets in the two sampling periods 
after Holm–Bonferroni correction; blackside darter [Percina maculata 
(Girard, 1859); pseudo‐F = 5.02, p = 0.001], logperch [Percina caprodes 
(Rafinesque, 1818); pseuso‐F = 3.89, p = 0.001], and rock bass 
[Ambloplites rupestris (Rafinesque, 1817); pseudo‐F = 3.24, p = 0.002; 
Table 6; Figures 5b–d].

3.4 | Dietary overlap

Schoener's index of dietary overlap (α) was calculated for each 
pair of predator species during each time period (Table 7). Five 
species pairs had substantial dietary overlap during the drift pe-
riod: rainbow darter (Etheosotma caeruleum Storer, 1845) and log-
perch (α = 0.79), rainbow darter and rock bass (α = 0.65), rainbow 
darter and smallmouth bass (Micropterus dolomieu Lacepède, 1802; 

F I G U R E  5   Principal coordinates 
analysis (PCoA) of diet taxonomic 
compositional variation from all diet 
samples highlighted by time period. 
PC1 is mainly associated with higher 
prevalence of Ephemeroptera (right) or 
fishes and rotifers (left) sequences in diet 
samples. PC2 is mainly associated with 
higher prevalence of Otomorpha (top) 
or Simuliidae (bottom) sequences in diet 
samples. PCoA results are presented for 
all samples (a) and for the three predator 
species with significant changes in diet 
between the drift and postdrift periods 
(b–d). Each diet sample is represented 
by a point and color identifying sampling 
period
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α = 0.61), rock bass and smallmouth bass (α = 0.61), and smallmouth 
bass and yellow perch [Perca flavescens (Mitchill, 1814); α = 0.63]. 
There were no species pairs with substantial dietary overlap during 
the postdrift period. A permutation test of the Schoener's α values 
for each species pair shows that overall, dietary overlap slightly but 
significantly decreased from the drift period in late May/early June 
to the postdrift period in early July (mean Δα = −0.05, p = 0.003). 
This change can mostly be attributed to decrease in overlap be-
tween the species pairs with the highest overlap during the drift 
period, with the largest changes coming from rainbow darter and 
logperch (Δα = −0.435) and smallmouth bass and rainbow darter 
(Δα = −0.39).

TA B L E  5   Results of PERMANOVA analysis quantifying effects 
of predator species (n = 13), substrate (sand or gravel), and time 
period (during or after drift) on the prey composition of diet 
samples. Tests reveal that the diet compositions of predator species 
and predators sampled in areas of the river characterized by 
different substrates differed between different time periods

Factor df Pseudo‐F R2 p‐Value

Predator species 12 3.274 0.120 0.001*

Substrate 1 3.601 0.011 0.001*

Time period 1 4.269 0.013 0.001*

Predator:Substrate 10 1.022 0.031 0.388

Substrate:Time 1 2.225 0.007 0.013*

Predator:Time 12 1.456 0.053 0.001*

Residual 249 0.764

*Result was statistically significant (p < 0.05). 

TA B L E  6   PERMANOVA analysis results quantifying the effect of 
time period (during or after the period of high drift biomass) on diet 
composition of each predator species

Predator species p‐Value

Blackside darter (Percina maculata) 0.001a

Burbot (Lota lota) 0.047

Central mudminnow (Umbra limi) 0.516

Common shiner (Luxilus cornutus) 1

Creek chub (Semotilus atromaculatus) 0.707

Hornyhead chub (Nocomis biguttatus) 0.647

Logperch (Percina caprodes) 0.001a

Pumpkinseed (Lepomis gibbosus) 0.520

Rainbow darter (Etheostoma caeruleum) 0.009

Rock bass (Amblopites rupestris) 0.002a

Smallmouth bass (Micropterus dolomieu) 0.989

White sucker (Catostomus commersonii) 0.522

Yellow perch (Perca flavescens) 0.658

aDiet compositions of predator species that were significantly different 
between the two time periods after Bonferroni correction for multiple 
comparisons (α = 0.004). TA

B
LE

 7
 

Sc
ho

en
er

's 
in

de
x 

of
 d

ie
ta

ry
 o

ve
rla

p 
(α

) b
et

w
ee

n 
ea

ch
 p

ai
r o

f p
re

da
to

r f
is

h 
sp

ec
ie

s 
re

pr
es

en
te

d 
in

 th
e 

da
ta

 s
et

BS
D

BU
R

CM
M

CM
S

CR
C

H
H

C
LO

P
PU

S
R

A
D

RO
B

SM
B

W
H

S

BU
R

0.
30

 (0
.1

4)

C
M

M
0.

