
OpenPathSampling: A Python Framework for Path Sampling
Simulations. 1. Basics
David W. H. Swenson,*,†,‡,∞ Jan-Hendrik Prinz,*,‡,¶,∞ Frank Noe,*,¶ John D. Chodera,*,‡

and Peter G. Bolhuis*,†

†van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
‡Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York,
New York 10065, United States
¶Department of Mathematics and Computer Science, Arnimallee 6, Freie Universitaẗ Berlin, 14195 Berlin, Germany

ABSTRACT: Transition path sampling techniques allow molecular dynamics simu-
lations of complex systems to focus on rare dynamical events, providing insight into
mechanisms and the ability to calculate rates inaccessible by ordinary dynamics simu-
lations. While path sampling algorithms are conceptually as simple as importance sam-
pling Monte Carlo, the technical complexity of their implementation has kept these
techniques out of reach of the broad community. Here, we introduce an easy-to-use
Python framework called OpenPathSampling (OPS) that facilitates path sampling for
(bio)molecular systems with minimal effort and yet is still extensible. Interfaces to
OpenMM and an internal dynamics engine for simple models are provided in the
initial release, but new molecular simulation packages can easily be added. Multiple
ready-to-use transition path sampling methodologies are implemented, including
standard transition path sampling (TPS) between reactant and product states and
transition interface sampling (TIS) and its replica exchange variant (RETIS), as well
as recent multistate and multiset extensions of transition interface sampling (MSTIS, MISTIS). In addition, tools are provided
to facilitate the implementation of new path sampling schemes built on basic path sampling components. In this paper, we give
an overview of the design of this framework and illustrate the simplicity of applying the available path sampling algorithms to a
variety of benchmark problems.

1. INTRODUCTION

Biomolecular systems, such as proteins and nucleic acids, can
undergo complex conformational changes on long time scales
that are challenging for atomistic molecular simulations to reach.
For example, atomistic molecular dynamics (MD) must employ
timesteps on the scale of femtoseconds to faithfully reproduce
the fastest vibrational modes tomaintain simulation stability and
fidelity, while the kinetic time scales (e.g., of protein folding or
binding) can often range from microseconds to seconds or
more. In protein−ligand binding, mean residence times for
bound druglike molecules are often several hours, presenting an
enormous challenge to studying dissociation mechanisms or
predicting unbinding rates by straightforward MD.1−3 In these
and other situations, simulating a sufficient number of these rare
events (folding/unfolding or binding/unbinding) to produce a
statistically meaningful description of the dominant mechanism
or estimate of rate constants is often so challenging as to be
untenable by straightforward means. Slow kinetic time scales
primarily arise from large kinetic barriers between metastable
states.4−7 The observed dynamics is dominated by long waiting
times within metastable basins, punctuated by rare events of
interest occurring over a short time.8,9 Straightforward molec-
ular simulation is highly inefficient as most effort will be wasted
simulating uninteresting dynamics as the system remains
trapped within metastable states.10

One approach to overcoming the rare event problem is to bias
the potential energy surface or alter the probability density of
sampled conformations to enhance the occurrence of the rare
event. A priori knowledge of a suitable reaction coordinate allows
the use of biasing potentials or higher effective temperatures,
reducing effective free energy barriers. Many such enhanced
sampling methods have been developed (e.g., see refs 11−21).
Useful bias potentials capable of enhancing the frequency of rare
events require (a set of) collective variables that approximate the
reaction coordinate; poor choices will lead to poor sampling of
the reactive pathways and hence poor estimates of the dynamical
bottlenecks and the related barrier heights and rates. Even
worse, some methods are sensitive to the omission of slow
degrees of freedom and may lead to incorrect models of the
reactive pathways. In general, removing the effect of the bias
potential to yield correct dynamics is difficult.
Path sampling techniques, in particular transition path

sampling,10,22−24 provide a solution to the rare event problem
without requiring the same degree of knowledge of reactive
pathways. Instead of biasing the potentialwhich leads to
heavily perturbed dynamicsthese techniques bias the proba-
bility with which a given transition path is sampled, without

Received: June 20, 2018
Published: October 18, 2018

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2019, 15, 813−836

© 2018 American Chemical Society 813 DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.8b00626
http://dx.doi.org/10.1021/acs.jctc.8b00626
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html

perturbing these paths themselves. This property allows the
unbiased equilibrium dynamics to be recovered. For the simple
case of a two-state system separated by a single barrier, the
straightforward MD simulation time to observe a number of
transitions scales exponentially in the barrier height. In contrast,
transition path sampling only focuses on short parts of the MD
trajectory that traverse the barrier, providing exponential accel-
eration in the sampling of rare events.10,23 Other methods based
on trajectory sampling include forward flux sampling (FFS),25

adaptive multilevel splitting,26 milestoning,27 partial path tran-
sition interface sampling,28 the RESTART methodology,29

SPRESS,30 NEUS,31 Weighted Ensemble,32,33 and many others.
In addition to studying rare events directly, path sampling

methods can be combined with other approaches for describing
statistical conformational dynamics. For example, Markov state
models (MSMs) have emerged as a popular way to represent the
long time statistical dynamics of complex processes involving
many distinct metastable conformational states.34 By discretiz-
ing conformation space and describing stochastic transitions
between regions with a transition or rate matrix, MSMs can
describe the long-time statistical dynamics of complex systems
with bounded approximation error.34 While standardMSM con-
struction approaches utilize large quantities of unbiased simu-
lation data, path sampling techniques can be utilized to rapidly
construct or improve MSM transition matrices by focusing on
harvesting trajectories for poorly sampled transitions.2,35−39

