
OpenPathSampling: A Python Framework for Path Sampling
Simulations. 2. Building and Customizing Path Ensembles and
Sample Schemes
David W. H. Swenson,*,†,‡,∞ Jan-Hendrik Prinz,*,‡,¶,∞ Frank Noe,*,¶ John D. Chodera,*,‡

and Peter G. Bolhuis*,†

†van’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
‡Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New
York 10065, United States
¶Department of Mathematics and Computer Science, Arnimallee 6, Freie Universitaẗ Berlin, 14195 Berlin, Germany

ABSTRACT: The OpenPathSampling (OPS) package provides an easy-to-use
framework to apply transition path sampling methodologies to complex molecular
systems with a minimum of effort. Yet, the extensibility of OPS allows for the
exploration of new path sampling algorithms by building on a variety of basic
operations. In a companion paper [Swenson et al. J. Chem. Theory Comput. 2018,
10.1021/acs.jctc.8b00626] we introduced the basic concepts and the structure of the
OPS package, and how it can be employed to perform standard transition path
sampling and (replica exchange) transition interface sampling. In this paper, we
elaborate on two theoretical developments that went into the design of OPS. The first
development relates to the construction of path ensembles, the what is being sampled.
We introduce a novel set-based notation for the path ensemble, which provides an alternative paradigm for constructing path
ensembles and allows building arbitrarily complex path ensembles from fundamental ones. The second fundamental
development is the structure for the customization of Monte Carlo procedures; how path ensembles are being sampled. We
describe in detail the OPS objects that implement this approach to customization, the MoveScheme and the PathMover,
and provide tools to create and manipulate these objects. We illustrate both the path ensemble building and sampling scheme
customization with several examples. OPS thus facilitates both standard path sampling application in complex systems as well as
the development of new path sampling methodology, beyond the default.

1. INTRODUCTION

Many dynamical processes, including nucleated phase
transitions, chemical reactions, and complex conformational
changes in biomolecular systems, such as proteins and nucleic
acids, occur on long time scales,1−4 primarily due to large
kinetic barriers between metastable states.5−7 Straightforward
molecular dynamics simulations are then highly inefficient due
to the long waiting times within metastable basins, while the
rare events of interest occur over a short time.8 Methods such
as umbrella sampling,9 blue moon sampling,10 local elevation
sampling,11 conformational flooding,12 hyperdynamics,13 meta-
dynamics,14 adaptive biasing force methods,15 replica ex-
change,16 simulated tempering,17 integrated sampling,18

orthogonal space sampling,19 and numerous others enhance
the occurrence of the rare event by biasing the potential energy
surface or the density of sampled conformations. To be
effective, bias potentials require (a set of) collective variables
that approximate the reaction coordinate. However, a poor
choice will lead to poor sampling of reactive pathways and
hence poor estimates of the dynamical bottlenecks and the
related barrier heights and rates.
The transition path sampling (TPS) methodology20−23 can

enhance the sampling of complex dynamical transitions in

complex (bio)molecular systems, avoiding the exponentially
long time scales that the system spends in metastable states
and, most importantly, bypassing the need for a reaction
coordinate. Notwithstanding the efficiency of path sampling,
the complexity of implementation and lack of standard tools
have hampered widespread application.
The OpenPathSampling (OPS) framework aims at provid-

ing a toolbox to make complex transition path sampling
simulation easily accessible for users. In Paper 1, we introduced
the basic concepts and structure of the OPS framework,
discussed its ingredients, and gave a tutorial on how to conduct
some standard simulations using the OPS framework.24 The
current work builds heavily on this companion paper, and we
refer the reader to ref 24 for full details. The OPS framework
facilitates implementation of the three stages in any path
sampling study: initialization, sampling, and analysis. In the
initialization step the user defines the (network of) transitions
that needs to be sampled. This requires definition of stable
states and path and/or interface ensembles to be used in
(replica exchange) transition interface sampling (TIS)

Received: June 20, 2018
Published: October 25, 2018

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2019, 15, 837−856

© 2018 American Chemical Society 837 DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

http://dx.doi.org/10.1021/acs.jctc.8b00626
pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.8b00627
http://dx.doi.org/10.1021/acs.jctc.8b00627
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html


schemes. These definitions are based on phase space volumes
defined as a function of a priori chosen collective variables.
Since path sampling is basically a Monte Carlo (MC)
approach, the user also has to decide on the specific details
of how each type of move is implemented, which OPS
facilitates with the MoveStrategy objects, and the user has
to create the overall (and sometimes complex) decision tree
for the MC procedure, which OPS implements in a
MoveScheme. The transition network and the Move-
Scheme, together with the Molecular Dynamics Engine, a
Storage file, and an initial path sample set, are used by the
PathSimulator, which performs the sampling. Analysis of
the sampled paths is subsequently performed using informa-
tion obtained from the Storage object. OPS provides tools
for the initialization step and for the analysis. For more details
we refer to Paper 124 and to the online documentation at
http://openpathsampling.org.
This paper is mainly aimed at method developers and

researchers interested in devising their own path sampling
methods using the OPS framework. This requires an extensive
treatment of the more fundamental ideas that went into the
design of OPS. The paper focuses on two of those fundamental
aspects. One is the construction of path ensembles, which can
be viewed as what is being sampled. The other is the
customization of the Monte Carlo procedures, which relates to
how the path ensembles are being sampled. This paper
provides novel conceptional frameworks for dealing with these
two aspects.
In the first part, we focus on the path ensembles. While the

definition of path ensembles in the original TPS and TIS
papers is perfectly usable for many applications, these
definitions can become quite cumbersome when multiple
states or multiple collective variables come into play. This also
holds for the more complex path moves, such as the minus
interface move25,26 used in replica exchange TIS (RETIS),
which exchanges a trajectory in the first interface ensemble
with a trajectory exploring the stable state (the minus interface
ensemble) in order to decorrelate the (usually short) pathways
in the first interface and to provide a direct estimate for the flux
out of the stable state.25−27 Here, we present a framework
allowing one to build arbitrarily complex path ensembles from
fundamental path ensembles. To facilitate this, we first
introduce a novel set-based notation for the path ensembles.
For completeness, we also provide connections to the original
TPS and TIS notation. This novel notation provides an
alternative paradigm for constructing path ensembles with
several major advantages: (1) It allows one to easily create
complex ensembles as combinations of simpler ensembles, e.g.,
using set logic. (2) It creates a systematic connection between
the ensemble indicator function and the stopping criteria used
when generating a trajectory for the ensemble, e.g., with a
shooting move. Previously, the stopping criteria were identified
separately for every ensemble/path generating move. (3) It
facilitates analysis, as many analysis procedures can be framed
as searching for subtrajectories that satisfy some ensemble
indicator function. Examples of this are provided in Section 4.
Of particular importance herein is the sequential path
ensemble, which is directly related to the way that OPS
implements path sampling and testing. We explain in detail
how different ensembles are being built in terms of these
sequential path ensembles. We end the first part with a set of
general guidelines and simple rules on how arbitrary path
ensembles could be built in OPS.

In the second part of the paper, we describe the framework
that creates the Monte Carlo process used by OPS. This
framework is designed to be extremely flexible, which enables
one to customize the Monte Carlo move scheme and to build
nonstandard path sampling schemes with little effort. This
ability to customize the move scheme is one of the major
advantages of the OPS framework. It allows experienced users
to design a sampling method tailored to a specific system. Here
the two central concepts are (1) the move scheme, which
encodes the entire Monte Carlo procedure as a decision tree,
and (2) the path movers, which perform the moves. We
describe both concepts in detail, as well as the tools in OPS
that facilitate customization of the move scheme.
The paper is organized as follows. In Section 2.1 we briefly

review the original standard notation for TPS path ensembles.
Subsequently, we introduce the novel path ensemble set
notation, including the sequential ensemble. We then describe
in Section 2.5 how OPS implements these ensembles and give
some guidelines and rules on how new ensembles could be
built. In Section 3 we discuss customizing the Monte Carlo
moves in detail. We give illustrations of these concepts in
Section 4, where we discuss the application of generating and
splitting trajectories, as well as customizing the move schemes
for alternative replica exchange simulations. Finally, we end
with conclusions and an outlook.

2. BUILDING BLOCKS FOR PATH ENSEMBLES AND
VOLUMES
2.1. Standard TPS and TIS Notation. In this section, we

briefly recapitulate the standard notation for the path ensemble
and distribution functions used in TPS and TIS before
introducing the novel set based notation that is more
commensurate with the way OPS implements path sampling.
This section is not meant as an introduction to path sampling
but rather to describe the connection between the novel set-
based notation and the standard notation found in the
literature. For a review of path sampling methodology we
refer the reader to refs 20−23 and 28. In the next sections we
follow the notation that was introduced in refs 26 and 28.

2.1.1. The TPS Path Ensemble. A path is a discretized, time-
ordered sequence of states in phase space x ≡ {x0, x1, x2, ...,
xL}, in which consecutive states, or frames, are separated by a
small time increment Δτ. Each frame x = {r, p} consists of the
positions and momenta of all particles in the entire system.
The path-length L can be chosen fixed or variable, depending
on the type of path ensemble. The path probability for a
trajectory of duration ≡ ΔL t is

∏ρ[ ] = →
=

−

+x p x xx ( ) ( )
i

L

i i0
0

1

1
(1)

where p(xi → xi+1) denotes the Markovian transition
probability to go from xi to xi+1 in one time step, which
depends on the underlying dynamics.22 Further, ρ(x0) is the
distribution of initial conditions, in many cases the equilibrium
distribution. TPS constrains pathways between two stable
states A and B. Such states are defined using a collective
variable or order parameter λ, for example

λ λ= { | < }A x x( ) A (2)

and likewise for B. Here, λ(x) returns the order parameter λ for
frame x, and λA defines the boundary of state A. [Note that the
terms “order parameter” and “collective variable” are used

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

838

http://openpathsampling.org
http://dx.doi.org/10.1021/acs.jctc.8b00627


interchangeably in this work. As explained in Paper 1,24 the
term collective variable refers to any function of the system’s
coordinates.]
The standard TPS path ensemble distribution with a fixed

length L constrains the path to begin in A and end in B

[ ] = [ ]x x Zx 1 1 x( ) ( ) /AB A B L AB0 (3)

where 1A(x0) and 1B(xL) are indicator functions that are,
respectively, unity if the trajectory starts with x0 ∈ A and ends
with xL ∈ B and zero otherwise. The formal definition of
1A(x0) is

=
∈l

moo
no

x
x A

1 ( )
1 if
0 otherwiseA

(4)

and 1B(xL) is defined likewise. The normalization factor

∫= [ ]Z x xx1 1 x( ) ( )A B LAB 0 is akin to a partition function,
where the integral over x takes into account paths of length
L starting at all possible initial conditions x0.
For variable path length TPS a similar path ensemble

distribution can be written

[ ] ≡ [ ] [ ]h Zx x x /AB
flex

AB
flex

(5)

where the indicator function h[x] now selects the paths that
immediately leave A and just enter B

[ ] =
= ∧ =

∧ = < <

l
m
ooooo

n
ooooo

h
x x

x i Lx
1 1

1
1 if ( ) 1 ( ) 1

( ) 0 for 0

0 otherwise

A B L

A B i

0

, (6)

Note that this path ensemble indicator function already shows
some complexity. The normalization factor is now

∫≡ [ ]Z hx x x( )AB
flex where the integral over x takes now

into account paths of all length starting at all possible initial
conditions x0.
2.1.2. The TIS Path Ensemble. Transition interface sampling

(TIS) defines a series of successive nonintersecting interfaces
λ0, λ1, ..., λn, based on an order parameter λ and samples the
TIS path ensemble for each interface. Paths in the interface
ensemble i start in A (at λ0), cross the interface λi at least once,
and finally either return to A or end in B. Defining adjacent
phase space regions separated by interface λi as Λi

+ ≡ {x: λ(x)
> λi} the path probability for an interface ensemble i is given by

[ ] = ̃ [ ] [ ]Λ Λ+ +h Zx x x /A i Ai i (7)

where the subscripts AΛi
+ denote the phase phase regions

connected by the paths and the TIS indicator function

̃ [ ] =

∈ ∧ ∈ ∪
∧ ∀ { | < < } > ∉ ∪
∧ ∃ { | ≤ ≤ } ∈ Λ+

l

m

oooooooo

n

oooooooo

h

x A x A B
j j L x A B
j j L x

x

1 if ( )
0 : ( )
1 :

0 otherwise

i

L

j

j i

0

(8)

where the first and second lines ensure that only the initial and
end points are in A and B, respectively, whereas the third line
requires that the path cross the interface. The normalization
factor ZAΛi

+ is defined by

∫≡ ̃ [ ] [ ]Λ+Z hx x xA ii (9)

where the path integral runs again over all possible paths of all
lengths. The ensembles for the reverse reaction B → A are
defined in an analogous fashion.26,28

The path ensemble indicator functions become rather
complex even for the basic TPS and TIS ensembles. Moreover,
the indicator functions as described above are not directly
implementable in a path sampling code such as OPS, as they
only apply to entire paths. During a shooting move, which is at
the heart of TPS and TIS, OPS has to monitor a newly
generated path and apply a stopping criterion. Such a criterion
requires a notation that is better suited to the way that OPS
implements both the monitor function and the path ensembles
themselves.