11
 (0

.1
9)

0.
31

 (0
.3

1)

C
M

S
0.

04
 (0

.2
2)

0.
19

 (0
.1

4)
0.

48
 (0

.1
9)

C
RC

0.
27

 (0
.2

3)
0.

41
 (0

.4
9)

0.
16

 (0
.2

0)
0.

23
 (0

.2
0)

H
H

C
0.

25
 (0

.3
6)

0.
53

 (0
.3

5)
0.

36
 (0

.5
0)

0.
19

 (0
.2

4)
0.

44
 (0

.4
9)

LO
P

0.
24

 (0
.3

6)
0.

46
 (0

.2
7)

0.
18

 (0
.2

4)
0.

05
 (0

.1
6)

0.
26

 (0
.2

4)
0.

38
 (0

.3
8)

PU
S

0.
17

 (0
.1

2)
0.

10
 (0

.0
9)

0.
28

 (0
.2

0)
0.

01
 (0

.0
7)

0.
11

 (0
.1

0)
0.

27
 (0

.1
0)

0.
10

 (0
.2

3)

R
A

D
0.

37
 (0

.4
2)

0.
51

 (0
.2

3)
0.

23
 (0

.2
6)

0.
06

 (0
.3

7)
0.

29
 (0

.2
3)

0.
44

 (0
.2

5)
0.

79
a  (0

.3
6)

0.
23

 (0
.2

6)

RO
B

0.
33

 (0
.1

5)
0.

55
 (0

.3
3)

0.
30

 (0
.1

5)
0.

05
 (0

.2
2)

0.
26

 (0
.1

6)
0.

38
 (0

.1
8)

0.
49

 (0
.4

9)
0.

32
 (0

.3
9)

0.
65

a  (0
.3

5)

SM
B

0.
33

 (0
.1

6)
0.

45
 (0

.2
1)

0.
23

 (0
.0

4)
0.

03
 (0

.1
3)

0.
22

 (0
.0

6)
0.

38
 (0

.0
2)

0.
47

 (0
.3

9)
0.

45
 (0

.0
6)

0.
61

a  (0
.2

1)
0.

61
a  (0

.4
0)

W
H

S
0.

12
 (0

.0
7)

0.
33

 (0
.3

9)
0.

43
 (0

.3
1)

0.
30

 (0
.0

5)
0.

32
 (0

.4
0)

0.
40

 (0
.2

8)
0.

15
 (0

.1
7)

0.
11

 (0
.4

2)
0.

18
 (0

.2
2)

0.
17

 (0
.3

2)
0.

17
 (0

.1
4)

YE
P

0.
25

 (0
.2

8)
0.

28
 (0

.2
6)

0.
36

 (0
.3

6)
0.

17
 (0

.2
5)

0.
20

 (0
.1

7)
0.

51
 (0

.2
2)

0.
27

 (0
.3

4)
0.

45
 (0

.1
9)

0.
41

 (0
.4

3)
0.

36
 (0

.3
6)

0.
63

a  (0
.3

6)
0.

32
 (0

.1
7)

N
ot

e.
 T

op
 v

al
ue

s r
ep

re
se

nt
 d

ie
ta

ry
 o

ve
rla

p 
du

rin
g 

la
rv

al
 la

ke
 s

tu
rg

eo
n 

dr
ift

, a
nd

 th
e 

bo
tt

om
 v

al
ue

s i
n 

pa
re

nt
he

se
s i

nd
ic

at
e 

di
et

ar
y 

ov
er

la
p 

du
rin

g 
th

e 
po

st
dr

ift
 s

am
pl

in
g 

pe
rio

d.
 S

ch
oe

ne
r's

 α
 v

al
ue

s >
0.