More recently, techniques have emerged for combining both
biased and unbiased dynamics to construct multiensemble
Markov Models (MEMMs),40−43 enabling even richer combina-
tions of multiple efficient sampling techniques for rapid con-
struction of statistical models of dynamics.
While transition path sampling techniques are very flexible,

the complexity of their implementation and lack of a standard
tool for applying them have slowed their adoption. In particular,
many path sampling techniques require monitoring of dynamics
to detect when stopping conditions are reached, and the control
of and integration with standard simulation packages has been a
practical obstacle for widespread use. As a solution to this, we
have developed a new framework called OpenPathSampling
(OPS) that enables path sampling techniques to be employed in
a flexible, general manner. This framework is “batteries
included”, with a number of different path sampling algorithms
and worked examples available that can help users to apply path
sampling techniques on their own system. Both low-dimensional
toy model systems and complex molecular systems are sup-
ported, with complex systems supported using interfaces to
external simulation codes. Currently, OPS supports the GPU-
accelerated molecular simulation code OpenMM,44,45 although
support for other codes can be added. The framework is flexible
and extensible, allowing users to easily explore implementation
of new path sampling algorithms in addition to applying or
extending existing algorithms or connecting new simulation
codes. Many other methods, such as FFS or milestoning, could
also be implemented within the framework of OPS. For the sake
of clarity, however, we will limit ourselves here to the transition
path sampling based methods. [Note that in this work we often
use ’transition path sampling’ and ’path sampling’ interchange-
ably. The reason is that the concept of path sampling is more
inclusive and also covers algorithms that do not immediately aim
to cross (single) barriers. However, it is understood that all path
sampling methods in this work fall into the larger ’transition path
sampling’ family of algorithms.] OPS differs in scope and
versatility from the PyRETIS package,46 a recently developed

package to conduct advanced transition path sampling simu-
lations. In particular, the novel approaches to path ensembles
and Monte Carlo moves, detailed in the companion paper,47

differ significantly from the approaches taken in PyRETIS and
facilitate the implementation of new methods within the OPS
framework.
In this paper, we first give a brief overview of a variety of path

sampling techniques that are implemented in the OPS
framework (Section 2); explain how the basic path sampling
concepts relate to OPS object classes (Section 4); review the
general workflow associated with setting up, running, and ana-
lyzing a path sampling calculation (Section 5); and then provide
a number of detailed examples that illustrate the flexibility and
simplicity of applying various path sampling techniques using
this framework (Section 6). In the process of developing a
framework capable of easily implementing a multitude of path
sampling techniques, we have significantly generalized the
manner in which path ensembles can be constructed and used
within the path sampling mathematical framework. While this
expressive path ensemble specification language is briefly
introduced (Section 3) and utilized in the examples described
here, this approach is described in detail in a companion paper in
this issue.47

2. BACKGROUND
2.1. The Concept of Path Ensembles. Here, we presume

the reader is somewhat familiar with the transition path sampling
literature.10,22−24,48 While we give a brief overview of the main
concepts in this section, readers not familiar with this topic are
encouraged to start with a basic review such as ref 48.
The types of path sampling considered in this paperand

implemented and supported by OpenPathSamplingdeal with
equilibrium dynamics, obeying microscopic reversibility, so that
a stationary distribution is preserved during the dynamics. This
distribution is generally a thermodynamic distribution such as
the Boltzmann distribution or distributions associated withNVE
or NPT ensembles. Moreover, ergodicity is assumed; that is, an
infinitely long trajectory has a nonzero probability to visit every
point in phase space. This guarantees that (dynamical) averages
computed in the path ensemble, such as rate constants, are
identical to those of an infinitely long trajectory.
A path or trajectory consists of a sequence of L + 1 points in

configuration or phase space x ≡ {x0, x1, ..., xL} generated by
some dynamical model (such as Hamiltonian, Langevin,
Brownian, or even Monte Carlo dynamics), with the initial
configuration x0 drawn from an initial (equilibrium) distribution
ρ(x0). The path ensemble is defined by the probability
distribution []x of such paths (with the length L either fixed
or varying) and can be sampled using a Markov Chain Monte
Carlo (MCMC) algorithm. Path sampling algorithms consist of
a few main ingredients: (1) a scheme for initializing the sampler
with an initial path; (2) one or more schemes for proposing new
trial paths from the current path; and (3) acceptance criteria
(e.g., based onMetropolis-Hastings) used to accept or reject the
proposed trial path to generate a new sample from the path
probability density (ensemble) of interest.
The idea of path sampling is to enhance the probability

sampling of certain paths, either by biasing the path probability
or by constraining the path ensemble. Analogous to how
standard Monte Carlo importance sampling techniques can
enhance sampling of rare configurations by multiplying the
probability density by a biasing factor wbias(x) based on the
instantaneous conformation x

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

814

http://dx.doi.org/10.1021/acs.jctc.8b00626

ρ ρ∝x w x x() () ()bias bias (1)

and subsequently using this bias to unbias the sampled ensemble
and recover equilibrium expectations, path sampling techniques
can enhance the sampling of rare trajectories by multiplying by a
biasing weight wbias[x], based on the trajectory x

[] ∝ [] []wx x xbias bias (2)

Many types of path sampling, notably standard transition path
sampling (TPS),10,22 define constrained path ensembles which
select trajectories that begin in one region of configuration space
A and end in another region B. OPS supports a simple but
powerful way of defining path ensembles, described briefly in
Section 5.2 and expanded upon in detail in a companion paper.47

Below, we give a brief overview of common kinds of transition
path sampling simulations supported by OPS.
2.2. Transition Path Sampling. The transition path

sampling (TPS)10,22 method attempts to harvest trajectories
connecting two specific regions of configuration space, such as a
reactant and product separated by a single free energy barrier.
The constrained path ensemble for a fixed length L is thus

[] ∝ []x xx 1 1 x() ()AB A B L0 (3)

Here, x≡ {x0, x1, ..., xL} is a discrete-time trajectory of snapshots,
1A(x0) and 1B(xL) are indicator functions that are unity if the
trajectory starts with x0 ∈ A and ends with xL ∈ B and zero
otherwise, and []x is the equilibrium path probability density.
In a TPS simulation, new trial trajectories are proposed from the
current sampled trajectory by selecting a phase space point along
the trajectory, applying a perturbation (usually of themomenta),
and “shooting” forward and backward by integrating the
equations of motion until a trajectory of the original length is
generated. The trial trajectory is then accepted or rejected with a
Metropolis-Hastings criterion. For the simplest case of drawing
the shooting point uniformly from the current trajectory, assigning
a new velocity from the Maxwell−Boltzmann distribution, and
imposing the trajectory of fixed length to begin in state A and
end in B, this acceptance criteria amounts to accepting the new
trajectory when it satisfies the defined ensemble of interest by
terminating in regions A and B; the old path is otherwise
retained if the proposed trajectory is rejected. Depending on the
details of the shooting move, the exact acceptance criteria will
take on different forms.10,22−24,48