2.2. Volumes as Sets. As the novel notation is based on
set logic, it is only natural to also treat the stable states as sets.
In OPS, stable states, and in fact any region in phase space, are
described as “volumes”. Additionally, TIS interfaces are treated
as volumes. This has several advantages, among which is the
fact that it is then easy to combine volumes using set logic.
Volumes are defined by collective variable functions. As

mentioned above, a state consists of the (usually infinite) set of
all configurations that obey the state definition. For instance,
using one order parameter λ(x) state A can be defined as in eq
2

λ λ= { | < }A x x( ) A (10)

More general definitions are possible, e.g. by using an arbitrary
number of order parameters. TIS interface volumes for an
interface i connected to state A can be defined as

λ λΛ = { | < }− x x( )Ai Ai (11)

which is the part of phase space complementary to ΛAi
+ defined

in the previous section. Crossing an interface now amounts to
leaving ΛAi

− , putting it conceptually on the same level as leaving
A or entering B.
Volumes (e.g., states) can be combined using set logic. For

two states A and B

= ∪S A B (12)

denotes the union of sets, while

= ∩S A B (13)

denotes the intersection. In this way volumes obeying an
arbitrary number of conditions can be constructed.
In OPS this set logic is implemented by several functions.

We can take unions and intersections of volumes and negations
of volumes using the objects UnionVolume, Inter-
sectionVolume, and NegatedVolume. From these
operations any logical operation can be constructed. Take as an
example the SymmetricDifference, which for two
volumes A and B would amount to all points that are either in
A or in B but not in both. This is logically equivalent to

⊕ = ∩ ̅ ∪ ̅ ∩A B A B A B( ) ( ) (14)

where the overbar denotes the complement or negation of the
volume. Other logical operations can be constructed at will.

2.3. Path Ensembles as Sets. 2.3.1. Unifying Two Basic
Tasks in OPS. As discussed in Section 2.1, path ensembles are
the set of all trajectories that satisfy the ensemble indicator
function hE[x] of the ensemble E, weighted by the natural path
probability [ ]x . In OPS, the ensemble indicator function is
part of the Ensemble object. Paths are sampled with the
correct relative weights by using Monte Carlo moves that

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

839

http://dx.doi.org/10.1021/acs.jctc.8b00627


preserve the distribution. Trajectories with nonzero weight
form a set of paths that satisfy the constraints imposed by the
ensemble indicator function. Indeed, these constraints define
the ensemble indicator function. For instance, a TPS ensemble
requires the constraints that the first snapshot be in the initial
state, that the last snapshot be in the final state, and that no
other frames of the trajectory visit a stable state. An important
task in OPS is to test whether a trajectory fits a certain
ensemble. The Ensemble object takes a trajectory as input
and returns whether or not it belongs to that ensemble. Take,
for instance, the simple ensemble for which all frames should
be in a certain state A. The predefined ensemble class
AllInXEnsemble(state) tests exactly that, returning
True only if all frames are in the given state. One of the
most productive ways to define useful path ensembles in OPS
is the SequentialEnsemble object. SequentialEn-
semble comprises a list of path ensembles that the trajectory
needs to fulfill in the correct order. This is crucial when
performing path sampling, identifying whether a path fulfills
the right conditions for a move, e.g. an exchange move.
Moreover, they can be useful for analysis of pathways.
When performing path sampling, and in particular during a

shooting move, another important task in OPS is to monitor
whether a trajectory is finished, i.e., fulfills the conditions for
stopping. At first sight, one might think that such a test is
simply applying the same Ensemble object as above.
However, this is not the case, since there are obviously many
paths that do not obey the desired path ensemble but still are
clearly to be rejected. For instance, a path that leaves A and
returns to A, without having visited B, is clearly to be rejected.
Hence, a halting criterion is needed or, rather, a continuing
criterion that tells OPS to keep integrating the molecular
dynamics trajectory, until it is clear that the trajectory can no
longer ever satisfy the path ensemble. The can_append
method provides the test for whether the path can be extended
or not. Moreover, the can_append method is the building
block from which the SequentialEnsemble is con-
structed.
In the following sections, we present a general set-based

approach, which connects the ensemble to its halting criteria
and which allows one to build arbitrarily complex ensembles
from simple building blocks. As we build up to more
complicated ensembles, we will, at each stage, first describe
the set-based approach, introducing a new notation for
describing path ensembles. Then we will show how that new
notation maps directly onto objects in OPS.
2.3.2. The Basic Building Blocks. As above we denote a

(sub)trajectory as a discretized time-ordered sequence of phase
space points x ≡ {xb, xb+1, ..., xe} where b and e denote the
beginning and end of the (sub)trajectory, respectively. For e <
b we define the trajectory of zero length x = {}. Note that a
time-reversed path also has positive time-order {y0, y1, ..., yL}
and can be constructed from the trajectory {x0, x1, ..., xL} by
setting yi = xL−i.
A path ensemble is an (infinite) set of trajectories obeying a

certain criterion, encoded by indicator functions. A basic
example is the ensemble of trajectories for which all frames are
within volume A. In OPS, indicator functions determine
whether a trajectory belongs a particular ensemble. For
instance, the (formal) function InA(x) returns unity only
when the entire trajectory belongs to volume A

{ } = ∀ { | ≤ ≤ } ∈x x j b j e x AIn ( ... ) 1 if :A b e j (15)

and zero otherwise. Likewise the indicator for the set of
trajectories entirely outside of A requires an indicator function
OutA(x) that determines that no element belongs to A

{ } = ∀ { | ≤ ≤ } ∉x x j b j e x AOut ( ... ) 1 if :A b e j (16)

As can be seen directly from these definitions

= ̅In OutA A (17)

Just as volumes can can be seen as sets allowing set-based logic,
path ensembles can be combined or intersected using set logic.
An ensemble can be combined, e.g. using a union (indicated by
∪) or an intersection (indicated by ∩). A union of ensembles
means that the trajectory has to belong to any one of the
ensembles; an intersection means that the trajectory has to
belong to all ensembles. Combinations of these logical
operations are likewise defined.
Suppose that we are interested in the ensemble OutS, with S

= A ∪ B the union of states A and B. The ensemble logic gives

= = ∩∪Out Out Out OutS A B A B (18)

Note that here, the notation InA and OutA refers to the
ensemble, i.e., the entire set of trajectories, whereas when we
talk about the associated indicator function we use InA(x) and
OutA(x).
To construct all possible logical statements, we need the

complement or (negation) of ensembles. We can take
complements of ensembles, e.g.

∪ = [ ∩ ] = ∧x x x xIn In ( ) In In ( ) In ( ) In ( )A B A B A B (19)

where the overbar indicates the complement of the set. The
∪In InA B refers to the complement of the union of the set of

trajectories entirely inside A and the set of trajectories entirely
inside B. Indeed, a trajectory that is not entirely inside A or
entirely inside B has to be partly outside A and partly outside
B.
The complement of the OutA ensemble is the PartInA

ensemble, defined by the indicator function

{ } = ∃ { | ≤ ≤ } ∈x x j b j e x APartIn ( ... ) 1 if :A b e j (20)

likewise, the complement of the InA ensemble, called PartOutA,
is defined by the indicator function where part of the trajectory
is outside A.

{ } = ∃ { | ≤ ≤ } ∉x x j b j e x APartOut ( ... ) 1 if :A b e j (21)

From these definitions it is clear that

=PartIn OutA A (22)

=PartOut InA A (23)

In addition, analogously to eq 17, we have

= ̅PartIn PartOutA A (24)

One might expect that InS would obey logic analogous to OutS.
However, it turns out

= ≠ ∪∪In In In InS A B A B (25)

because this would state that either all frames are in A or all
frames are in B. Instead, it is possible that some frames are in A
and some frames are in B, but no frames are outside of S. Thus,
the connection is

=In PartOutS S (26)

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

840

http://dx.doi.org/10.1021/acs.jctc.8b00627


In OPS the four basic functions InX, OutX, PartInx, and
PartOutX (illustrated in Figure 1) have their own predefined
objects AllInXEnsemble, AllOutXEnsemble,
PartInXEnsemble, and PartOutXEnsemble, which
act as building blocks from which ensembles can be
constructed. Indeed, as the names suggest, these ensembles
only return True if, respectively all frames are in X, all frames
are out of X, at least one frame is in X, and at least one frame is
out of X (see Table 1).
While PartInXEnsemble and PartOutXEnsemble

at first sight seem to be identical ensembles, they are in fact
different since PartInXEnsemble also yields True for a
trajectory that is all in X, whereas PartOutXEnsemble
does not. Also, contrary to what one might naively think, the
complement of AllInXEnsemble is not the AllOut-
XEnsemble. As discussed above, the complement of the InX
implementation AllInXEnsemble is the PartOutX im-
plementation PartOutXEnsemble. Indeed, PartOut-
XEnsemble gives True always if one frame is out of X, and
only returns False if all frames are in X, the very definition of
AllInXEnsemble. In Table 1 the complements of the
basic building block ensembles are given.

2.3.3. The Length Ensemble. The length ensemble consists
of all paths of a specific length n. Formally, it can be defined by
the indicator function

 { } = − = −x x e b n( ... ) 1 if 1n b e (27)

where  can take any positive integer number n > 0. An
additional definition is needed for the zero length n = 0
ensemble

 = = {}x x( ) 1 if0 (28)

which is the case for e < b. The indicator function  x( )n thus
returns unity only if the trajectory consists of n frames. To test
whether a trajectory is entirely in state A with a length n = 7
thus becomes

 [ ∩ ] = ∧x x xIn ( ) In ( ) ( )A n A n (29)

OPS implements this ensemble with the object
LengthEnsemble(n) which, as one might expect,
requires the (sub)trajectory to be of a specified length n.

2.4. The Can-Append Criterion. In practice, path
sampling uses methods like the shooting move to generate
new trajectories by running dynamics. The shooting move
must have some criterion to determine when to stop the
trajectories it generates. In early versions of path sampling, this
was based only on trajectory length, but more advanced
variants gain efficiency by stopping the simulation based on
information from the coordinates/momenta of snapshots in
the trajectory; for example, stopping upon entering a stable
state. As such, each path ensemble must be associated with a
halting criterion.
In the formalism presented here, the halting condition (or

more correctly, the not-yet-halt condition) is called the can-
append criterion. The can-append criterion is associated with
and determined by a specific ensemble  and denoted


+CanApp . It takes a trajectory x as input and answers the

question, “Is the trajectory x a subtrajectory of any trajectory
∈xE ?”. More formally, it is defined as an indicator function

on the set of all trajectories for which an additional slice in the
forward time direction would not immediately fail the specified
criterion for ensemble . For each ensemble object in OPS,
there is a method called can_append that returns True for
trajectories that satisfy the can-append criterion and False
for trajectories that do not. For the negative time direction,
there is an analogous criterion


−CanApp and a can_pre-

pend method, which tests the addition of an extra frame at
the beginning of the trajectory. The discussion that follows is
framed in terms of the forward-time can_append method.

Figure 1. “Building block” ensembles in OPS, with example
trajectories. Sequences of logical combinations of these ensembles
are used to create path ensembles used in OPS. Note that several
example trajectories could satisfy the PartInX and PartOutX ensembles.
Either of the trajectories shown for one would satisfy the other. In
addition, the trajectory for the InX would also satisfy PartInX, and the
trajectory for OutX would also satisfy PartOutX.