6 
ar

e 
co

ns
id

er
ed

 to
 b

e 
bi

ol
og

ic
al

ly
 re

le
va

nt
 a

nd
 in

di
ca

te
 th

e 
po

ss
ib

ili
ty

 o
f c

om
pe

tit
io

n.
 S

ee
 T

ab
le

 3
 fo

r t
hr

ee
‐le

tt
er

 p
re

da
to

r f
is

h 
co

de
s.

a Pr
ed

at
or

 s
pe

ci
es

 w
ith

 s
ub

st
an

tia
l d

ie
ta

ry
 o

ve
rla

p 
(S

ch
oe

ne
r's

 α
 >

 0
.6

0)
. 



1424  |     WARANIAK et al.

3.5 | Prey availability and diet selectivity

The proportions of total drift biomass and the proportions of total 
reads in the predator GI tract samples for 15 prey ESUs were es-
timated for each night (Table 8). On average, prey biomass was 
higher during the drift period than during the postdrift period 
(Figure 2; Table 1). Catostomid larvae and mayflies in the “Other 
Ephemeroptera” ESU (primarily the family Isonychiidae) were the 
most abundant prey by biomass during the drift period (mean nightly 
catch dry weight biomasses of 11.69 and 2.12 g respectively). During 
the postdrift period, Trichoptera and Plecoptera became the most 
abundant prey taxa (mean nightly catch dry weight biomasses of 
1.09 and 1.66 g, respectively). Mean biomass of Trichoptera and 
Plecoptera did not change substantially from drift to postdrift pe-
riods; however, biomass of other prey taxa declined, largely due to 
emergence of several mayfly families throughout June.

Chesson's selectivity index value (ε) was calculated for each 
prey ESU by pooling reads by predator species for each day of sam-
pling. PERMANOVA of the ε values indicate that there was only 
a significant interaction between sampling period and predator 
species affecting selectivity of prey items. PCA of the Chesson's 
ε distance matrix revealed diet preferences were largely consis-
tent between periods, as there was no obvious difference in the 
distribution of predator references along the first PCA axis that 
explained most of the observed variation (PC1, Figure 6). There 
did seem to be a shift in some predator preferences toward baetid 
mayflies and away from other mayflies during the postdrift period 
(PC2, Figure 6).

4  | DISCUSSION

Metabarcoding of the 18S V9 region of rRNA combined with field 
surveys of the prey community allowed quantification of changes in 
predator diets as the availability and taxonomic composition of prey 
changed. The taxonomic makeup of diets as characterized by meta-
barcoding analyses were largely concordant with the current knowl-
edgebase for the diets of the predator species sampled in this study. 

Sequencing analysis revealed that many of the riverine fish preda-
tors analyzed in this study had diverse diets, with nine or more prey 
taxa identified at least to the class level contributing at least 1% of 
the prey sequences within the diet samples of each predator species. 
This high diversity observed in this study can largely be attributed to 
the ability of metabarcoding to detect quickly digested soft‐bodied 
prey that are often difficult to identify in morphological analyses of 
diet samples (Albaina et al., 2016; Alonso et al., 2014; Moran, Orth, 
Schitt, Hallerman, & Aguilar, 2016; Sakaguchi et al., 2017).

Combining the dietary composition data with information on 
the abundance of prey taxa provided insight into how changes in 
the prey community affected the dietary patterns of predators. 
There was a significant shift in the diet composition of the predator 
community as a whole as the overall biomass of the prey commu-
nity decreased and the relative abundances of prey taxa changed 
between drift and postdrift periods. Dietary overlap between pred-
ator species decreased as prey decreased in abundance, possibly due 
to niche partitioning to avoid intense competition for less abundant 
prey resources. Finally, while dietary composition changed, predator 
preferences remained stable. Predator preferences were not depen-
dent on the availability of prey in the environment. High biomass of a 
few prey taxa preferred by many predators seemed to drive the rela-
tively higher diet overlap during the drift period. As these preferred 
prey taxa declined in abundance and the prey community was not 
dominated by a few taxa, differences in predator preferences drove 
the reduction in diet overlap seen in the postdrift period. Including 
surveys of prey communities with diet analysis can greatly improve 
metabarcoding diets studies, both from a technical stance by en-
abling researchers to test for bias in their molecular assays, but also 
by providing a greater ecological context to interpret diet composi-
tion and dietary shifts.