Transition path sampling is immensely powerful, as the
difficult problem of describing reaction mechanisms is reduced
to the much easier problem of defining stable states A and B.
Reactive trajectories are efficiently harvested because the trial
trajectory quickly decorrelates from the original trajectory yet is
still likely to meet the same path ensemble constraints, such as
connecting the reactant and product regions of configuration
space A and B.
In order for the reactive trajectories connecting metastable

sets A and B to be useful for computing transition rates and
physical interpretation of mechanisms, the system must commit
to and remain in the metastable states for a long time after
encountering them, i.e., transitions between A and B are rare
events on the molecular time scale. The states A and B are
generally defined as configurational space regions within the
basin of attraction of the distinct metastable states. Trajectories
initiated from configurations in these regions, called core sets,
should have a high probability (close to unity) to remain in or
quickly return to the core set rather than escape to other states,
even at the boundary of these sets.34,49

TPS can also be used with flexible-length trajectories that are
constrained to terminate when they encounter the boundary of
core sets A and B. This can be encoded in the path ensemble
definition by demanding that frames 1 to L − 1 are neither in
A nor in B. This approach is more efficient at sampling reactive
trajectories by avoiding sampling long dwell times in each state
at either end of the trajectory.50 To maintain detailed balance,
the acceptance criterion then contains the ratio of the previous
and trial path length, i.e., the number of frames from which the
shooting point is randomly chosen. TPS can also easily be
extended to multiple states by allowing more states in the path
ensemble definition.36 A variety of other path proposal moves
have been described to attempt to increase acceptance proba-
bilities in certain regimes, including shifting moves,22 small
velocity perturbations,22 precision shooting,51 permutation shoot-
ing,52 aimless shooting,52 and spring shooting.53 In addition, path
proposal moves such as the web-throwing and stone-skipping
moves54 have been developed to enhance the decorrelation of
successive trajectories.

2.3. Transition Interface Sampling (TIS). While TPS
yields information about the mechanism of the rare events,
important quantities such as the kinetic rate constant require an
additional scaling factor that quantifies how frequent transition
paths are relative to nontransition paths. Therefore, one has to
relate the constrained TPS ensemble with the unconstrained
path ensemble, as given by an infinitely long ergodic unbiased
MD trajectory.10 This unconstrained total (or complete) path
ensemble comprises the set of path ensembles starting from each
stable state, consisting of all (properly weighted) paths that leave
that state and either return to it or go on to any other stable state.
Even when restricting the path ensemble to start in a particular
state A, straightforward path sampling of an otherwise uncon-
strained ensemble is naturally very inefficient, as the important
transitions to other states are exceedingly rare. However, one
can construct the total path ensemble (for each state) by a
staging procedure. In such a procedure one can constrain the
paths to reach further and further out of the state (while of
course still starting in the stable state). This constraining can be
done using the transition interface sampling method (TIS),55 an
extension of TPS that is explained below. Reweighting of the
resulting paths then yields (an estimate of) the total path
ensemble.56

Transition interface sampling (TIS)55 provides a more
efficient evaluation of the rates compared to the original TPS
rate constant calculation57 by sampling each constrained inter-
face ensemble. TIS defines a set of N nonintersecting hyper-
surfaces (the ’interfaces’) around the stable state, parametrized
by a collective variable λ, and foliating, in principle, the entire
configuration space (or even phase phase55). The rate constant
from A to B is expressed as

∏ϕ λ λ ϕ λ λ= | = |
=

−

+k P P() ()AB A A B A
i

N

A i i0 0 0
0

1

1
(4)

where ϕ0A denotes the flux out of A through λ0, and PA(λB|λ0) is
the crossing probability, the probability that a trajectory
originating from A reaches interface λB before returning to A,
provided that the path already crosses λ0 at least once. This
probability is generally low, as the transition is a rare event, but
can be computed through the product of all crossing proba-
bilities for the individual interfaces, as indicated in eq 4, with
λN ≡ λB.

55 Interfaces should be optimally placed such that each
crossing probability in the product is roughly PA(λi+1|λi)≈ 0.2.58

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

815

http://dx.doi.org/10.1021/acs.jctc.8b00626

The total number of required interfaces is thus of the order
N ≈ |log5 P(λB|λA)|. As an example, for a barrier of 30 kBT, this
roughly translates intoN= 30/ln(5)≈ 18 interfaces. The staging
approach thus avoids the problem of the exponentially low rate in
a way analogous to umbrella sampling.59 An iterative approach to
optimize the location of the interfaces, based on restrictions such
as targeting a successive crossing probability of 0.2, has been
developed.60

Note that the product is not simply a product of Markovian
transition probabilities, as for each interface the entire trajectory
starting from A is taken into account. Evaluation of the crossing
probabilities requires sampling the path ensemble for each
interface with the constraint that the path needs to cross that
interface. While trajectories could in principle be stopped when
they reach the next interface, it turns out to be beneficial to
continue the trajectory integration until a stable state (A or B)
has been reached. This also allows the application of the
so-called reversal move of A-to-A trajectories, where the time
direction of the path is reversed, which can be done with no
additional cost, but assists in decorrelating paths. The flux ϕ0A
can be easily obtained using straightforwardMD inside stateA.55,61

The reverse rate can be computed by repeating the TIS
simulation from state B: define a set of interfaces, sample the
interface ensembles, and compute the crossing probability
PB(λB|λA) .
Similar to TPS, the TIS algorithm can be extended to multiple

states.36 To estimate kinetic rates between multiple states, each
state I gets its own set of interfaces λiI, and the rate constant from
state I to state J is given by

ϕ λ λ λ λ= | |k P P() ()IJ I I mI I I J mI0 0 0 (5)

where ϕ0I is again the flux from I through λ0I. The second factor
is the crossing probability to an outermost interface m, which
is typically very small and expressed as P(λmI|λ0I) =
∏i=0

m−1PI(λ(i+1)I|λiI). The last factor in eq 5 is the conditional
probability that a trajectory crossing the outermost interface also
reaches state J. The location of the outermost interfaces should
be chosen such that the probability to escape from A is
sufficiently large. Note that while interfaces belonging to state I
constitute a foliation of nonoverlapping hypersurfaces, they are
completely independent from the interfaces of state J and in fact
are allowed to overlap.62,63