Table 1. Basic Building Block Ensemblesa

notation OPS object returns True if complement

InX AllInXEnsemble all frames are in volume X PartOutX
OutX AllOutXEnsemble all frames are in volume X PartInX
PartInX PartInXEnsemble at least one frame is in volume X OutX
PartOutX PartOutXEnsemble at least one frame is in volume X InX
n LengthEnsemble trajectory consists of n frames any length but n

 [ → ··· → ]n1 SequentialEnsemble subtrajectories are in subensembles failing any subensemble

 , ..., n1 in the correct order

aFor each ensemble, the table gives the mathematical notation used in Section 2, the associated OPS class name, a description of the constraint it
represents, and the logical complement ensemble.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

841

http://dx.doi.org/10.1021/acs.jctc.8b00627


However, similar arguments apply to the backward-time
can_prepend.
The indicator function for these ensembles acts on a

(sub)trajectory x. Perhaps the simplest example is the can-
append criterion for a length ensemble:


 ∑=+

=

−

x xCanApp ( ) ( )
i

n

i
0

1

n (30)

As long as the length of the trajectory is less that n, the can-
append criterion is satisfied, and LengthEnsemble.can-
_append returns True.
Another example is the InA ensemble. The indicator function

for CanAppInA
+ is given by

 = [ ∪ ] = ∨+ x x x xCanApp ( ) In ( ) In ( ) ( )A AIn 0 0
A (31)

because adding an additional frame that is not in A will
immediately fail the ensemble. The additional logical or with
the zero-length trajectory signifies that for an empty trajectory
CanApp should return True, as adding a frame to an empty
trajectory is always possible. An analogous formula can be
written for CanAppOutA

+ .

In contrast, for the ensembles CanAppPartInA
+ and Can-

AppPartOutA
+ , the indicator functions always return True since

there is no reason to stop if the additional frame is not in (or
out) the state. If a frame of the trajectory is already outside the
volume, there is still no reason to stop the trajectory: all
extensions will then lead to trajectories that still satisfy the
ensemble.
More complex can-append criteria can be constructed using

set logic involving intersections and unions,29 or using
sequential ensembles, as described below. One important,
but somewhat subtle, point is that the logical negation of the
result of can_append for an ensemble  is not necessarily
equal to the result of can_append for the complement of
ensemble . For example, the can_append method for
AllInXEnsemble returns True if and only if all frames of
the input trajectory are in the volume associated with the
ensemble. However, as discussed above, the complement of an
AllInXEnsemble is a PartOutXEnsemble, for which
the can_append method always returns True. Taking the
complement applies to the ensemble; determining the result of
the can_append for the complement depends on the
complement ensemble, not on the result of can_append in
the original ensemble.
OPS also implements two other related methods for each

e n s e m b l e : s t r i c t _ c a n _ a p p e n d a n d
strict_can_prepend. Whereas the normal can_ap-
pend (respectively can_prepend) returns True for any
subtrajectory of a trajectory in the ensemble, the strict
variant only returns True if the input trajectory is the
beginning (respectively end) of a trajectory in the ensemble.
This is useful when looking for a trajectory that satisfies the
ensemble, such as when identifying subtrajectories of a long
trajectory that satisfy the ensemble. For the basic ensembles
above, there is no distinction between these (in fact, there is
also no distinction between can_append and can_pre-
pend, since any trajectory that satisfies one must satisfy the
other). However, for sequential ensembles, described in
Section 2.5, there are significant differences, both for
can_append vs can_prepend and for their strict
and normal variants.

We stress that the basic formalism introduced here,
connecting each path ensemble to a can-append criterion, is
general and applicable beyond the ensembles implemented by
OPS. For example, one could imagine an ensemble of all
trajectories with an even number of frames, for which the
corresponding can_append method would always returns
True. OPS does not try to implement all possible ensembles;
while the ensemble of all even-length trajectories could be
implemented, it is not part of OPS due to its limited practical
scientific use.
Note that the can-append criterion, as used by the shooting

move (and similar trajectory generation approaches), results in
what are called candidate trajectories. A candidate trajectory
comes from the first trajectory that fails the can-append
criterion. For some can-append criteria, such as that of the InX
ensemble, the can-append test ‘overshoots’ and only fails after
the input trajectory could not possibly be in the desired
ensemble. For others, such as that of the Length-
Ensemble, can-append failure can be predicted before
overshooting. To maximize efficiency, OPS trims the overshot
frame to make candidate trajectories for ensembles where
necessary, while not overshooting if not necessary.

2.5. The Sequential Ensemble. 2.5.1. Definition of the
Sequential Ensemble. One of the most productive ways to
define useful ensembles in OPS is the SequentialEn-
semble, which comprises a list of path ensembles that the
trajectory must fulfill in the correct order. To understand this,
consider a simple situation with a single state X. Suppose we
are interested in a path ensemble defined by a trajectory that
begins in the state, then exits the state, and then again returns
to the state X. This ensemble can be summarized by the
sequence [InX, OutX, InX]. Trajectories in this sequential
ensemble can be split into subtrajectories that fulfill these three
subensembles in the correct order.
Conceptually, a sequential ensemble consists of an ordered

list of subensembles and an assignment algorithm to assign
frames of a candidate trajectory to those subensembles. A
trajectory satisfies the sequential ensemble if the assignment
algorithm decomposes the trajectory into subtrajectories that
satisfy each subensemble in the correct order. The can-append
criterion for the sequential ensemble can be defined based on
the can-append criterion of the subensembles (and the
assignment algorithm). While no unique choice for assignment
algorithm exists, here we describe the approach used in
OpenPathSampling.
A sequential ensemble is defined as an ordered set of (e.g.,

three) ensembles   → →1 2 3 for which the indicator
function is

    



[ → → ] = { } ∧ { }

∧ { }

+

+

x x x x

x x

x( ) ( ... ) ( ... )

( ( ... )

e e e

e L

1 2 3 1 0 2 1

3 1

1 1 2

2 (32)

with frame indices e1 and e2 given by the assignment algorithm.
For the assignment algorithm used in OPS, they are,
respectively


= [{ ∈ [− ]| { } }+e k L x xmax 1; CanApp ( ... )k1 0

1 (33)

and


= [{ ∈ [ ]| { } }+

+e k e L x xmax ; CanApp ( ... )e k2 1 1
2 1 (34)

where the first equation (eq 33) selects the maximum index e1
which still could fulfill the  { }x x( ... )e1 0 condition and the

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

842

http://dx.doi.org/10.1021/acs.jctc.8b00627


second equation (eq 34) likewise for e2. Note that here we
make use of the fact that CanAppend returns True for an
empty (zero-length) trajectory to ensure that the index ei
always has a value. Naturally, the number of ensembles in the
sequential ensemble can be arbitrarily large:

   ∏[ → → → → ] = { }
=

x xx... ... ( ) ( ... )i n
i

n

i b e1
1

i i
(35)

with bi = ei−1 + 1, e0 = −1, and


= [{ ∈ [ ]| { } }−

+e k e L x xmax ; CanApp ( ... )i i b k1
i i (36)

Note that if the first condition in eq 32 or eq 35 fails, all next
conditions are not computed. The sequential ensemble thus is
the set of trajectories that sequentially fulfill a set of ensembles.
The can-append criterion for the sequential ensemble is to

use the frame assignment algorithm (the can-append of the
subensembles) to assign all frames of the input trajectory to a
subsequence of the subensembles. If all frames can be assigned
to a subensemble, and if either (1) the subtrajectory assigned
to the last subensemble satisfies the can-append criterion for
that subensemble or (2) there are more subensembles later in
the sequence, then the sequential ensemble’s can-append
criterion is satisfied.
As an example of a sequential ensemble, consider the

situation with just two states A and B defined, and their union
S = A ∪B. The TPS ensemble connecting A and B can then be
written as the sequential ensemble

 = [ ∩ ] → → [ ∩ ]SeqEnsTPS In Out InA S B1 1 (37)

The indicator function for this ensemble SeqEnsTPS(x)
returns True only if the first frame is in A, the last frame is
in B, and no snapshot is in A nor B during the rest of the
trajectory. Note that this function is identical to the h[x] in eq
5. A very similar expression is used for the fixed length TPS

  = [ ∩ ] → [ ] → [ ∩ ]−SeqEnsTPSFixed In InA L B1 1 1
(38)

where the criterion is that the first and last slice are in A and B,
respectively, and the L − 1 slices are allowed to go anywhere.
The sequential ensemble for the TIS ensemble is defined as

 = [ ∩ ] → → [ ∩ ]

∩ Λ

SeqEnsTIS ( In Out In )

PartOut
A S S1 1

i (39)

The corresponding indicator function SeqEnsTIS(x) returns 1
only if the first slice is in A, the last one ends in A or B, and
there is no slice in A nor B during the rest of the trajectory, but
there is at least one slice that is not in the interface i volume.
Note that this indicator function is identical to h̃i[x] in eq 7.
As a final example, the minus interface ensemble25,30 is





= [ ∩ ] → → →

→ [ ∩ ]

SeqEnsMin In Out (In Out )

In
A A A A A n

A

1

1 (40)

The indicator function for this ensemble SeqEnsMinA(x)
returns unity if the first and last slice is in A and the trajectory
leaves A at least once. Note that this definition allows multiple
(n) entries into A. Here, we assumed that the boundary of A
and the first interface are identical. Below, we discuss the OPS
implementation of the minus ensemble for the more general
case.

2.5.2. Use of Sequential Ensembles for Path Sampling in
OPS. The sequential ensemble is implemented in OPS by the
SequentialEnsemble object. The test for whether a
given trajectory satisfies the SequentialEnsemble uses
the strict_can_append method of the underlying
subensembles. It starts by making a candidate subtrajectory
for the first subensemble, using that subensemble’s
strict_can_append method until it returns False.
The “strict” version is used because the subtrajectory that is
assigned to the subensemble must satisfy the subensemble. If
the resulting subtrajectory satisfies the first subensemble, then
the process is continued with the next subensemble. This
continues until no more frames can be assigned, either because
all have been assigned or because there are no more
subensembles. If all frames are assigned and all subensembles
have been assigned a subtrajectory, then the given trajectory is
in the SequentialEnsemble.
For most TPS/TIS purposes, one would like to stop

integrating trajectories as soon as they enter the state. This is
done by combining a volume ensemble, such as All-
InXEnsemble(state), with a LengthEnsemble-
(1), requiring an ensemble of length 1. This results in exactly
one frame in the desired state. Hence, the SeqEnsTPS
ensemble, eq 37, for which the initial and the final trajectory
frames are in the initial and final states, respectively, but all
other frames (at least one) are outside both states, is given by

where we have made use of the set logic of the ensembles (see
eq 29). The path should start with one frame in the initial
state, then an arbitrary number outside either state, followed by
precisely one frame inside the final state.
The slightly more complex sequential TIS ensemble

SeqEnsTIS, eq 39, can be defined as

where A, B, and I are the volume-based definitions of states A
and B and interface I, respectively. Note that we have used set
logic to define the union of A and B as a final state. Moreover,
we require the middle part of the path to be outside of this
union. Finally, the TIS ensemble requires at least a part of the
entire trajectory to be outside the interface volume.
Figure 2 provides an example, based on the TIS ensemble, of

how frame assignment works for a sequential ensemble. For
simplicity we left out the interface crossing requirement. Two
trajectories are shown, both of which fulfill the ensemble
conditions. Each trajectory starts in A, which assigns the first
frame in the (blue) ∩InA 1 subensemble. Then there are a
number of frames which are outside of the union of A and B
and which are assigned to the (black) OutA∪B subensemble.
The first frame that does not satisfy that criterion is also the
last frame of each trajectory. For the top trajectory, the last
frame is in B. For the bottom trajectory, the last frame is in A.
In both cases, the last frame satisfies the subensemble InA∪B.
In some cases, there is a need for an ”optional” step in the

sequence, which uses the so-called OptionalEnsemble.
This means that a subtrajectory of a path can be in that
ensemble but does not have to be. In OPS this is implemented

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

843

http://dx.doi.org/10.1021/acs.jctc.8b00627


by forming the union of the ensemble  with a zero-length
ensemble

  [ ] ≡ ∪Opt 0 (41)

If no subtrajectory fits the OptionalEnsemble, a zero-
length trajectory still allows the Sequential Ensemble to
continue, thus effectively skipping the OptionalEnsem-
ble.
One example where we need to use the OptionalEn-

semble class is when there is an interstitial space between
the edge of the state and the innermost interface.31 In simple
cases, the innermost TIS interface λ1 is usually set to be exactly
the boundary of the state λ0, but this is not required. A
trajectory therefore can leave a state, visit the interstitial space,
and then cross the first interface, or it can skip this interstitial
space in one frame and go directly from the state to the cross
the interface. Both situations should be dealt with. The above
TIS ensemble definition as already given works in this case.
However, the minus interface ensemble needs special care.
This ensemble is one of the more complicated ensembles in
the TIS framework. As explained in Paper 1,24 the minus
interface ensemble is used (as part of the minus move) in
RETIS to perform dynamics within the stable state and return
a new trajectory to one of the innermost TIS ensembles. This
can be used to calculate the flux, to connect different interface
sets in MISTIS, or to enhance decorrelation of trajectories.25,30

The code for the minus ensemble in eq 40 with n = 1 entries
into A is given in Chart 1. Note the use of the
OptionalEnsemble for the interstitial regions. This
code will also be discussed in more detail in the following
subsections.