4.1 | Diet characterization

While diets of riverine fish predators were more diverse based 
on metabarcoding analysis than morphological diet analysis of 
these species has previously recorded, the identities of the most 
prevalent prey items were largely consistent with previous dietary 

TA B L E  8   Percentages of total estimated drift biomass (top) and percentages of reads in predator diet samples (bottom) for the  
15 prey ecologically significant units (ESUs) morphologically identified from drift survey samples for each night of the drift survey

Prey ESUs

Otomorpha Acipenseriformes Hemiptera Baetidae Ephemerelloidea Other Ephemeroptera Trichoptera Plecoptera Chironomidae Simuliidae Tipuloidea Megaloptera Talitroidea Coleoptera Odonata

Drift sampling date

23/5/2015 46.68 (1.43) 9.17 (3.22) — — (9.54) 0.83 (3.39) 22.22 (39.44) 7.34 (3.85) 7.37 (1.31) 0.07 (4.18) — (7.42) — (2.22) — (0.11) 0.07 (—) 0.91 (—) 5.33 (0.90)

4/6/2015 19.94 (10.29) 36.11 (5.91) — 0.11 (4.41) 1.16 (3.52) 25.02 (16.47) 8.81 (4.98) 4.24 (0.45) 0.28 (2.48) — (14.78) 1.53 (—) — 0.18 (—) 2.61 (0.22) —

5/6/2015 32.03 (8.68) 20.05 (6.21) — 0.20 (6.56) 0.68 (1.54) 10.88 (18.49) 21.04 (2.17) 6.03 (4.06) 0.39 (4.74) — (4.73) — (1.69) — (0.03) 0.07 (—) 2.89 (—) 5.81 (—)

6/6/2015 88.37 (21.41) 1.58 (—) 0.04 (—) 0.12 (7.30) 0.42 (0.08) 1.90 (19.41) 2.11 (5.29) 2.66 (—) 0.25 (6.73) — (4.04) — 0.15 (—) 0.03 (—) 0.82 (—) 1.54 (0.52)

7/6/2015 49.08 (18.40) 0.74 (5.40) — (0.06) 0.05 (8.98) 0.78 (0.53) 5.58 (4.55) 4.82 (1.96) 24.73 (0.34) — (2.23) — (3.97) — — — 0.13 (0.06) 13.94 (2.48)

3/7/2015 17.95 (15.65) — (6.21) — 3.74 (1.58) — (2.15) 13.66 (8.86) 23.83 (2.57) 29.68 (3.74) 0.65 (10.89) 0.11 (10.95) — (0.11) — — 1.77 (5.45) 8.62 (—)

5/7/2015 14.38 (6.09) — (5.02) — 1.13 (2.60) 0.43 (—) 19.12 (10.42) 22.31 (5.92) 38.04 (—) 0.37 (11.46) 0.21 (11.14) — (0.01) — 0.20 (2.63) 3.79 (—) —



     |  1425WARANIAK et al.

observations of the particular predator species in this study. Three 
darter species sampled in the UBR (logperch, blackside darter, 
and rainbow darter) preyed primarily on mayfly (ESUs: Baetidae, 
Ephemerelloidea, and Other Ephemeroptera) and midge larvae 
(Families: Chironomidae and Simuliidae), which is similar to the find-
ings of previous studies (Alford & Beckett, 2007; Phillips & Kilambi, 
1996). Pumpkinseed sunfish [Lepomis gibbosus (Linnaeus, 1758)] 
appeared to specialize on mollusks, snails (Order: Panpulmonata) 
and clams (Infraclass: Euheterodonta), along with smaller contribu-
tions to the diet from other benthic invertebrates and cyprinids, 
all of which have been observed in other systems (García‐Berthou 
& Moreno‐Amich, 2000; Locke, Bulté, Forbes, & Marcogliese, 
2013; Mittelbach, 1984). Most of the yellow perch [Perca flaves‐
cens (Mitchill, 1814)] collected during the electrofishing survey 
appeared to be age‐1 fish. Metabarcoding results for these young 
yellow perch support previous findings that this life stage has a di-
verse diet, and larval fishes are a particularly important prey for 
juvenile yellow perch (Parke, Uzarski, Ruetz III, & Burton, 2009). 
Diets of minnows and chubs (Family: Cyprinidae) were quite di-
verse, but largely characterized by small dipteran larvae, consistent 
with past studies (Johnson, 2015; Quist, Bower, & Hubert, 2006). 
Central mudminnow [Umbra limi (Kirtland, 1841)] exhibited a diet 
similar to other analyses that focused primarily on midge larvae 
crustacean zooplankton, and mollusks (Chilton, Martin, & Gee, 
1984; Martin‐Bergmann & Gee, 1985). White sucker were shown 
to prey largely on ostracod crustaceans, a common prey item ob-
served in other studies (Ahlgren, 1990), but the molecular diet 
analysis also revealed that white sucker in the UBR may also en-
gage in piscivory or consume the eggs and larvae of spawning bass, 
perch, and darters, which has also been observed in other studies 
(Baldridge & Lodge, 2013).