We introduce the concept of a transition network64 that, in its
simplest form, represents the ensembles of paths connecting
pairs of defined states. For each state in the transition network
(multiple state) TIS results in a set of interface path ensembles
and a straightforwardMD ensemble of that stable state, which can
be combined to yield the total path ensemble by reweighting.
Repeating this for all states, and (again) properly reweight-
ing,56,65,66 leads to an accurate description of the kinetic rate
matrix, the free energy landscape, the mechanisms, and reaction
coordinates of all transitions between the metastable states. This
data can be further analyzed using theory of Markovian
stochastic processes, e.g., the Chapman-Kolgomorov equation67

or transition path theory.68

2.4. Considerations in Transition Path Sampling. The
reader should be aware of a number of challenges they may
encounter in setting up transition path sampling based simu-
lations.While an exhaustive list is beyond the scope of this paper,
we list some important issues below. (See also ref 69.)
2.4.1. Definition of the States. Transition path sampling

requires knowledge of the stable states. Usually the stable states
are easier to characterize and identify than the transition region.

Analyzing straightforward MD can provide information on how
to describe the states in terms of (several) collective variables.
Such heuristic approaches have been used in previous appli-
cations.50,70,71 In addition, tools such as clustering can be used to
define the states.63 Ideally, one would like to use automatic state
recognition, and recently attempts have been made in that
direction.49 In OPS we assume that the reader has an idea about
how to capture stable states by defining a range in (several)
collective variables. OPS provides the user with tools to facilitate
identification of these ranges and hence definition of the states.
The choice of the stable state definitions still requires careful
attention, as an erroneous definition can easily lead to improper
or failed path sampling. For a detailed discussion on the stable
state definitions, see refs 23, 48, and 69.

2.4.2. IntermediateMetastable States. Even if the process of
interest exhibits two-state kinetics, suggesting only two highly
stable states are involved, it is possible that the presence of one
or more intermediate states with lifetimes short on the overall
time scale but long on the molecular time scale will cause
reactive trajectories connecting the stable states to be quite long.
A solution to this problem is to identify the intermediate
state(s), define their core sets, and to use multistate transition
interface sampling (MSTIS).36,62 Alternatively, one can choose
to simply sample long pathways,72 which can still be quite fast
given the speed of modern GPU-accelerated molecular
simulation engines like OpenMM.44,45

2.4.3. Ergodicity of Path Space. While the TPS and TIS
algorithms are “exact” in the sense that they should lead to the
asymptotically unbiased estimates of path averages in the limit of
infinite sampling, they suffer from the same problems that all
Monte Carlo methods encounter, the problem of slowly mixing
Markov chains, which in severe cases may result in broken
ergodicity for practical computer times. As TIS samples path
space by perturbing an existing path to generate new proposals,
decorrelation from the initial path to generate many effectively
uncorrelated paths is essential for producing useful unbiased
estimates. However, since there might be (possibly high) barriers
in path space orthogonal to the interfaces between different
allowed reaction channels, this is far from guaranteed. One way
of solving this problem is by using replica exchange among path
ensembles in transition interface sampling (RETIS).73,74

2.5. Replica Exchange Transition Interface Sampling
(RETIS). The RETIS algorithm simultaneously samples all TIS
ensembles while allowing for swapping of paths between
interface ensembles when possible.73,74 A transition path that
follows one particular mechanism can then slowly morph into a
completely different transition path by exchanging it back and
forth among all interfaces to state B. Including an exchange
between pathways belonging to different states further enhances
sampling convergence.74

Further sampling improvement can be achieved by including
van Erp’sminus interface ensemble.73,74 Theminus interfacemove
exchanges a trajectory in the first interface ensemble with a
trajectory exploring the stable state (the minus interface
ensemble). This serves two aims: (1) to decorrelate pathways
in the first interface which tend to be short and (2) to provide a
direct estimate for the flux out of the stable state.73−75 OPS
includes an implementation of multiple state RETIS, which we
will refer to as MSTIS.
The default MSTIS approach employs a single set of

interfaces for each state, based on one order parameter. Multiple
interface set TIS (MISTIS), also implemented in OPS, gener-
alizes this approach to includemultiple interface sets for states or

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

816

http://dx.doi.org/10.1021/acs.jctc.8b00626

transitions.76 Although TIS is much less sensitive to the choice
of order parameter than other enhanced sampling methods,58 in
practice, the efficiency is affected by this choice. Using different
order parameters to describe (sets of) interfaces for different
transitions and/or states, with the help of replica exchange,
might alleviate such efficiency problems.
A drawback of the (multiple state) RETIS approach is that it

requires one replica to be simulated for each interface; for
systems with multiple stable cores and associated interface sets
defined, this can quickly get out of hand, as each core might
possess (10) interfaces. This large number of interface ensem-
bles prevents efficient implementation of themethod for systems
more complex than toy models. A parallel implementation of all
interfaces might seem a simple solution but will be complicated
by the fact that the duration of the paths in the different interface
ensembles varies wildly. Single replica TIS (SRTIS), based on
themethod of expanded ensembles,77 can alleviate this problem.66

Instead of exchanging paths between interface ensembles, only
one replica is sampled, and transitions between ensembles are
proposed. To avoid the replica remaining close to the stable state
interface ensemble, one needs a biasing function that pushes the
replica to higher interfaces. Selecting the (unknown) crossing
probability as the biasing function would ensure equal sampling
of all interfaces, which is close to optimal. While the crossing
probabilities are initially unknown, an iterative procedure can be
used to adapt the bias during the simulation, as each interface
ensemble naturally gives an estimate for the crossing proba-
bility.66,78 SRTIS can easily be extended to include multiple
states66 or utilize multiple independent walkers.63,79

3. NOVEL CONCEPTS IN OPS
OpenPathSampling contains many new approaches to imple-
menting transition path sampling simulations, but there are two
points that we would particularly like to draw attention to:
(1) the use of volume-based interface definitions in TIS and
(2) the general treatment of path ensembles.
3.1. Volume-Based Interface Definitions. In the original

TIS algorithm andmost path sampling algorithms based on TIS,
interfaces are defined as hypersurfaces in configuration space.
To belong to the interface ensemble, a path needs to cross this
interface, meaning that at a certain time it is at one side of the
interface, while a time step later it is on the other side.We consider
a novel interface definition in OPS which relies on hypervolumes
in configuration or phase space rather than hypersurfaces. We use
the convention that the initial state is inside the hypervolume. In
this definition, a path belongs to an interface ensemble defined by
a hypervolume if it starts in the initial state, leaves the hyper-
volume at some point along the path, and terminates in any stable
state. The advantage of using volumes instead of surfaces is that
set logic (e.g., a union or intersection) can be applied to generate
new volume definitions from existing volumes. For a more
extensive discussion see the companion paper.47

3.2. General Treatment of Ensembles. One of the novel
approaches in OPS is the generalization of path ensembles.
Previously, each path ensemble had to be treated with a
specialized code. However, as the number of path ensembles
types has grown, the need to treat them in a general fashion
arose. In this paper, we make use of a range of path ensembles,
including the following, which are illustrated in Figure 1:

• Flexible length TPS ensemble (Figure 1a): The standard
TPS ensemble is a path ensemble between two states.
Only the initial and final frames are inside the states.