2.5.3. The Reverse Check and can_prepend for
Sequential Ensembles. Up to this point, we have focused on
sequential ensembles where the volumes associated with
successive ensembles cannot overlap. That is, there can be
no ambiguity as to which subensemble a given frame of a
trajectory is assigned to, regardless of the assignment algorithm
used for the sequential ensemble. However, it is possible to
define sequential ensembles where such overlaps are allowed,
but these will become much more complicated and more
subtle. In particular, special attention needs to be paid to
whether one can sample the same ensemble using the
can_append and can_prepend methods.
OPS implements two main assignment rules. The normal

OPS assignment algorithm is based on dynamics propagating
forward in time (using


+CanApp ) and, for clarity, can be called

“forward assignment”. In the code, the forward assignment can
be tested using ensemble(trajectory). The alter-
native approach is based on dynamics propagating backward in
time (using


−CanApp ) and will be called “reverse assignment”.

The code to use it in OPS is ensemble.check_re-
verse(trajectory).
The reverse assignment algorithm is used to simplify the

can_prepend (

−CanApp ) approach as implemented in

OPS. The can_prepend algorithm for the OPS Sequen-
tialEnsemble is implemented analogously to the
can_append algorithm. Both are “greedy” algorithms, in
the sense that they try to assign the largest subtrajectory
possible to the current subensemble. Since the forward
assignment is greedy starting with the first subensemble of
the sequential ensemble, and the reverse assignment is greedy
starting with the last subensemble, the two algorithms might
not yield equivalent results. Any ensemble that will be sampled
with both forward and backward dynamics (as is done in the
standard shooting moves in path sampling) must result in
identical ensembles for both the forward assignment and the
reverse assignment. Note that there are many cases in which
the reverse assignment will not matter. For instance, generating
initial trajectories (illustrated in Section 4.1) or analyzing
existing trajectories (see Section 4.2) only requires forward
assignment. Moreover, many rare events methods (e.g.,
forward flux sampling32) involve propagating forward in time
only.
Since the forward and reverse assignment algorithms are not

equivalent, certain sequential ensembles could accept a
trajectory when checked with the forward propagation but
not when checked with backward propagation (or vice versa).
For example, imagine volumes A, I1, and I2 as illustrated in
Figure 3, where I1 ⊂ I2, and A ∩ I2 = ⌀. Consider the ensemble

 ∩ → → → ∩In In In InA I I A1 11 2
. As shown in the top

panel of Figure 3, for the illustrated trajectory, the forward
assignment starts by assigning the first frame to the first
ensemble InA (shaded blue in the figure). Then the frame
assignment algorithm will look for a subtrajectory that satisfies
the InI1 ensemble. In the example trajectory shown, it finds a

two-frame subtrajectory that satisfies the InI1 ensemble. The

next frame is the first one that can be assigned to the InI2
ensemble. Since frames that are in the volume I1 are also in the
volume I2, the trajectory continues to assign frames to InI2 until
it exits that volume and enters A. The last frame, in A, is
assigned to the final ∩InA 1 ensemble, shaded purple in the

Figure 2. Frame assignment in an ensemble based on the TIS
ensemble, for two trajectories. The points, which indicate individual
frames in the trajectories, are colored to match the subensembles of
the sequential ensemble, as given below the illustration. This
ensemble differs from a real TIS ensemble because there is no
interface.

Chart 1. Implementation of the Minus Interface Ensemble,
Assuming Existing Definitions of the State Volume A and
the Innermost Interface Volume Ia

aThis implements the minus interface ensemble with n = 1 re-entries
into the state between the end points (i.e., with 2 interface crossings).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

844

http://dx.doi.org/10.1021/acs.jctc.8b00627


figure. Frames have been assigned to all ensembles, in the
correct order, and no frames are unassigned. Therefore, this
trajectory satisfies the ensemble.
Next consider the reverse assignment algorithm, as

illustrated in the middle panel of Figure 3. Assignment starts
at the last frame of the trajectory and at the final subensemble
in the sequential ensemble. This frame is assigned to the final
subensemble ∩InA 1 (shaded purple), as would also happen
in the case of forward assignment. Stepping backward along
the trajectory, the assignment algorithm is looking for frames
in the volume I2, following the penultimate subensemble. Since
I1 ⊂ I2, it finds such frames, and it continues to find frames in
I2 until the last frame to be assigned (the first frame of the
trajectory), which is in A. Reaching that frame, the algorithm
first checks whether it can be assigned to the InI2 ensemble, as
with the frame before. As this is not the case, the algorithm
checks whether the frame can be assigned to the InI1 ensemble,
the next subensemble in the reverse order. Since this is also not
the case, the reverse check algorithm deems this trajectory to
fail the sequential ensemble, as it does not contain
subtrajectories assigned to all the correct ensembles in the
correct order. In the figure, we signify this with the red x.
Note that the reverse assignment is not the same as using the

forward assignment algorithm to assign frames from the time-
reversed trajectory, as is shown in the bottom panel in Figure
3. For this trajectory, the process of first reversing the
trajectory and then assigning in the forward order leads to an
assignment analogous to the forward assignment of the
nonreversed trajectory. The trial trajectory will be accepted
in this case.
The requirement for a trajectory to be sampled correctly

with both forward and backward dynamics is that the forward
and reverse assignment algorithms accept the same trajectories.

For some sequential ensembles, such as the TPS and TIS
ensembles, this means that the frame assignment is identical in
both directions. However, this does not need to be the case, as
can be seen from the minus ensemble listed in Chart 1 and the
trajectory assignments illustrated in Figure 4.
The minus ensemble includes trajectories that start with one

frame in the state, go on to cross the interface, then return to
the state, then cross the interface again, and finally end with
one frame in the state. When the interface and state are not
equivalent, there is an interstitial volume between them. This
means that there could be recrossings of the interface or of the
state boundary, as illustrated by the trajectory in Figure 4,
which also shows how this is handled by the careful
implementation of the minus ensemble in Listing 1 in Chart 1.
Recrossings are handled by using the fact that the criterion

for failing a subensemble is to enter the next volume X. The
not-yet-halt criterion for the subensemble is then the
requirement to be in the complement volume X, thus InX =
OutX. For instance, the green OutA subensemble handles the
condition that the trajectory should re-enter state A, while
allowing many crossings of the I interface. Likewise, the red InI
= OutI subensemble handles the second first exit of I, allowing
many recrossings of the A boundary.
Note that some successive subensembles involve volumes

that have overlap. For example, consider part of the minus
ensemble OutA → InI → OutA. Because the associated volumes
are not disjoint (i.e., I ∩ A≠ ⌀), frames in that intersection can
be assigned to either ensemble and will be assigned differently
for the forward and reverse assignment algorithms. Addition-
ally, the assignment of the optional ensembles depends on the
assignment algorithm, again because of this volume overlap.
The difference in the two assignment algorithms is shown for
an example trajectory in Figure 4.
Unlike the example in Figure 3, any trajectory that satisfies

the forward assignment for the minus ensemble will also satisfy
the reverse assignment. Specific frames may be assigned to

Figure 3. Applying different assignment approaches to a given
trajectory. Points represent frames in the trajectory and are colored to
show assignment, as with Figure 2. The forward assignment algorithm
(top) assigns frames in forward time order of the trajectory, with the
forward order of the subensembles of the sequential ensemble. The
reverse assignment algorithm (middle) assigns frames in the reverse
order of the subensembles in the sequential ensemble, in reverse time
order of the trajectory. Finally, the forward assignment of the reversed
trajectory (bottom) is shown to illustrate that this is distinct from the
reverse assignment. Note that a trajectory may be accepted by one
assignment algorithm and rejected by the other (as shown here by the
red x for an unassigned frame in the reverse assignment).

Figure 4. Frame assignment for an example trajectory in the minus
ensemble. Points represent frames in the trajectory and are colored to
show assignment, as with Figure 2. The solid line represents the
boundary of the state volume A, and the dashed line represents the
boundary of the interface volume I, with everything below the lines in
the respective volume. The forward assignment algorithm (top) and
reverse assignment algorithm (bottom) give the same result (the
trajectory satisfies the ensemble), although the specific assignment of
frames differs.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

845

http://dx.doi.org/10.1021/acs.jctc.8b00627


different subensembles, but the overall trajectory will either
satisfy both assignment criteria or fail both.
In addition, because the minus move is one of the most

computationally expensive moves in path sampling, we want to
design the ensemble so that candidate trajectories are almost
certain to be accepted. Without that requirement, the optional
ensembles could be removed from the sequence, and the OutA
ensembles in the sequence would become OutA ∩ PartOutI.
Here still, the forward and reverse frame assignments would
differ. However, this would have the disadvantage that
candidate trajectories could return to A immediately after the
first frame in the interstitial, without crossing the interface.
Such trajectories would be expensive to generate and would
not be accepted. The sampling would be correct but inefficient.
Because of the possible difference between frame assignment

in the forward and reverse directions, it is important to know
that the code defaults to forward propagation to check whether
a trajectory is in an ensemble. We emphasize that an ensemble
which does not give the same results in both directions can still
be suitable for situations where only forward dynamics will be
used (e.g., generating an initial trajectory) but will not be
suitable for approaches such as the shooting move in path
sampling, which involves both forward and backward
dynamics.
2.6. Performance Considerations. The previous sections

provide a mathematically complete description of a new, set-
based approach to describing path ensembles and their halting
criteria in a consistent and unified manner. However, this
approach, naively implemented, is not always computationally
efficient. The functions described (such as the can-append
criterion) take an entire trajectory as input and therefore must
iterate over all previously visited frames after each new frame is
added. This leads to algorithms that scale as L( )2 instead of

L( ) in L, the number of frames. In OPS, this scaling problem
is managed by using caches for the sequential ensemble,
combined with a Boolean parameter trusted that can be
passed to the can_append and can_prepend functions
(as well as their strict variants). The trusted parameter
for can_append indicates that, as of the previous frame, the
trajectory satisfied the can_append criterion (and similarly
for can_prepend and the strict variants). Additionally,
the ensemble indicator function, given by ensemble-
(trajectory), takes an optional Boolean parameter called
candidate. If candidate = True, then the code
assumes that the trajectory was generated by the can_ap-
pend or can_prepend method, and therefore only certain
parts of the trajectory need to be tested.
For example, consider a flexible-length TPS ensemble as in

eq 37 and a trajectory (x0, ..., xi). If (x0, ..., xi−1) satisfied the
can-append criteria, then we know that the last trajectory with
frames assigned was OutS, and we should first check whether
xi ∉ S, which would allow us to assign it to that subensemble as
well. The trusted parameter tells us that we can trust that
the previous frame passed can-append, enabling a faster path
for checking the can-append criterion. In addition, the
SequentialEnsemble keeps a cache of the frame
assignment, so the algorithm knows immediately to which
ensemble the frame should be assigned (with safety checks that
this frame is still part of the same trajectory.)
As an example of the use of the candidate parameter,

again consider the flexible-length TPS ensemble, with some
trajectory (x0, ..., xL) . If that trajectory was generated using the

can_append or can_prepend rules, no frames except
for the first and last can be in any state. In this case, we can
check whether the trajectory satisfies the ensemble just by
checking if the first and last frames are in the appropriate
states. The methods built into OPS for arbitrary ensembles are
general but might not be the most efficient. Customized
ensembles can make use of the trusted and candidate
parameters to provide faster calculations for trajectories known
to be generated by dynamics, while still benefiting from the
general approaches for trajectories of unknown origin.