The large‐bodied predators of the UBR had somewhat similar 
diets largely consisting of other fishes (ESUs: Perciformes [bur-
bot only], Otomorpha, Acipenseriformes), and some of the larger 
macroinvertebrates (ESUs: Other Ephemeroptera, Plecoptera, 
Trichoptera, Clitellata). There was a wide range of size classes of 
burbot, rock bass, and smallmouth bass present in the UBR (total 
lengths ranging from 75 to 255 mm, 41 to 310 mm, and 59 to 

508 mm, respectively). The effect of size class on diet composition 
was not analyzed in this study, so findings do not take into account 
ontogenetic diet shifts that may occur in these species (Amundsen 
et al., 2003; Dauwalter & Fisher, 2008; Paterson, Drouillard, & 
Haffner, 2006) that could explain dietary breadth. The smaller size 
classes of these species may prey heavily on aquatic macroinver-
tebrates while larger fish account for most of the piscivory seen 
in the data from this study (Amundsen et al., 2003; Dauwalter 
& Fisher, 2008; Paterson et al., 2006). As a result, the diets of 
some size classes may overlap more strongly with other species. 
Additionally, cannibalism and consumption of other Perciformes are 
a component in the diets of rock bass and smallmouth bass (Clady, 
1974; Frey, Bozek, Edwards, & Newman, 2003) but could not be 

F I G U R E  6   Principal components analysis (PCA) characterizing 
variation predator diet preference with each point representing 
the pooled diets from fish of the same species sampled on the 
same day. PC1 is mainly associated with the higher preference for 
Chironomidae (left), or Coleoptera, Plecoptera, and Trichoptera 
(right). PC2 is mainly associated with higher preference for 
Baetidae (top) or other Ephemeropterans (bottom) sequences in 
diet samples. Each diet sample is represented by a point and color 
identifying sampling period

TA B L E  8   Percentages of total estimated drift biomass (top) and percentages of reads in predator diet samples (bottom) for the  
15 prey ecologically significant units (ESUs) morphologically identified from drift survey samples for each night of the drift survey

Prey ESUs

Otomorpha Acipenseriformes Hemiptera Baetidae Ephemerelloidea Other Ephemeroptera Trichoptera Plecoptera Chironomidae Simuliidae Tipuloidea Megaloptera Talitroidea Coleoptera Odonata

Drift sampling date

23/5/2015 46.68 (1.43) 9.17 (3.22) — — (9.54) 0.83 (3.39) 22.22 (39.44) 7.34 (3.85) 7.37 (1.31) 0.07 (4.18) — (7.42) — (2.22) — (0.11) 0.07 (—) 0.91 (—) 5.33 (0.90)

4/6/2015 19.94 (10.29) 36.11 (5.91) — 0.11 (4.41) 1.16 (3.52) 25.02 (16.47) 8.81 (4.98) 4.24 (0.45) 0.28 (2.48) — (14.78) 1.53 (—) — 0.18 (—) 2.61 (0.22) —

5/6/2015 32.03 (8.68) 20.05 (6.21) — 0.20 (6.56) 0.68 (1.54) 10.88 (18.49) 21.04 (2.17) 6.03 (4.06) 0.39 (4.74) — (4.73) — (1.69) — (0.03) 0.07 (—) 2.89 (—) 5.81 (—)

6/6/2015 88.37 (21.41) 1.58 (—) 0.04 (—) 0.12 (7.30) 0.42 (0.08) 1.90 (19.41) 2.11 (5.29) 2.66 (—) 0.25 (6.73) — (4.04) — 0.15 (—) 0.03 (—) 0.82 (—) 1.54 (0.52)