• Fixed length TPS ensemble (Figure 1b): As with the flexible
length TPS ensemble, the initial and final frames must be
in the initial and final states. However, the fixed length
ensemble has a predefined length and also allows frames
other than the first and final to be in the state.

• TIS ensemble (Figure 1c): The elementary path ensembles
in TIS have an interface associated with them. They must
begin in a given state, exit the interface hypervolume, and
end in any stable state.

• Minus (interface) ensemble (Figure 1d): Paths in the minus
ensemble can be described in terms of three segments: the
first and last segments are similar to TIS ensemble paths.
They start in the state, exit the interface hypervolume, and
return to the state (where TIS ensemble paths can go to
another state, these segments cannot). These two seg-
ments are connected by another segment that never exits
the interface. Note that this implementation of the minus
interface ensemble is based on ref 76, as opposed to the
original minus interface ensemble introduced in ref 73.
The two versions differ slightly (with the original being
subtrajectories of the version used here). Both versions
serve the purpose of enhancing decorrelation by running
dynamics inside the state, but the version used here is also
useful for replica exchange in multiple interface set TIS.

All of these common ensembles can be generalized for more
complicated reaction networks. The TPS ensembles become
multiple state TPS ensembles if they allow any state to be the ini-
tial or final state, as long as the initial and final states are different.
The TIS ensemble becomes a multiple state TIS ensemble by
allowing any state as the final state. The minus ensemble
becomes the multiple interface set minus ensemble by taking its
interface as the union of innermost interfaces.
This list of ensembles is by no means exhaustive. OPS allows

complicated ensembles to be built from simpler ones. It gener-
alizes both the procedure for testing whether a given trajectory
satisfies the ensemble and the procedure for generating new
trajectories. This allows one to easily construct other ensembles,
such as the fixed-length ensemble where trajectories start in
initial state A and must visit (but necessarily end in) final state B,
as described in ref 57. Details of the implementation of this gen-
eralization, as well as novel approaches to analysis that this imple-
mentation enables, will be discussed in the companion paper.47

Figure 1.Common path ensembles in TPS and TIS with representative
trajectories. Shaded areas represent states, and dashed lines represent
interface boundaries.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

817

http://dx.doi.org/10.1021/acs.jctc.8b00626

4. THE INGREDIENTS OF OPS
Before explaining the OpenPathSampling framework and
workflow in more detail, we first explain the frequently used
basic objects of OPS that are related to path sampling concepts
described in the previous sections. The objects in OPS are
divided into two main categories: (1) data objects that contain
the sampled paths and information about the sampling process
and (2) simulation objects that perform the sampling. All objects
generated in OPS, both data and simulation objects, are stored
in a single Storage file and can be accessed from it. For
example, the MCStep objects saved during the simulation can
be accessed with storage.steps once a file is loaded into
storage.
4.1. Data Objects. The main data objects of OPS fit into a

hierarchy as shown in Figure 2. The data structure can be
divided into what is being sampled (i.e., which trajectories from
which ensembles) and how it is being sampled (i.e., the nature of
the path moves performed.) All of this is unified in the MCStep
object, which describes a step of the path sampling simulation
and which has two important attributes: a SampleSet object
called active, which records the state of all replicas in the
simulation at the end of a given simulation step (the “what”);
and a MoveChange object called change, which describes
what happened during the simulation step (the “how”). Below
we describe these attributes in more detail.
4.1.1. Data Structures for What Is Being Sampled.

• Snapshots, sometimes called “frames” or “time slices,”
are at the core of any simulation technique. They describe
the state of the physical system at a point in time and, in
molecular dynamics, typically consist of coordinates,
velocities, and periodic cell vectors. The Snapshot
object in OPS can be easily extended to carry additional
data, such as wave function information or variables from
an extended phase space.

• A Trajectory, also called a “path,” is essentially a list
ofSnapshots in temporal order. In addition, it provides
several convenience methods, for example, to identify
which Snapshots are shared by two trajectories.

• The Sample object is a data structure that links a
Trajectorywith the Ensemble object (described in
Section 4.2) fromwhich it was sampled, and with an integer
replica ID. The Sample is needed because methods such
as TIS, and especially RETIS, sample multiple ensembles
simultaneously. Correct analysis requires knowing the
ensemble from which the Trajectory was sampled.

• Since methods like TIS have several active Samples
during a path simulation step, OPS collects them into one

SampleSet. The SampleSet contains a list of
Samples and also has convenience methods to access a
sample either by replica ID or by ensemble, using the
same syntax as a Python dict.

4.1.2. Data Structures for How the Sampling Occurs.

• The MoveChange contains a record of what happened
during the simulation step. Because the simulation move
itself generally consists of several nested decisions (type of
move, which ensemble to sample, etc.), the Move-
Change object can contain subchanges, which
record this entire sequence of decisions. In addition, it
includes a pointer to its PathMover (described in
section 4.2), a list of the trial Samples generated during
the step, and a boolean as to whether the trial move was
accepted.

• The MoveChange also contains a Details object,
which is essentially a dictionary to store additional meta-
data about a move. This metadata will vary depending on
the type of move. For example, with a shooting move, it
would include the shooting point. In principle, all the
additional information that might be of interest for
analysis should be stored in the Details.