2.7. Guidelines for Designing Custom Ensembles. The
above sections introduced the set-based notation for path
ensembles, illustrated the connection between this notation
and the inner workings of OPS, and showed how OPS uses this
conceptual framework to implement ensembles used in path
sampling simulations. In Section 4, we will provide several
more examples of useful path ensembles. However, defining
new ensembles might not seem completely straightforward. To
help bridge the gap between understanding the ensembles we
present and creating new ensembles, in this section we provide
some general guidelines and tricks that could be seen as rules
of thumb for ensemble building.

• Use anchors. In many path ensembles, trajectories start
and end with a frame in a specific volume (or union of
volumes). It can be useful to think of these as anchors to
start designing the ensemble. Typically, the building
block is a single frame in some volume A, i.e., the
ensemble ∩InA 1.

• Use complement ensembles and volumes. If we want a
trajectory to end with the first frame in some volume A,
we might think of this as a PartInA ensemble; but, as
discussed in Section 2.4, the PartInA ensemble never
halts. However, the first trajectory that will satisfy it can
come from the first trajectory that does not satisfy its
complementary ensemble, OutA. This can, of course,
also be written as InA̅. In some cases, the complement
volume may be the one that is more naturally defined.
For example, if part of a sequential ensemble is supposed
to lead to a first frame in A, we can use the OutA
ensemble, as is done in the minus ensemble, which also
uses this to create a first frame outside of the interface I
using InI (where it is more natural to refer to a frame
outside the interface volume than a frame inside the
complement of the interface volume). A more elaborate
example using this reasoning is given in Section 4 for the
ensemble used to get the initial trajectory that visits all
states.

• Think in terms of halting criteria. First, it is important
to make sure that every ensemble (and every
subensemble of a sequential ensemble) will eventually
halt. Second, the halting criteria can be useful when
designing sequential ensembles. Because the sequential
ensemble uses a greedy algorithm, it is important to
think in terms of the stopping criteria of the previous
ensemble and where that leaves you. The previous
guideline explained how to get a crossing out of some
volume (call it I), but typically we speak of crossing from
starting in one volume (call it A) and then exiting the
volume I. To know which volume the subensemble will
start in, look at the previous subensemble and apply the
rules in the guideline about complement ensembles and
volumes.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

846

http://dx.doi.org/10.1021/acs.jctc.8b00627


• Prefer set logic on volumes, not ensembles. When
creating ensembles, set logic on ensembles and on
volumes might seem very similar. For instance, one
might be tempted to code the ensemble OutA∪B as OutA
∪ OutB. However, this is incorrect, as explained in
Section 2.3. Also, the logical complement of ensembles
in general is not what one naively would expect. The set
logic for volumes is usually more familiar and, therefore,
whenever possible, should be used.

• Beware of unions with PartIn or PartOut. This relates
to both the suggestion of thinking in terms of halting
criteria and preferring set logic on volumes. The danger
here is that, while an ensemble such as InI ∪ PartOutA
may seem reasonable, the stopping criterion of PartOutA
is to never stop, and therefore a union with it leads to
infinite trajectories.

• Check the reverse assignment. If using path sampling,
or any other algorithm that requires generating dynamics
in the backward time direction, check that the reverse
assignment gives the same results as the forward
assignment. The ideas behind this are described in
Section 2.5.3. Developing a symmetric sequence for the
sequential ensemble can help with the reverse assign-
ment. Not all methods require that the reverse
assignment be used, only those that involve propagating
backward in time.

• Use optional ensembles for flexibility. The optional
ensemble allows a particular subensemble of a sequential
ensemble to be skipped. This is useful when the
ensemble will be employed in many variants, and
when it is uncertain whether the subensemble will
always be satisfied (as with the minus ensemble).
Including optional ensemble can also ensure that both
the forward and reverse assignments work properly.

• Use unions of complex ensembles. Sometime a union
of complex ensembles, such as sequential ensembles, is
the best way to achieve a desired ensemble. For example,
consider sampling A → B transitions and B → A
transitions in one ensemble. A TPS ensemble from A ∪
B to A ∪ B will not work, since it will allow A→ A and B
→ B transitions. Instead use a union of sequential
ensembles, SeqEnsTPSA→B ∪ SeqEnsTPSB→A.

Finally, there is often more than one way to implement a
given path ensemble. These guidelines should provide tools
both for the design of new ensembles, as well as to understand
ensembles we have provided as examples in Section 4.

3. GENERAL FRAMEWORK FOR CUSTOM MONTE
CARLO APPROACHES

Transition path sampling amounts to Monte Carlo of
trajectory space. In standard TPS, the Monte Carlo procedure
samples trajectories from a single path ensemble. In TIS, and
particularly in RETIS, the Monte Carlo procedure simulta-
neously samples trajectories from an expanded ensemble,
combining multiple interface ensembles. Standard TPS can be
seen as a special case of this expanded ensemble, where only a
single path ensemble is sampled. The expanded ensemble gives
rise to the SampleSet object in OPS, as described in Paper
1.24

Monte Carlo moves in OPS, based on this expanded
ensemble, are performed by the PathMover object.
PathMovers can change trajectories within the ensemble

being sampled (as with the shooting move), or they can alter
the ensembles associated with trajectories without changing
the trajectories (as with path replica exchange), or they can
alter both the trajectory and its associated ensemble (as with
the minus move).
The PathMovers are organized in an overall move decision

tree. This tree includes, besides the movers that perform the
Monte Carlo steps, several so-called structural movers, e.g., the
RandomChoiceMover that randomly selects one of several
submovers (these structural movers are described in Section
3.1). In principle, a manually assembled move decision tree is
all that is necessary for a path sampling simulation. However,
for complicated move decision trees, this becomes tedious and
difficult. The PathMovers, including the structural movers,
constitute a low-level interface that is sufficient but not
particularly user-friendly. Therefore, we have developed a
higher-level layer, using the MoveStrategy and Move-
Scheme objects, which automates the repetitive lower-level
operations and enables the user to customize the move
decision tree easily.
The MoveScheme is an overall container that builds the

move decision tree, while each MoveStrategy deals with a
part of that tree: providing, for example, details on how the
shooting move will be performed or which pairs of ensembles
are involved in replica exchange. A path sampling simulation
will have one MoveScheme, and that MoveScheme will
include multiple MoveStrategy objects.
The following subsections describe how the structural path

movers allow combining existing movers into a more
complicated move and how to use the MoveStrategy
and MoveScheme. Subclassing existing objects can create
more complicated path movers; details are available in the
online documentation for OpenPathSampling at http://
openpathsampling.org.

3.1. Structural Movers. PathMover objects such as the
OneWayShootingMover and ReplicaExchange-
Mover generate new trial paths. However, they need to be
organized into the overall move decision tree. This
organization is done by other subclasses of PathMover,
which we call structural movers. Important structural movers
include the following:

• A RandomChoiceMover, one of the main structural
elements in most move decision trees, randomly selects
one of its submovers. For example, a first Random-
ChoiceMover selects the type of move (shooting,
replica exchange, etc.), followed by a second Random-
ChoiceMover that selects a mover for the specific
ensemble(s) involved in the move. The Random-
ChoiceMover is also an important element in many
PathMovers. For example, the OneWayShoot-
ingMover consists of a RandomChoiceMover
that selects between a ForwardShootingMover
and a BackwardShootingMover. By default, the
submovers within a RandomChoiceMover have
identical probability of being selected; this can be
changed with the weights parameter at initialization.

• A SequentialMover employs several submovers in
a specific order, where each submover is accepted
independently. This mover is not a combined trial move
but a bundle of several moves together in a specific
order.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

847

http://openpathsampling.org
http://openpathsampling.org
http://dx.doi.org/10.1021/acs.jctc.8b00627


• The ConditionalSequentialMover is similar
to a SequentialMover but provides an early
rejection scheme, which is important for moves where
a failure in an early step can guarantee that the whole
move fails, especially if later steps are very expensive.
Below we will discuss how this plays a role in the
MinusMover.

• An EnsembleFilterMover removes resulting
Samples associated with intermediate ensembles
from the results. In complicated movers, extra, internally
defined Ensemble objects can create intermediate
steps in the mover, which would end up in the results.
The EnsembleFilterMover filters those (often
uninformative data) out of the results.

The move decision tree can take many forms. To obtain
information about the path mover most likely of interest (e.g.,
ReplicaExchangeMover or ForwardShooting-
Mover) regardless of the specific structure of the move
decision tree, we implemented a property canonical in the
MoveChange. As discussed in Paper 1,24 a PathMover
takes a SampleSet as input and returns a MoveChange
object. This MoveChange can contain other Move-
Changes from submovers; in this way the whole path taken
through the move decision tree is preserved. However, the
nested structure of MoveChanges can make it cumbersome
to access attributes from the MoveChange of the specific
submover of interest (e.g., shooting point from the Move-
Change associated with the shooting mover). Therefore, the
MoveChange.canonical property directly accesses the
first nested MoveChange associated with a mover that
identifies itself as “canonical”. Subclasses of PathMover can
declare themselves canonical by setting the class attribute
_is_canonical to True. Examples using the canon-
ical property can be found in Paper 1, Section 6.1.6.24

The MinusMover provides a useful example of how
several structural movers can be put together to generate a new
Monte Carlo move. As described in Paper 1,24 the OPS
MinusMover is, in a way, a combination of replica exchange
and shooting moves. In MSTIS, each state typically has one
MinusMover, which takes trajectories from two ensembles
as input: the TIS innermost interface ensemble and the minus
ensemble. In the discussion that follows, the state is denoted A,
and the innermost interface volume is denoted X. In many
cases the state definition A will be identical to X, but this is not
required.
Both the TIS ensemble and the minus interface ensemble

are described in Section 2.5. In the minus move, both use the
same interface volume, X. In addition, there is an ensemble
which is used internally in the minus move. This ensemble is
nearly the same as the TIS ensemble used as input, except that
instead of allowing paths to end in either A or make a
transition to another state B, all paths in this internal ensemble
must start in A, cross the interface, and also end in A, i.e., this
is the ensemble  [ ∩ → ∩ → ∩ ]In Out PartOut InA A X A1 1 .
In the context of the minus move, we refer to this as the
“segment ensemble”. Trajectories in the minus interface
ensemble begin and end with subtrajectories that also satisfy
the segment ensemble and therefore satisfy the innermost
interface ensemble.
The minus move consists of three steps: (1) randomly

selecting one of the subtrajectories that satisfies the segment
ensemble from the minus ensemble trajectory; (2) performing

a replica exchange move between the selected segment and the
path in the innermost interface; and (3) extending that path in
a random time direction until it satisfies the minus interface
ensemble.
The first step is performed by a RandomChoiceMover

that selects between either a FirstSubtrajectory-
SelectMover or a FinalSubtrajectory-
SelectMover, where in both cases the subtrajectory
satisfies the segment ensemble. This step should always be
accepted as the initial path satisfies the minus ensemble.
When there is only one innermost ensemble, the second step

is just a replica exchange. This replica exchange can only fail if
the innermost interface path happens to cross to another stable
state. In the case of multiple interface sets (as in MISTIS),
however, there are multiple innermost interfaces.30 The
interface to exchange with is selected with a Random-
ChoiceMover that includes ReplicaExchange-
Movers for each innermost interface. The segment might
not overlap with the selected interface, and therefore this step
very well might fail for MISTIS.
In the final step, the trajectory that was initially in the

innermost interface ensemble is extended until it satisfies the
minus ensemble, using a RandomChoiceMover to choose
either a ForwardExtendMover or a BackwardEx-
tendMover.
No part of the move can be accepted unless all parts

succeed. Therefore, we use a ConditionalSequen-
tialMover for this. In addition, we used the intermediate
“segment” ensemble. To remove this from the results, we wrap
the mover in a EnsembleFilterMover.
Figure 5 shows the internal structure of this mover.