7/6/2015 49.08 (18.40) 0.74 (5.40) — (0.06) 0.05 (8.98) 0.78 (0.53) 5.58 (4.55) 4.82 (1.96) 24.73 (0.34) — (2.23) — (3.97) — — — 0.13 (0.06) 13.94 (2.48)

3/7/2015 17.95 (15.65) — (6.21) — 3.74 (1.58) — (2.15) 13.66 (8.86) 23.83 (2.57) 29.68 (3.74) 0.65 (10.89) 0.11 (10.95) — (0.11) — — 1.77 (5.45) 8.62 (—)

5/7/2015 14.38 (6.09) — (5.02) — 1.13 (2.60) 0.43 (—) 19.12 (10.42) 22.31 (5.92) 38.04 (—) 0.37 (11.46) 0.21 (11.14) — (0.01) — 0.20 (2.63) 3.79 (—) —
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detected due to the low taxonomic resolution of the 18S V9 region 
of rRNA. Using markers for a more variable region in fishes (e.g., 
mitochondrial cytochrome oxidase I) would improve the ability to 
detect fishes in the diets of close relatives (Trebitz, Hoffman, Grant, 
Billehus, & Pilgrim, 2015). However, use of multiple primers that 
optimize classification potential of different groups would preclude 
our ability to estimate relative sequence abundance (and thus infer-
entially relative biomass) across all prey taxa.

Notably, crayfish (Family: Cambaridae) were absent from the 
OTUs included in the diet analysis despite the test drift homoge-
nate samples indicating that the 18S rRNA universal primers had a 
substantial predisposition to overrepresent crayfish DNA. Crayfish 
were important components of diets in some of the species present 
in the UBR according to other studies (Dauwalter & Fisher, 2008; 
Paterson et al., 2006). Adult crayfish were present in the UBR during 
the entire sampling period, but most predator fish sampled for this 
study would have been too small to prey on adult crayfish. Juvenile 
crayfish were a significant part of the drift in mid‐late June (data 
not shown), but numbers had dramatically decreased by July when 
sampling during the postdrift period occurred.

4.2 | Dietary overlap, niche partitioning, and 
predator preferences

All prey taxa were consumed by multiple predators; however, there 
were relatively few pairwise predator comparisons showing sub-
stantial dietary overlap (Schoener's α > 0.60). Overall, dietary over-
lap among all species was typically higher during the drift period 
when prey was more abundant. It was only during the drift period 
that any predators appeared to have substantial dietary overlap 
(Schoener's α > 0.60; Table 7). High dietary overlap during the drift 
period does not necessarily indicate that predators are experiencing 
negative effects due to intense competition (Cardona, 2001; Jacobs, 
Madenjian, Bunnell, & Holuszko, 2010; Raborn, Miranda, & Driscoll, 
2004). Niche theory actually predicts that the high abundance of 
prey reduces interspecific competition pressure, allowing predators 
to utilize the same resources (Pianka, 1974, 1976; Schoener, 1974). 
This pattern has also been observed in other fish communities 
(Correa & Winemiller, 2014; Dantas et al., 2013; Gray et al., 1997; 
Michaletz, 1997; Sánchez‐Hernández, Gabler, & Amundsen, 2017). 
No predator species exhibited a high degree of dietary overlap dur-
ing the postdrift period, possibly indicating niche partitioning among 

the predator species when prey became relatively scarce (Gray et al., 
1997; Raborn et al., 2004).

Niche partitioning as prey becomes scarce would explain the 
patterns seen in the predators that exhibit the greatest shifts in diet 
between the drift and postdrift periods. Blackside darter, logperch, 
and rock bass had significantly altered diets between the two peri-
ods (Figures 5b–d). These three species, along with rainbow darter 
all relied heavily on abundant mayfly larvae during the drift period, 
with Ephemeropterans making up >50% of the prey sequences 
from the darter species and >35% of the of the prey sequences in 
rock bass from this period. The biomass of mayflies in the drift de-
creased dramatically from the drift to postdrift periods, with the 
average postdrift catch biomass of mayfly larvae being just 40% of 
the average catch biomass during drift. Consequently, these species 
shifted diets to include prey that exhibited more stable abundances. 
Blackside darter diets postdrift were composed primarily of simuliid 
larvae (50% of prey sequences) and mussels (Order: Unionoida; 15% 
of prey sequences). Rock bass diets shifted to a more piscivorous 
diet, as the proportion of prey sequences made up by otomorphid 
fishes increased by 20%. Logperch also shifted toward piscivory 
(ESU: Otomorpha; 43% of prey sequences), whether targeting ca-
tostomid larvae or the eggs of summer spawning fishes, as well as 
chironomid fly larvae (16% of prey sequences). Rainbow darter ex-
hibited a less dramatic shift in diet, with mayfly larvae still making 
up 35% of the prey sequences in their postdrift period diet. While 
mayfly remained some of the most abundant potential prey taxa in 
the drift, greater competition for mayfly prey between these species 
could have driven the divergences seen in the postdrift period.