4.2. Simulation Objects. The simulation objects actually
perform the simulation and can be assembled in different ways to
perform many types of simulations. In addition, simulation
objects in OPS can be stored. This facilitates restarts to continue
a simulation and enables reuse for other types of simulations,
e.g., using the same state definitions for committor analysis as
well as path sampling. The PathSimulator class contains
all the information to run the simulation. The PathSam-
pling subclass of PathSimulator is used for path sam-
pling simulations. Figure 3 shows the relation between path
sampling concepts and the associated objects in OPS. Each of
the components is described in more detail below.

• A DynamicsEngine performs the actual molecular
dynamics: that is, it generates a trajectory from an initial
frame. OPS has built-in support for an internal toy
dynamics engine (primarily intended for 2D models) and
for OpenMM.80 Support for Gromacs81,82 and
LAMMPS83 will be added in future releases.

• A CollectiveVariable is a function of a Snap-
shot and in many cases is just a function of the coor-
dinates. It is also sometimes called the “order parameter”,
“progress variable”, “reaction coordinate”, or “feature”.
In line with the rare event terminology (e.g., refs 84
and 85) the neutral term CV (for Collective Variable) can
both be used to define interfaces and states (via
Volumes), as well as to construct order parameters.
The CollectiveVariable in OPS is a wrapper
class around an arbitrary function. For example, the
CoordinateFunctionCV will wrap any user-
defined function that only depends on the snapshot’s
coordinates. In addition, specific classes enable the use of
functions from other packages, e.g, the MDTrajFunc-
tionCV provides a wrapper class for function from the
MDTraj86 analysis package. Other wrappers exist for
MSMBuilder87,88 and PyEMMA.89

• The Volume class in OPS represents a hypervolume in
phase space. This can be used to define a state, also called a
“core set.” In addition, interfaces are also defined by
volumes, rather than by hypersurfaces as in the traditional
TIS literature (see section 3.1). A volume is typically

Figure 2. Hierarchical data structure of the MCStep data object. The
attribute names are shown, and the type is provided in parentheses.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

818

http://dx.doi.org/10.1021/acs.jctc.8b00626

defined based on allowed ranges of CVs; in OPS the
CVDefinedVolume object creates such a volume based
on a minimum and maximum value of the CV.

• The Ensemble class in OPS defines the paths that are
allowed within a given path ensemble. It is more
accurately thought of as the indicator function for a
restricted path ensemble (cf. eq 3). The indicator function
alone reduces the set of all possible paths to the trajec-
tories with nonzero probability in the path ensemble, but
with no distinction in their relative statistical probabilities.
Sampling according to the correct statistical weights is the
role of the PathMover, described below.
In addition to the indicator function, Ensemble

objects contain two methods, can_append and
can_prepend, which check whether a given trajectory
could be appended or prepended into a trajectory in the
ensemble. This allows us to create a rich toolkit to create
custom ensembles. For instance, a path that connects
states A and B is defined as a trajectory that follows the
sequence of events that it is first in A, then not in (A ∪ B),
and finally in B. In OPS, this sequence is described with a
SequentialEnsemble object, which provides a
flexible way to implement arbitrarily complex path
ensembles (see ref 47).
Despite this powerful toolkit and the fundamental role

of the Ensemble, under most circumstances the user
does not need to instantiate Ensemble objects. Instead,

they are automatically created by the Transition and
Network objects, described below.

• A Transition object contains all information for
studying a single-direction reaction connecting a specific
initial state and a specific final state, such as A → B, and
serves as an organizational structure for systems with
many states, where the number of possible transitions
grows as N(N − 1) for N states. For TPS, this object
consists just of one ensemble, while for TIS it usually
consists of several interface path ensembles, as well as the
minus ensemble (used in RETIS). Note that A → B and
B → A are two different transitions, each with their own
sets of ensembles, thus requiring two Transition
objects. A single rate k would be associated with each
Transition and kA→B ≠ kB→A.

• A TransitionNetwork object (which we will
frequently refer to as simply the “network”) consists of a
set of Transitions. Since OPS is designed to handle
the systems with many states, the network gathers all the
transitions into one object. It is a network in the graph
theory sense: states are nodes; reactions (transitions) are
directed edges. Subclasses of TransitionNetwork,
such as TPSNetwork or MSTISNetwork, deal with
specific approaches to sample the network. All the ensem-
bles to be sampled are contained in the Transition-
Network. Section 5.4 provides more details.

• PathMovers, or “movers,” perform Monte Carlo
moves in path space, such as shooting, reversal, minus,
or replica exchange. They are organized into a move
decision tree, which selects the specific move to use
(the move type and the ensemble). An example of a
move decision tree is given in Figure 6. The Ensemble
associated with a given mover determines whether a
trajectory is in the path harvest for that mover, but the
mover itself can reject paths such that the correct statistics
for the path ensemble are obeyed (i.e., to preserve detailed
balance.) PathMovers are discussed in more detail in
section 5.5.1.

• The MoveScheme contains and builds the move
decision tree, which in turn contains all the Path-
Movers available to a simulation. The MoveScheme is
created by associating several MoveStrategy objects
with it. Each MoveStrategy builds several related
PathMovers. For example, a NearestNeighbor-
ReplicaExchangeStrategy will create a Rep-
licaExchangeMover for each pair of nearest-
neighbor ensembles in each Transition from the
TransitionNetwork. Options for creating the
strategy can control which ensembles are used, and
whether this adds to or replaces existing strategies. This
provides the user a great deal of flexibility when
customizing the move decision tree using the Move-
Scheme and MoveStrategy objects. For simplicity,
OPS provides a DefaultScheme with reasonable
defaults for TIS (one-way shooting, nearest-neighbor
replica exchange, path reversal, and minus move) and a
OneWayShootingMoveScheme with a reasonable
default for TPS. The MoveScheme and Move-
Strategy objects will be discussed in more detail in
section 5.5.2.

4.3. Layers of Abstraction in OPS. OPS is structured as a
set of Python modules, organized according to major classes.
As a library, users can interact with different levels of abstraction.