Normally, this structure is not shown in the move decision
tree visualization because the MinusMover is marked as a
canonical mover, and the visualizer does not show internal
structure of canonical movers. This setting can be overridden
by changing the options.analysis dictionary of the
visualizer.

3.2. MoveScheme and MoveStrategy Objects. The
MoveScheme contains multiple MoveStrategy objects,
used to automatically build the (often elaborate) move
decision tree. It also is possible to build move decision trees
manually. To make these manually built trees compatible with
other parts of OPS, the root mover needs to be wrapped in a
LockedMoveScheme. However, many of the tools for
MoveSchemes are not available for LockedMove-
Schemes, and much of what is discussed in the remainder
of this section is not applicable to LockedMoveSchemes.
In addition to containing the move decision tree, a

MoveScheme organizes information about the sampling
process and provides access to tools for analyzing the sampling
procedure after the simulation. In particular, the Move-
Scheme organizes the movers into labeled or named groups.
For the default TIS scheme, the group names are
’shooting’ (shooting movers), ’repex’ (replica
exchange), ’pathreversal’ (path reversal), and
’minus’ (minus move). These can be accessed with
scheme.movers[group_name]. Each group consists
of multiple PathMovers. Each PathMover in turn has
specific input and output ensembles. For shooting, a single
ensemble is used for both input and output. For Ensemble-
HopMovers (the single-replica version of replica exchange,
which moves a single replica from one ensemble to a different
ensemble), the input mover is different from the output mover.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

848

http://dx.doi.org/10.1021/acs.jctc.8b00627


ReplicaExchangeMovers have two input and two
output ensembles (the same pair for both). We refer to this
set of input and output ensembles as the mover’s ensemble
signature.
To build the move decision tree, one must decide (1) which

ensemble signatures will be part of each type of move (e.g.,
which ensembles to shoot from), (2) how the movers will be
implemented (e.g., what kind of shooting move to use), and
(3) how all movers are organized into the overall decision tree
(e.g., select type of mover first and then specific ensembles to
include). MoveScheme builds the move decision tree by
applying multiple MoveStrategy objects. Each Move-
Strategy is associated with a specific priority level. When
building the move decision tree, the strategies are applied in
order of priority level, and within a priority level, in order of
addition to the MoveScheme. The default priority levels are
in openpathsampling.strategies.lev-
els.LEVELNAME, where LEVELNAME can be, in order
of ascending priority, SIGNATURE, MOVER, GROUP, or
GLOBAL. Internally, these priority levels are represented by
integers between 0 and 100, but these specific levels are named
for convenience. The recommended use for these levels is as
follows:

• Strategies at the SIGNATURE level modify the set of
ensemble signatures to be used; for example, the default
NearestNeighborRepExStrategy, which ex-
ecutes replica swaps among neighboring interfaces,

versus the AllSetRepExStrategy, which imple-
ments replica swaps among all interfaces within the same
Transition (interface set).

• Strategies at the MOVER level customize the behavior of
the created path movers; for example, the OneWay-
ShootingStrategy provides the ability to choose
a shooting point selector for the shooting group.

• Strategies at the GROUP level can take the already-built
movers and rearrange them or convert them to a
different approach. For example, the single-replica
EnsembleHop movers can be converted to normal
replica exchange using the ReplicaExchange-
Strategy, which is a GROUP-level strategy. In
Section 4, we show another GROUP-level strategy,
which will take the already-created shooting and replica
exchange movers and reorganize them into a single
sequential move.

• Strategies at the GLOBAL level organize the overall
move decision tree. The two GLOBAL-level strategies in
OPS are the OrganizeByMoveGroupStrategy,
which first selects a move type and then selects which
specific mover (which signature, i.e., which ensembles),
and the OrganizeByEnsembleStrategy, which
starts with the selection of the ensemble to move (as
necessary with single-replica approaches) and then
selects which type of move to do.

By using this priority-level system, the move decision tree
can be built correctly, regardless of the order in which the
specific move strategies are added to the scheme. Parts that
must be built later are built later because of the priority levels.
In addition, the details of what has already been built (e.g.,
specific choices of parameters for movers, such as the shooting
point selection in a shooting move) can be retained by later
moves that reorganize the entire move decision tree.
MoveStrategy objects deal with the details of the

implementation, when building the move decision tree. For
example, two-way shooting could be used instead of one-way
shooting by starting with the default scheme applying a
TwoWayShootingStrategy to the scheme:

where engine and network were already appropriately
defined (see Paper 1 for details24). This implements a two-way
shooting move decision tree where the shooting point is not
modified, and the decorrelation depends on the stochastic
dynamics. Alternatively, for NVT dynamics, one could choose
the momenta randomly from a Maxwell−Boltzmann distribu-
tion, as is, for instance, done in the aimless shooting33

approach. The scheme then becomes

where temperature, engine, and network were
already appropriately defined. This implements a two-way
shooting move decision tree where the shooting point obtains
random velocities taken from a Maxwell−Boltzmann distribu-
tion at the desired temperature. If the engine supports
constraints, the RandomVelocities modifier will project
that distribution into the space of constraints.

Figure 5. Internal structure of a MinusMover. At the left, the
hierarchical structure of mover. Each layer (moving left) is
encapsulated in the objects to the right. During a minus move,
submovers are visited from top to bottom (but not all submovers are
visited). The MinusMover, labeled “Minus”, is the outermost
container. Inside it is the EnsembleFilterMover that filters out
results in the internally used segment ensemble. The primary
sequence of the minus move is in the ConditionalSequen-
tialMover, each of which involves a RandomChoiceMover,
which select the specific movers to do at each stage. On the right are
the three ensembles involved in the minus move, labeled with A, B,
and C. Ensemble A is the innermost TIS ensemble, ensemble B is the
minus ensemble, and ensemble C is the segment ensemble. The input
and output ensembles for each mover are shown in blue and red
(respectively). Movers like replica exchange have the same input and
output ensembles (even if the replicas have changed), whereas movers
like the subtrajectory selectors move a replica from one ensemble to
another.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

849

http://dx.doi.org/10.1021/acs.jctc.8b00627


As another example, a modified shooting point selector
could be used, instead of the default (uniform selector). For
instance, the GaussianBiasSelector selects the
shooting point according to a Gaussian probability in a
specified collective variable.34 After setting up the scheme as
above and creating a collective variable cv, the following code
will implement this selector

where the Gaussian bias is defined by exp(−α(cv(x) − l0)
2)

with x representing a snapshot, and l0 and α, respectively,
controlling the position and width of the Gaussian.
A third example of a MoveStrategy is to add a specific

ensemble pair to the list of possible replica exchange moves.
To do this, one would first select the ensembles (call them
ens1 and ens2). Then, after creating the scheme as
before, the new replica exchange pairs can be added with

Note that this last example was a signature-level strategy,
whereas the other examples were mover-level. The priority-
level system used in OPS means that the user does not have to
consider the order in which the strategies are built when
appending them to a custom move scheme. For example, the
signature-level strategy that changes the ensembles used in
replica exchange can be appended after the mover-level
strategy that provides details of how to perform the shooting
move, even though the order they are used in is the opposite
order when building the move decision tree.

4. ILLUSTRATIVE EXAMPLES

4.1. Creating New Ensembles. One of the significant
features of OpenPathSampling is the ability to generate valid
paths for arbitrary path ensembles. This capability facilitates
the development of new methodologies, which often require
the creation of new path ensembles. In addition, this feature
has practical advantages for users as well. In the Appendix of
Paper 1, we briefly mentioned one such practical use.24 To
obtain the initial conditions for a path sampling simulation, we
can use a high temperature trajectory. For multiple state TIS
simulations, we also need initial trajectories that satisfy all the
ensembles in the MSTIS network: there must be trajectories
that begin in each state and which exit each interface volume.
For most MSTIS simulation setups, a path that undergoes a
transition to another state will cross all the interfaces associated
with the initial state. Therefore, we can use such a transition
path as an initial path for all interfaces; and since we can
reverse paths, a long trajectory that visits all states will contain,
for each of the defined MSTIS ensemble in the network, a
(possibly reversed) subtrajectory that satisfies that ensemble.
Thus, our high temperature target trajectory is one that has

visited all states. To define an ensemble that will generate such
a trajectory, we use complement ensembles and think in terms
of halting criteria, as suggested in the guidelines in Section 2.7.
We need a condition that remains true until the trajectory has
visited all states  in other words, the opposite of the
condition that the trajectory has visited all states. This means
that we should continue as long as the trajectory has not visited
at least one state. We can express this idea as a path ensemble

= ∪ ∪ ∪ ∪Init Out Out Out ... OutA B C M (42)

which is only true if none of the M Out conditions are fulfilled.
The continuation condition is now the negation of this
ensemble

= ∪
∈{ }

InitTrajEns Out
I A M

I
... (43)

This condition translates in OPS to the Python code

where states is a list of the state volumes. We can then
create the goal trajectory using the engine.generate
method by

The resulting trajectory will have visited every state, and
the last frame will be in the last state visited. Since it visits
every state, then it has, for every state, a subtrajectory that
starts in that state and ends in another (in some cases requiring
time reversal). This means that subtrajectories of this long
trajectory can be found to satisfy all the ensembles in the
MSTIS network. Note that we use the ensemble itself as a
condition, not its CanApp function. In this case, because these
are In/OutA-type ensembles, the CanApp is equivalent to the
ensemble check (this is not necessarily the case for other
ensembles). Conceptually, we are after the first trajectory that
does not satisfy the ensemble, so we use the ensemble check
itself.
We can also define another (arbitrary) ensemble to obtain a

first trajectory suitable for the TIS bootstrapping procedure.
This procedure takes a trajectory satisfying the innermost
interface ensemble of a TIS transition and performs shooting
moves until the resulting paths satisfy the ensemble(s) for the
subsequent interface(s). To get that initial trajectory, we want
to start from any arbitrary frame, then have at least one frame
in state A, then have at least one frame that crosses the
interface, and end with exactly one frame in either state A or
state B (where state B can be generalized to the union of
multiple other states). The sequential ensemble to do this is



= [ ] → → [ ∩ ] →

→ [ ] → → [ ] → [ ∩ ]

Λ

Λ Λ ∪

SeqEnsInit Opt Out In Opt Out In

Opt In Out Opt Out In

A A A

A A B 1

i

i i

(44)

Following Section 2.7, this ensemble uses an anchor that
combines the optional ensemble outside of A with a required
ensemble inside A. As also suggested in the guidelines, the
OptionalEnsembles in this ensemble are designed to
ensure that any possible trajectory that satisfies the overall goal
will still be accepted. This ensemble translates into OPS code
as

A similar ensemble is part of the FullBootstrapping
calculation, which fills TIS ensembles starting from a single
snapshot.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

850

http://dx.doi.org/10.1021/acs.jctc.8b00627


4.2. Using Ensemble.split for Trajectory Anal-
ysis. The Ensemble object in OpenPathSampling provides a
convenient way of analyzing trajectories in terms of
subtrajectories. The ensemble.split(trajectory,
overlap) method takes a long trajectory and returns
a list of subtrajectories that satisfy the ensemble. Successive
subtrajectories will have at most overlap frames in common
(with a default of 1 shared frame). For example, we can check
whether any trajectories in a fixed-length TPS simulation
included recrossings. Given state volumes A and B, we first
create the B → A transition ensemble

= → [ ] →∪SeqEnsBtoA In Opt Out InB A B A (45)

which in OPS code translates to

Making frames outside of both A and B optional captures
trajectories where the transition occurs without any
intermediate frames (this is unlikely in our examples but
could be common in long paths with (too) infrequent saving of
frames). We can apply B_to_A.split(trajectory)
to every trajectory accepted by the fixed-length TPS ensemble.
If the resulting list is not empty, a recrossing in the B → A
direction took place. Since the first frame of every accepted
trajectory has to be in A and the last frame of every trajectory is
necessarily in B, the existence of a B → A transition guarantees
a recrossing. For the fixed path length alanine dipeptide
example from Paper 1,24 Section 6.6, we find 109 accepted
trials with recrossings, including 5 with 2 recrossing events. For
accepted paths with a single recrossing, there are two α → β
transitions in the path  one before recrossing and one after.
With two recrossings, there would be three transitions. An
example of an accepted recrossing trajectory is shown in Figure
6.
This approach also allows distinguishing between multiple

channels for a given reaction. For instance, we can compare the
behavior of fixed path length TPS and flexible path length TPS
for alanine dipeptide. By taking ensemble as the flexible
path length TPS ensemble, application of the split function
identifies subtrajectories of the fixed path length TPS that
match the flexible path length ensemble.