Predator preferences for certain prey items were not signifi-
cantly different between the drift and postdrift periods (Table 9). 
Most of the variation in predator preferences was associated with 
preferences for small‐bodied fly larvae (Families: Chironomidae, 
Simuliidae) or larger macroinvertebrates (Orders: Coleoptera, 
Plecoptera, Trichoptera; PC1, Figure 6). Biomass for these groups re-
mained stable or slightly declined in the postdrift period. The largest 
change in predator preferences came from reduction in preferences 
for nonbaetid Ephemeropterans (PC2, Figure 6), which faced a much 
steeper decline in biomass, to preference for baetid mayflies, which 
contributed more biomass to the drift during the postdrift period 
(Table 1). This would match the pattern seen with the predators with 
the greatest diet shifts. Predators compensated for falling levels of 
preferred mayfly prey by reducing the amount of mayfly larvae in 
their diets and shifting to other prey items to reflect the availability 
of prey in the environment. The ability for the predators to track 
prey availability and switch between various food sources may serve 
to make the overall predator community more stable (Saavedra, 
Rohr, Fortuna, Selva, & Bascompte, 2016).

4.3 | Additional considerations

Analyses in this study were conducted assuming that the number 
of sequence reads in a diet sample was proportional to prey OTU 
biomass. Evidence from other studies suggest that the number of 

TA B L E  9   Results of PERMANOVA analysis testing effects of 
predator species (n = 13), substrate (sand or gravel), and time period 
(during or after drift) on the predator preferences for prey observed 
in the drift

Factor df F R2 p‐Value

Predator Species 12 1.588 0.318 0.225

Time Period 1 4.749 0.079 0.061

Substrate 1 −3.949 −0.066 0.994

Residual 40 0.764
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sequencing reads is generally a good approximation of the relative 
biomass of organisms in a sample (Clarke, Beard, Swadling, & Deagle, 
2017; Elbrecht & Leese, 2015; Evans et al., 2016; Hänfling et al., 
2016), including with the same set of universal primers used in this 
study (Albaina et al., 2016). However, the relationship between bio-
mass and number of sequence reads can be highly variable among 
taxa due to amplification bias of the primers (Albaina et al., 2016; 
Elbrecht & Leese, 2015). Amplification biases are heavily depend-
ent on the primers and prey taxa in a study, and this study showed 
that the sequencing procedure consistently overrepresented some 
taxa (e.g., Family: Cambaridae) and under‐represented others (e.g., 
Family: Perlidae) relative to biomass. Additionally, taxonomic resolu-
tion of the prey items could be further improved through the use 
of different sets of barcoding primers targeting different regions 
(Albaina et al., 2016; Hänfling et al., 2016).

Although metabarcoding can detect a wide array of prey items, 
there are some drawbacks. For example, incidental consumption of 
environmental DNA in the water by predators and secondary pre-
dation (detection of prey of prey) can be mistaken as predation on 
some prey taxa (King et al., 2008; Pompanaon et al., 2012). It can be 
difficult to determine whether fish are actually targeting some prey 
items (e.g., rotifers) or whether the sequences from those taxa are 
showing up in fish diets because aquatic insects or other prey items 
were consuming certain prey taxa. Furthermore, because metabar-
coding relies on unique sequences to detect prey items, prey with 
the same DNA sequence as the predator cannot be distinguished 
from predator sequences (King et al., 2008). Therefore, incidence 
of cannibalism or predation on related species was not represented 
in predator diets, which could particularly affect estimates of rock 
bass and smallmouth bass diets in this study. Bass were observed to 
prey upon darters, and likely prey on other centrarchids (Dauwalter 
& Fisher, 2008), but all of those fishes have indistinguishable se-
quences at the 18S V9 region used in this study. Using a primer tar-
geting a more variable sequence in fishes (e.g., cytochrome oxidase 
I) would improve the taxonomic resolution and make a more compre-
hensive analysis of piscivory in these predators possible (Trebitz et 
al., 2015). Likewise, cannibalism has been shown to be an important 
component of burbot diets (Jacobs et al., 2010), but could not be 
detected using metabarcoding techniques employed.