Figure 3. Schematic representation of the connection between the path
sampling concepts and their related OPS objects. The concepts are
listed in the leftmost column, shaded green. The next column shows the
objects which must be created by a user to run a simulation. The filled
arrows indicate when one object is the input to create another object.
The objects in the right two columns are automatically created. The
open arrows point from an object to the objects it automatically creates.
In this way a TransitionNetwork creates a Transition
object that creates in turn Ensemble objects.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

819

http://dx.doi.org/10.1021/acs.jctc.8b00626

Figure 3 and the previous section have already indicated
how TransitionNetwork objects act as a more user-
friendly layer for Ensembles and how MoveScheme
and MoveStrategy objects create a simpler layer for
working with PathMovers, but these lower-level objects can
also be accessed by users, as will be discussed in the companion
paper.47

Objects like Ensembles and PathMovers are specific to
path sampling and related topics. These are built on even more
generic objects, which might be useful beyond the scope of
path sampling. Many PathMovers use the generic
DynamicsEngine wrapper to run the molecular dynamics.
Volumes are defined in terms of CollectiveVari-
ables, which have many uses beyond path sampling. The
specific OPS Storage class is based on the more generic
NetCDFPlus subpackage, built for OPS. This is shown in
Figure 4, where lower levels are more generic, while higher
levels are more specific to path sampling. Higher levels also
tend to be more user-friendly.

5. OPS WORKFLOW
In this section we give an overview of the process for setting up
and running a path sampling simulation with OpenPathSam-
pling, including some general discussion on practical aspects of
path sampling simulations. In general, every path sampling simu-
lation can be split into the following steps:

1. Setting up the molecular dynamics engine
2. Defining states and interfaces
3. Setting up the transition network and move scheme
4. Obtaining initial pathways
5. Equilibration and running the simulation
6. Analyzing the results

In practice, the human effort in path sampling using OPS will
focus on defining the states and interfaces, obtaining trajectories
for initial conditions, and analyzing the simulation results. OPS
aims to facilitate those steps and automate what it can, such as
setting up the TransitionNetworks and MoveSchemes
and running the simulation. In addition, OPS provides many
tools for the analysis of the simulation results.

In the first setup steps (1−3), the user chooses the dynamics
of interest and decides on the DynamicsEngine, the
CollectiveVariables, defines theVolumes for the states
and interfaces, as well as the topology of the reaction network, and
decides on the sampling MoveScheme. Figure 3 renders these
steps from the top down. The selection of relevant collective
variables and their use to define state volumes are of critical
importance. However, they are also dependent on the system
being studied. We assume that a user is already familiar enough
with the system to make reasonable choices for these.
The specific definition of the transition network is handled in

OPS by a TransitionNetwork object, which automates
the creation of Transitions and Ensembles for common
variants of TPS (including multiple state) and TIS (including
multiple state and multiple interface set variants). These objects
take as input the Volume based states and interfaces definitions.
The MoveScheme is created based on the Transi-

tionNetwork and a DynamicsEngine. It can be cus-
tomized by adding additional MoveStrategy objects, but
OPS provides default schemes for convenience. The Move-
Scheme and its accompanying MoveStrategy objects
create all the PathMovers. Each PathMover knows on
which ensemble(s) it acts and is organized into a total move
decision tree.
The final initialization step is to create an initialSampleSet

by loading valid pre-existing initial trajectories into each of the
ensembles. See Appendix A for several approaches to obtain
initial conditions.
The simulation is performed by a PathSimulator object.

Path sampling simulations use a subclass called Path-
Sampling. Other subclasses of the PathSimulator
include CommittorSimulation for calculating commit-
tors and DirectSimulation for calculating rates and
fluxes via direct MD. All PathSimulator objects take a
Storage object as input, to determine where to save data. In
addition, PathSampling takes the MoveScheme and the
initial SampleSet as input.
Analysis is done independently from the sampling and

requires only the Storage and TransitionNetwork
for the computing observables and additionally the Move-
Scheme for the sampling statistics. Everything that is needed
for analysis is stored in the output file, including the
TransitionNetwork and MoveScheme.
In the next subsections we discuss these six steps in more

detail.
5.1. Step 1: Setting up the Molecular Dynamics. Of

course, before embarking on a path sampling simulation, one
must decide on the system to simulate and the nature of the
underlying dynamics (i.e., the thermodynamic ensemble rep-
resented, the integrator used for the dynamics, the force field
to define interactions, etc.). OPS is designed to wrap around
other engines to take advantage of the flexibility already built
into other software. Currently, OPS supports OpenMM80

as well as its own internal dynamics engine intended mostly for
2D toy models.
The basic Engine takes general OPS specific options

defining, e.g., handling of failing simulations, maximal trajectory
length, etc., as well as dimensions used in snapshots that the
engine generates (e.g., number of atoms). Each specific engine
also carries information necessary for it to set up a simulation. In
case ofOpenMMthis includes a description of theIntegrator,
the System object (force field, etc.), the system's Topology,

Figure 4.Themodules of OPS can be separated into different layers of
abstraction. The layers can be considered as both increasing
specificity of purpose (from bottom to top) as well as increasing
ease of use or ease of implementation of new subclasses. Underneath
the OPS modules are the external packages upon which OPS is built.
Above that are OPS modules which have potential for use outside the
context of reaction dynamics and path sampling. Above that the code
becomes more specific to path sampling and to the Open-
PathSampling project. At the top layer, some of the more powerful
OPS libraries are abstracted into a more simple user interface. The
level of user that is likely to spend significant time working at each
level is indicated on the left.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

820

http://dx.doi.org/10.1021/acs.jctc.8b00626

and some OpenMM specific options (e.g., hardware platform
and numerical precision).
5.2. Step 2: Defining States and Interfaces. The

ensembles used in path sampling methods require definitions
of (meta)stable states and, in the case of transition interface
sampling, interfaces connecting these states. OPS implements
both states and interfaces in terms of Volume objects.
Themain types of volume objects are theCVDefinedVolume

and its periodic version, PeriodicCVDefinedVolume. Each
of these defines a volume in phase space based on some
CollectiveVariable. This could include such quantities
as atom−atom distances, dihedral angles, RMSD from a given
reference frame, number of contacts, etc. The usermust first define
a CollectiveVariable object, either as a wrapper
around functions from other software packages (some examples
below use MDTrajFunctionCV, which wraps MDTraj
analysis function) or around a user-written function (other
examples will show the use of the more general Coordi-
nateFunctionCV).
Using the CollectiveVariable we have a clear

separation between the full simulation data and what we
consider relevant for state definitions and later analysis. This
separation allows us to later run analysis without the need to load
a single frame and to store a reduced set without the actual
coordinates.
To define a volume, the user must also specify minimum and

maximum values for the CV. The volumes can then be created
with, e.g.,CVDefinedVolume(cv,minimum,maximum),
which defines a frame as being inside the volume if minimum
≤ cv(frame) < maximum. Volumes can be combined using
the same set operation as Python sets: & (intersection),
| (union), - (relative complement), ̂ (symmetric difference),
and ∼ (complement). Volume combinations of the same
collective variable are automatically simplified when they can be
recognized [e.g., (0 ≤ x < 5)&(3 ≤ x < 8) becomes 3 ≤ x < 5].
The ability to arbitrarily combine volumes allows one to define
arbitrary states, e.g., “this hydrogen bond is formed and this
dihedral is near a certain value.” This provides OPS with
powerful flexibility.
5.3. Step 3: Setting up the Transition Network and