The top panel of Figure 7 shows path-length histograms for
the transitions in the flexible path length TPS ensemble and in
the fixed path length ensemble (selected using the split
function), from our TPS simulations of alanine dipeptide
reported in Paper 1.24 These histograms differ because the
fixed length ensemble in fact sampled two different transition
mechanisms. To show this, we can define custom path
ensembles that distinguish between the two mechanisms. First,
we define additional volumes, based on the ψ collective
variable: an A volume for 100 < ψ < 200 (where the
CVPeriodicRangeVolume automatically wraps into the
correct bounds) and a B volume for −100 < ψ < 200. These
two volumes are based on the original states but have no
restrictions in ϕ. Two additional volumes account for the “no-
man’s land” region outside the states: nml_increasing
for −160 < ψ < −100 and nml_decreasing for 0 < ψ <
100. Next, we identify a transition as “increasing” if the
trajectory crosses the nml_increasing volume (i.e., the
value of ψ increases while going from one state to the next)
and “decreasing” if it crosses the nml_decreasing
volume. The sequential ensemble for the increasing transitions
can be defined by

= → →_SeqEnsIncr In In InA Bnml increasing (46)

which is in OPS code
Figure 6. Accepted TPS trajectory with recrossing taken from the
fixed-length TPS simulation of alanine dipeptide in Paper 1.24 The
angle ψ is plotted as a function of time. Frames in C7eq are marked in
red; frames in αR are marked in blue.

Figure 7. Transition path length distributions. Top: Without
distinguishing between increasing and decreasing transition types
from the fixed length TPS. Bottom: Distinguishing the increasing and
decreasing transitions. The difference in the path length distributions
can be attributed to the fixed-length simulation sampling both
increasing and decreasing transitions.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

851

http://dx.doi.org/10.1021/acs.jctc.8b00627


The ensemble for decreasing transitions is defined similarly but
using nml_decreasing in place of nml_increasing.
Trajectories that satisfy the original TPS ensemble will have
subtrajectories that satisfy one of these ensembles. By using the
ensemble.split() method, we can identify which
mechanism each trajectory represents.
Figure 8 shows several trajectories (blue and purple)

connecting the original two stable states (dark red). The
states are defined in terms of periodic variables and can wrap
around the periodic boundary. The “extended” versions of the
states that were defined above are shown in light red, and the
two different “no man’s land” volumes are labeled
nml_decreasing and nml_increasing. Several hypothetical
trajectories are shown, all of which would count as a decreasing
transition. Trajectory (a) would be easy to analyze by a
volume-based approach (and is also a realistic trajectory for
this system). Trajectories (b) and (c) would count as
decreasing transitions, but an analysis based only on volumes
(without consideration of ordering) might miss them.
Trajectory (d) includes both an increasing and a decreasing
transition (and would be extraordinarily unlikely in this
system).
The fixed length alanine dipeptide example shows 3570

trajectories in the decreasing channel and 6670 trajectories in
the increasing channel (weighted by the Monte Carlo weights
from the TPS simulation). All transition trajectories satisfy
exactly one of the two channels, although some TPS
trajectories, due to recrossings, have more than one transition
trajectory. The flexible length example has all its trajectories in
the decreasing channel. The existence of recrossings in the
fixed length TPS ensemble demonstrates that these transitions
in alanine dipeptide are not that rare, so it is not surprising that
we would also observe switching between the two mechanisms.
The bottom panel of Figure 7 shows the path length
histograms when the increasing and decreasing transitions
are distinguished. The decreasing subtrajectories from the
fixed-length sampling and the trajectories from the flexible-
length sampling (which are all decreasing) show much closer

agreement, and the increasing transition shows a very different
distribution.
We can also replace other common analyses with versions

based on Ensemble.split. For example, consider the
lifetime in a given state, which is defined by the time from
when a trajectory first enters the state (having previously been
in another state) until it enters another state. We refer to the
desired state as A and the combination of all other states as B.
To think of this in terms of path ensembles, we describe it in

two stages. First, we need to find the path ensemble which goes
from another state, enters the desired state, and then enters
another state. We denote this as the “BAB” ensemble. The
trajectories which are relevant to the lifetime calculation are
subtrajectories of trajectories in the BAB ensemble. These go
from the first entrance in A to the first entrance in B. We will
call this the “AB” ensemble. We obtain trajectories in the AB
ensemble by first getting all the segments that satisfy the BAB
ensemble and then selecting the relevant subtrajectories.
Defining the BAB ensemble as





= [ ∩ ] → [ ∩ ]

→ [ ∩ ]

SeqEnsBAB In PartIn Out

In
B A B

B

1

1 (47)

the corresponding OPS code is given by

The AB ensemble is defined as

 = [ ∩ ] → [ ] → [ ∩ ]SeqEnsAB In Opt Out InA B B1 1
(48)

with the OPS code given by

Both ensembles make use of the guideline on thinking about
the halting criteria (from Section 2.7) by using OutB as part of
the middle subensemble. This guarantees that the middle
subensemble stops, and the first frame afterward must be the
first frame in state B (thus satisfying the final subsensemble).
Additionally both of these ensembles use anchors requiring
one frame in a state. Formally, the intersection with 1 is not
necessary, as we might as well have selected the last
subtrajectory of frames in B/the first subtrajectory of frames
in A, instead of the last frame in B/first frame in A.
To use these, we just run

In Figure 9, we visualize the trajectory segments associated
with each of these ensembles for a sample trajectory from a toy
model.
In the above example, the average time of the resulting

trajectories gives the average lifetime in a state. In a two-state
system, the reciprocal of the average lifetime is the rate. This
could be modified to get the transition rate constants for a
multiple state system by replacing the AllInXEnsemble-
(B) in the BAB sequential ensemble with an ensemble that
would allow any state other than A, while the last one allows a
specific state B. This would give the lifetime associated with
the rate of A → B.

Figure 8. Volumes and example trajectories for the different ways a
“decreasing” transition can occur. The shaded areas represent the
extended state definitions used in the analysis of the transitions, while
the darker shaded areas are the actual states of the system. (a) A
typical decreasing path. (b) and (c) Paths which visit the “increasing”
no man’s land but only transition across the decreasing. (d) Path with
both increasing and decreasing transitions.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

852

http://dx.doi.org/10.1021/acs.jctc.8b00627


A similar procedure can be used to obtain the flux from a
state through a given interface in TIS. In that case, we do two
lifetime analyses: the lifetime outside the interface (where A is
everything outside the interface, and B is the state) and the
lifetime inside the state (where A is the state, and B is
everything outside the interface). The reciprocal of the sum of
the average lifetimes from these gives us the flux.25

Since this example involves two loops over the snapshots, it
may not be as fast as code custom-designed to this purpose.
(Although, in fact, the caching of OPS collective variables
renders the vast majority of the total computational effort done
in the first pass.) However, our primary intent here is to
highlight how simple it is to prototype a trajectory analysis
based on using the Ensemble.split method. It may be
possible to write faster code, but it is hard to write code faster.
The specific implementations of flux and lifetime discussed

here are included in the SingleTrajectoryAnalysis
object.
4.3. Custom PathMovers. OpenPathSampling also

facilitates the creation of custom move schemes. In this
section, we present an example of how that can be done and
compare the sampling behavior of this custom move scheme to
the default move scheme.
The default RETIS move scheme selects a type of move at

random (shooting, replica exchange, etc.) and then attempts
one move of that type (shooting in a single ensemble, replica

exchange for a specific pair, etc.); but perhaps a move which
does all the replica exchanges in sequential order, then does
shooting moves on all the ensembles, and then does the replica
exchange in the reverse order would be more efficient. This
move will satisfy detailed balance  the question is whether it
is more efficient.
For the most part, this simulation is set up as in the examples

in Paper 1.24 The specific potential energy surface is given by

= + − − − +

+ − −

V x y x y y x

x

( , ) 0.7 exp( 0.5 )(exp( 12( 0.5) )

exp( 12( 0.5) ))

6 6 2 2

2 (49)

States are defined such that state A is x < −0.5 and state B is x
> 0.5. Only the A → B transition is studied, with interface
volumes from xmin = −∞ to xmax,i = {−0.4, −0.3, −0.2, −0.1}.
The potential energy surface, with states and interface
boundaries, is shown in Figure 10.
The main difference with the examples in Paper 124 is that

here we define a custom MoveStrategy object, which creates a
custom sequential mover. The code for this mover and a move
strategy to manage it is given in Chart 2.
To use this strategy, we first create a default scheme and

then append the new strategy

The visualization of this move scheme is in Figure 11. There
is still a random choice of type of move, but the types available
are now minus move, path reversal, and the sequential mover,
which is the only choice under the “Repex_shoot_repex-

Figure 9. Trajectory segments for lifetimes. A trajectory for a toy
model is shown with a light gray line. The red area represents state B,
and the blue area represents state A. The segment that satisfies the
BAB ensemble is shown by the dark gray line, and the segment that
satisfies the AB ensemble is shown in blue (and overlaps the BAB
segment).

Figure 10. Model system for the custom move scheme example.
Potential energy surface with states in blue and interface boundaries
in red.

Chart 2. Custom Path Mover and Move Strategy for Repex-
Shoot-Repex Movea

aThe make_movers method is the primary point: first, the replica
exchange movers and shooting movers are extracted from the existing
move scheme, removing them if replace is true. Then these
movers are combined into a sequence in the mover_list,
representing the sequential order in which they should run doing
the combined move. That list is then input to create the sequential
mover.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

853

http://dx.doi.org/10.1021/acs.jctc.8b00627


Chooser” in the illustration of the move decision tree. The
relative probabilities for each move type are determined as
ratios. By default, a new move type has the same (relative)
probability as a shooting move, which is twice that of a replica
exchange or path reversal and five times that of a minus move.
This means that when the repex-shoot-repex move replaces
shooting and replica exchange in the move scheme, the ratio of
per-ensemble shooting attempts to path reversals or to minus
moves stays the same.
On the other hand, the number of total MC steps per

ensemble shooting attempts will, of course, be very different
between the custom and default schemes. To compare these
fairly, we use the function scheme.n_steps_for_tri-
als, which takes a mover and the number of desired attempts
of that mover as arguments. We can ensure the two simulations
do about the same amount of work by aiming for the same
number of per-ensemble shooting moves. For the default
scheme, this is

and for the custom scheme, it is

We arbitrarily select the first shooting mover in the default
scheme, since all have the same probability. We take the total
probability of selecting the ’repex_shoot_repex’
group, because there is one mover in that group, and every

time it occurs, it creates one shooting attempt for each
ensemble.
To ensure that this is a fair comparison, there are a few

comparisons that should be made. First, we use the
scheme.move_summary function (described in Paper
124) to show that we have the same number of path reversal
and minus moves in each scheme. We can also use the move
summary to see that we have the same number of shooting
moves per ensemble, by comparing the per-ensemble shooting
count obtained by adding ’shooting’ as a second
argument to default_scheme.move_summary with
the number of repex-shoot-repex moves in the cus-
tom_scheme. Since both schemes are sampling the same
number of shooting moves in the same ensembles, they should
create roughly the same number of total snapshots. We can
check this with len(storage.snapshots) for each
storage.
To analyze these results, we consider replica round trip

times and replica flow,35 concepts that monitor the presence of
bottlenecks during the replica exchange. Both concepts require
defining ensembles as “top” and “bottom”. We put the minus
ensemble as the bottom ensemble and the outermost TIS
ensemble as the top ensemble. A round trip can start from
either the first entry to the “top” ensemble or the first entry to
the “bottom” ensemble and will use whichever the given
replica visits first. If the replica visits the “top” ensemble first,
the round trip duration is the number of Monte Carlo steps
from the first entry into “top” until the replica returns to “top”
after visiting “bottom”, with the case starting in “bottom”
defined analogously.
Replica flow is defined by labeling each replica as either

traveling “up” or “down”, depending on whether it more
recently visited the “bottom” or “top” ensemble, respectively.
For each ensemble i, the count of visits by “up” replicas is given
by ni

↑, with the number of visits by “down” replicas given by ni
↓.