The relative abundance of the prey community estimated from 
the drift survey could have been biased and may not have repre-
sented the true availability of prey in the UBR. D‐frame drift nets 
were deployed to maximize the catch of larval lake sturgeon (Auer & 
Baker, 2002; Smith & King, 2005), so drift surveys might have overes-
timated the abundance of taxa with similar benthic drifting behaviors. 
Prey that drifted near the surface (e.g., catostomid larvae; Corbett 
& Powles, 1986) are likely under‐represented in the prey community 
relative abundance data. Prey taxa that do not drift (e.g., Unionidae) 
were too small to be sampled by the 1,600 µm mesh of the D‐frame 
drift nets (e.g., Rotifera) or could escape from the drift nets (e.g., 
Perciformes) were not represented in the prey community relative 
abundance estimates. Only 15 of the 33 ESUs identified in this study 
were represented in the drift survey. As a result, the selectivity values 

based on the prey community composition should only be interpreted 
in the context of the 15 ESUs identified in the drift surveys.

5  | CONCLUSIONS

The 18S V9 rRNA metabarcoding approach implemented in this 
study shows promise as a powerful tool to investigate the diets 
of freshwater predatory fishes, especially if combined with other 
primers targeting more specific groups of taxa. Diet items could be 
identified to similar taxonomic levels as morphological diet analyses, 
with the potential for metabarcoding to have even higher taxonomic 
resolution as more sequences and longer reads become available. 
Metabarcoding also revealed that predator diets were more diverse 
than previously thought, detecting predation on taxa such as lar-
val fishes and rotifers that are unlikely to be accounted for using 
morphological diet analysis (Carreon‐Martinez et al., 2011; Hunter, 
Taylor, Fox, Maillard, & Taylor, 2012; Ley et al., 2014).

This study also demonstrated how fluctuating seasonal abun-
dance of drifting aquatic insects and larval fishes can impact preda-
tory fish diets (Correa & Winemiller, 2014; Michaletz, 1997; Raborn 
et al., 2004; Sánchez‐Hernández et al., 2017). High resource abun-
dance could lead to a release from competitive pressure and reduce 
the niche partitioning expected under interspecific competition 
(Pianka, 1974). Seasonal drift serves as an important influx of energy 
and nutrients into riverine systems and as a competitive release for 
certain species, allowing them to utilize preferred prey resources 
without having intense resource competition from other predator 
species. The combination of more representative diet analysis using 
metabarcoding and the sampling of diets at very different periods 
of prey availability allow for a more complete understanding of the 
trophic links within complex riverine ecosystems.

The analyses conducted in this study suggest that seasonal 
changes in prey abundance and composition are mirrored in the 
diet compositions of predators and cause changes interactions be-
tween predator species. Altered flow regimes and climate change 
often lead to homogenization of stream habitats and lowered tem-
poral variability, which disrupt natural macroinvertebrate and fish 
communities (Bunn & Arthington, 2002; MacNaughton et al., 2017; 
Mustonen et al., 2018) and spawning activity of fish that contribute 
large amounts of biomass and nutrients to river systems (Auer, 1996; 
Grabowski & Isely, 2007). The loss of seasonal variation in environ-
mental conditions would likely lead to a reduction or elimination of 
the seasonal variation in prey community structure and abundance 
as seen in this study. Seasonal variation in food web structure ap-
pears to have an effect on the overall stability of riverine commu-
nities by reducing predator reliance on the presence of a certain 
prey resource (Saavedra et al., 2016. This study suggests seasonal 
variation may also be important by temporarily reducing competi-
tion between predators for preferred prey resources. Maintaining 
natural temporal variation and diversity of prey communities could 
be an important component in conservation of riverine ecosystems. 
More research on the prevalence and effects of seasonal food web 
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structural variation on the resilience of riverine communities is 
warranted.
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