The flow for a given ensemble is defined as f i = ni
↑/(ni

↑ + ni
↓).

Formally, flow is 1 at the “bottom” ensemble and 0 at the “top”
ensemble. The ideal flow is linear with the replica index.35

Round trip times and flow are both calculated as part of the
ReplicaNetwork analysis tool. The code to analyze the
default scheme is

Then default_trips[’round’] returns a list of the
duration (in Monte Carlo steps) of each round trip that
occurred. Analysis for the custom scheme is analogous.
For this simple example, we find the custom move scheme

does not yield significant improvement. The default scheme
generates 345 round trips, whereas the custom scheme
generates 311. There may be a small difference in the
distribution of the round trip times (see Figure 12). The
distribution of round trip times is skewed toward slightly
longer round trips for the custom scheme. The replica flow,
shown in Figure 13, is very similar for both approaches.
Overall, the default scheme is probably a slightly better choice.

Figure 11. Move scheme including the repex-shoot-repex mover.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

854

http://dx.doi.org/10.1021/acs.jctc.8b00627


5. CONCLUSION
In this paper we have described some advanced topics relevant
to the OpenPathSampling framework.24 We have introduced a
novel set-based approach to constructing path ensembles,
along with a new notation suitable to this approach. This
allows the application of set logic to path ensembles and fits
seamlessly with the way that OPS is written. Another
advantage of this new notation is that it unifies the description
of the monitor function of OPS with the path ensemble
indicator function. Of particular importance herein is the
sequential path ensemble, which is directly related to the way
that OPS implements the path sampling monitoring and
testing. Using this new notation it is remarkably simple to
create new path ensembles and immediately implement these
in OPS.
In addition, we provided insight in how one can customize

the path sampling Monte Carlo movers within OPS in order to
build nonstandard sampling schemes. These customizations
are required if one wants to develop new path sampling
schemes or adapt existing ones.
In short, in this paper we have illustrated the power and

flexibility of the OPS package. Users can now develop their
own advanced sampling protocol entirely in OPS and apply it
to compute kinetic and thermodynamic observables.

In future work we will further elaborate on the foundation of
the ensemble set-logic. Another direction is to parallelize the
OPS code. While running multiple simulations in parallel is
already possible, true parallelization requires the load balancing
of multiple ensembles, where trajectories can have different
and unpredictable path lengths, over the available computa-
tional resources.

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: dwhs@hyperblazer.net.
*E-mail: jan.prinz@choderalab.org.
*E-mail: frank.noe@fu-berlin.de.
*E-mail: john.chodera@choderalab.org.
*E-mail: p.g.bolhuis@uva.nl.
ORCID
John D. Chodera: 0000-0003-0542-119X
Peter G. Bolhuis: 0000-0002-3698-9258
Author Contributions
∞D.W.H.S. and J.H.P. contributed equally to this work.
Funding
D.W.H.S. and P.G.B. acknowledge support from the European
Union’s Horizon 2020 research and innovation program, under
grant agreement No. 676531 (project E-CAM). J.D.C.
acknowledges support from Cycle for Survival, NIH grant
P30CA008748, and NIH grant R01GM121505. J.D.C., J.H.P.,
and D.W.H.S. gratefully acknowledge support from the Sloan
Kettering Institute. F.N. acknowledges ERC consolidator grant
772230 “ScaleCell”, DFG NO 825/2-2, and SFB1114, project
A04. The Chodera laboratory receives or has received funding
from multiple sources, including the National Institutes of
Health, the National Science Foundation, the Parker Institute
for Cancer Immunotherapy, Relay Therapeutics, Entasis
Therapeutics, Silicon Therapeutics, EMD Serono (Merck
KGaA), AstraZeneca, the Molecular Sciences Software
Institute, the Starr Cancer Consortium, Cycle for Survival, a
Louis V. Gerstner Young Investigator Award, and the Sloan
Kettering Institute. A complete funding history for the
Chodera lab can be found at http://choderalab.org/funding.
The content is solely the responsibility of the authors and does
not necessarily represent the official views of the National
Institutes of Health.
Notes
The authors declare the following competing financial
interest(s): J.D.C. was a member of the Scientific Advisory
Board for Schrodinger, LLC during part of this study, and is a
current member of the Scientific Advisory Board of OpenEye
Scientific Software.

■ ACKNOWLEDGMENTS
The authors are grateful for feedback from many people who
helped beta-test the software, whose names are listed at http://
openpathsampling.org/latest/acknowledgments.html. The au-
thors are particularly grateful to Sander Roet (University of
Amsterdam) for his feedback and to Jocelyne Vreede
(University of Amsterdam) for the feedback obtained by
using OPS as a teaching tool in courses on biomolecular
simulation.

■ REFERENCES
(1) Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. How
Fast-Folding Proteins Fold. Science 2011, 334, 517−520.

Figure 12. Histogram of round trip times for the default RETIS
scheme and the custom scheme with the “repex-shoot-repex” move,
with duration normalized to the total number of MC steps. Although
both give about the same number of round trips, the distributions may
differ somewhat.

Figure 13. Replica flow for the default TIS scheme and the custom
scheme with the “repex-shoot-repex” move. This example shows little
difference, with the suggestion that the default scheme may be slightly
better.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

855

mailto:dwhs@hyperblazer.net
mailto:jan.prinz@choderalab.org
mailto:frank.noe@fu-berlin.de
mailto:john.chodera@choderalab.org
mailto:p.g.bolhuis@uva.nl
http://orcid.org/0000-0003-0542-119X
http://orcid.org/0000-0002-3698-9258
http://choderalab.org/funding
http://openpathsampling.org/latest/acknowledgments.html
http://openpathsampling.org/latest/acknowledgments.html
http://dx.doi.org/10.1021/acs.jctc.8b00627


(2) Buch, I.; Giorgino, T.; De Fabritiis, G. Complete reconstruction
of an enzyme-inhibitor binding process by molecular dynamics
simulations. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 10184−10189.
(3) Plattner, N.; Noe, F. Protein conformational plasticity and
complex ligand-binding kinetics explored by atomistic simulations and
Markov models. Nat. Commun. 2015, 6, 7653.
(4) Silva, D.-A.; Bowman, G. R.; Sosa-Peinado, A.; Huang, X. A Role
for Both Conformational Selection and Induced Fit in Ligand Binding
by the LAO Protein. PLoS Comput. Biol. 2011, 7, e1002054.
(5) Schütte, C.; Huisinga, W. In Handbook of Numerical Analysis;
Ciaret, P. G., Lions, J.-L., Eds.; Elsevier: 2003; Vol. X, pp 699−744.
(6) Noe,́ F.; Horenko, I.; Schütte, C.; Smith, J. C. Hierarchical
analysis of conformational dynamics in biomolecules: Transition
networks of metastable states. J. Chem. Phys. 2007, 126, 155102.
(7) Chodera, J. D.; Singhal, N.; Pande, V. S.; Dill, K. A.; Swope, W.
C. Automatic discovery of metastable states for the construction of
Markov models of macromolecular conformational dynamics. J. Chem.
Phys. 2007, 126, 155101.
(8) Chandler, D. In Classical and Quantum Dynamics in Condensed
Phase Simulations; Berne, B. J.; Ciccotti, G.; Coker, D. F., Eds.; World
Scientific: 1998; Chapter Barrier crossings: classical theory of rare but
important events, pp 3−23.
(9) Torrie, G. M.; Valleau, J. P. Monte Carlo Free Energy Estimates
Using Non-Boltzmann Sampling: Application to the Sub-Critical
Lennard-Jones Fluid. Chem. Phys. Lett. 1974, 28, 578.
(10) Carter, E.; Ciccotti, G.; Hynes, J. T.; Kapral, R. Constrained
Reaction Coordinate Dynamics for the Simulation of Rare Events.
Chem. Phys. Lett. 1989, 156, 472.
(11) Huber, T.; Torda, A.; van Gunsteren, W. J. Comput.-Aided Mol.
Des. 1994, 8, 695.
(12) Grubmüller, H. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat.
Interdiscip. Top. 1995, 52, 2893−2906.
(13) Voter, A. F. A method for accelerating the molecular dynamics
simulation of infrequent events. J. Chem. Phys. 1997, 106, 4665.
(14) Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl.
Acad. Sci. U. S. A. 2002, 99, 12562.
(15) Darve, E.; Pohorille, A. Calculating free energies using average
force. J. Chem. Phys. 2001, 115, 9169.
(16) Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics
method for protein folding. Chem. Phys. Lett. 1999, 314, 141−151.
(17) Marinari, E.; Parisi, G. Simulated Tempering - A new monte-
carlo scheme. Europhys. Lett. 1992, 19, 451−458.
(18) Zheng, L.; Chen, M.; Yang, W. Random walk in orthogonal
space to achieve efficient free-energy simulation of complex systems.
Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 20227−20232.
(19) Gao, Y. Q. An integrate-over-temperature approach for
enhanced sampling. J. Chem. Phys. 2008, 128, 064105.
(20) Dellago, C.; Bolhuis, P. G.; Csajka, F. S.; Chandler, D.
Transition path sampling and the calculation of rate constants. J.
Chem. Phys. 1998, 108, 1964−1977.
(21) Bolhuis, P. G.; Chandler, D.; Dellago, C.; Geissler, P.
Transition path sampling: Throwing ropes over mountain passes, in
the dark. Annu. Rev. Phys. Chem. 2002, 53, 291−318.
(22) Dellago, C.; Bolhuis, P. G.; Geissler, P. L. Transition path
sampling. Adv. Chem. Phys. 2003, 123, 1−78.
(23) Dellago, C.; Bolhuis, P. G. Transition Path Sampling and Other
Advanced Simulation Techniques for Rare Events. Adv. Polym. Sci.
2009, 221, 167−233.
(24) Swenson, D. W. H.; Prinz, J.-H.; Noe,́ F.; Chodera, J. D.;
Bolhuis, P. G. J. Chem. Theory Comput. 2018, DOI: 10.1021/
acs.jctc.8b00626.
(25) van Erp, T. Reaction Rate Calculation by Parallel Path
Swapping. Phys. Rev. Lett. 2007, 98, 268301.
(26) Bolhuis, P. G. Rare events via multiple reaction channels
sampled by path replica exchange. J. Chem. Phys. 2008, 129, 114108.
(27) van Erp, T. S. Dynamical rare event simulation techniques for
equilibrium and nonequilibrium systems. Adv. Chem. Phys. 2012, 151,
27−60.

(28) Bolhuis, P. G.; Dellago, C. Reviews of Computational Chemistry;
Wiley-VCH: Hoboken, 2009; DOI: 10.1002/SERIES6143.
(29) Swenson, D. W. H. to be published 2018.
(30) Swenson, D. W. H.; Bolhuis, P. G. A replica exchange transition
interface sampling method with multiple interface sets for
investigating networks of rare events. J. Chem. Phys. 2014, 141,
044101.
(31) van Erp, T. S.; Moroni, D.; Bolhuis, P. G. A novel path
sampling method for the calculation of rate constants. J. Chem. Phys.
2003, 118, 7762.
(32) Allen, R.; Frenkel, D.; ten Wolde, P. Simulating rare events in
equilibrium or nonequilibrium stochastic systems. J. Chem. Phys.
2006, 124, 024102.
(33) Peters, B.; Trout, B. L. Obtaining reaction coordinates by
likelihood maximization. J. Chem. Phys. 2006, 125, 054108.
(34) Juraszek, J.; Bolhuis, P. G. Rate Constant and Reaction
Coordinate of Trp-Cage Folding in Explicit Water. Biophys. J. 2008,
95, 4246−4257.
(35) Katzgraber, H. G.; Trebst, S.; Huse, D. A.; Troyer, M.
Feedback-optimized parallel tempering Monte Carlo. J. Stat. Mech.:
Theory Exp. 2006, 2006, P03018−P03018.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00627
J. Chem. Theory Comput. 2019, 15, 837−856

856

http://dx.doi.org/10.1021/acs.jctc.8b00626
http://dx.doi.org/10.1021/acs.jctc.8b00626
http://dx.doi.org/10.1002/SERIES6143
http://dx.doi.org/10.1021/acs.jctc.8b00627