Move scheme. The transition network (path ensembles) and
the move scheme (Monte Carlo moves) can be thought of as
what to sample and how to sample, respectively.
For complex TIS simulations, the number of path ensembles

to be sampled can grow into the hundreds. Transition-
Network objects efficiently create those ensembles according
to standard ways of organizing and facilitate later analysis. The
examples in Section 6 will demonstrate the four main kinds of
network objects: TPSNetwork for flexible-length TPS,
FixedLengthTPSNetwork for fixed-length TPS,
MSTISNetwork for multiple-state TIS, and MISTISNet-
work for TIS and multiple interface set TIS.
The MoveScheme creates and organizes the possible

Monte Carlo moves, as appropriate for a given transition
network. As with the transition networks, the MoveScheme
object also facilitates later analysis. The examples in section 6
will go over the simplest default move schemes (OneWay-
ShootingMoveScheme for TPS; DefaultScheme for
TIS). However, the move scheme is very customizable, as will be
elaborated on in the companion paper.47

As both the TransitionNetwork and MoveScheme
are crucial in OPS, we devote extra attention to these objects
below.

5.4. Step 3a: Transition Networks. The Transition-
Network object contains all the path ensembles to be sampled
for the reaction network of interest. To simplify analysis, most
ensembles are grouped into Transition objects, which
describe a single transition within the network. There are also
special ensembles (e.g., ensembles associated with multiple state
interfaces or with minus interfaces) which may not be specific to
a single transition and are only associated with the network as a
whole. In general, the user only needs to create the
TransitionNetwork object, which will automatically
create the relevant Transitions and Ensembles. The
simplest transition network contains a single transition, the one-
way A→ B. A bidirectional network A↔ B is thus characterized
by two transitions, each associated with its own set of ensembles.
Each network involves two groupings of transitions: the

sampling transitions and the physical transitions. MSTIS shows a
clear example of the distinction between these: while sampling,
the transitions studied are A→ (B ∪ C), B→ (A ∪ C), and C→
(A ∪ B) . However, in analysis we obtain the rates for all the
individual physical transitions A → B, A → C, B → A, B → C,
C→ A, and C→ B. For a network withN states, up toN(N− 1)
unique physical transitions are possible. The sampling
transitions are found in a list, accessed as network.sam-
pling_transitions, and the physical transitions are in a
dict, with state pairs (initial, final) as keys and the
associated Transition object as value.
The Transition and the TransitionNetwork

objects depend on the type of simulation that is intended, just
as the Ensemble does. Table 1 shows how different input
parameters create different numbers of physical and sampling
transitions for the built-in network objects in OPS. The network
for a TPS simulation is made with either the TPSNetwork or
FixedLengthTPSNetwork objects. The TPSNetwork
is initialized with a list of initial states and a list of final states;
all pairs of (nonself) transitions are generated internally.
A TPSNetwork has only one sampling TPSTransition,
which has only one ensemble. However, for analysis the network
includes ensembles for every possible physical transition. If A is
the only initial state and B is the only final state, then A → B is
the only physical transition.Whenmultiple initial and final states
are given, then all the nonself physical transitions are allowed: in
the second line of Table 1, that would be A → B, A → C, and
B→C. When allN states are given as both initial and final states,
all N(N − 1) nonself transitions are included. The
FixedLengthTPSNetwork is exactly like the TPSNet-
work, except that its initialization also requires the length of the
path (in snapshots).
Within standard TPS approaches, there is a one-to-one

correspondence of (sampling) ensemble to network. That
makes these networks relatively simple. The situation becomes
more complicated with TIS. In TIS, each transition involves a set
of interface ensembles. In addition, there are the minus
ensembles, which (in MISTIS) can be associated with more
than one transition, and there are the multiple state outer
ensembles (in MSTIS and MISTIS), which are also associated
with more than one transition.
The MSTISNetwork and MISTISNetwork are ini-

tialized with specific data about the transitions. In MSTIS, this
includes the initial states and the interface sets associated with
them, provided as a list of tuples. The MSTISNetwork
creates sampling ensembles that allow paths that end in any state
and always samples all transitions between all states. As shown in
Table 1, it therefore always has N(N − 1) physical transitions

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

821

http://dx.doi.org/10.1021/acs.jctc.8b00626

and N sampling transitions for N input states. The number of
ensembles depends on the number of ensembles per interface set
but scales linearly with the number of states. (See Figure 5 for a
visualization of an example transition network.)
In addition to the initial states and the interface sets,

MISTISNetwork also requires the ending state for each
transition, provided as a third item in each tuple. The number
of physical transitions for the MISTISNetwork is always
equal to the number of sampling transitions, and the number of
ensembles grows with the number of sampling transitions. This
means that, in the worst case of sampling all possible transitions,

the number of ensembles scales quadratically with the number of
states. However, MISTIS has the advantage that it allows one to
select only specific transitions of interest or to use different
interface sets for transitions beginning in the same initial state,
allowing each transition to be sampled more efficiently.
Both of these TIS networks automatically create appropriate

minus interface ensembles, and they can optionally take an
MSOuterTISInterface for the multiple state (MS) outer
interface ensemble. The MS-outer ensemble is the union
of several TIS ensembles starting from different initial states.36,76

Whereas a TIS ensemble only allows trajectories that begin
in a single given initial state, the MS-outer ensemble allows tra-
jectories that begin in any of multiple initial states. This ensemble,
combined with replica exchange, facilitates decorrelation of
trajectories.
MSTIS and MISTIS are two different ways to create

ensembles to study a reaction network. The MSTIS approach
is more efficient when all transitions from the same state are
described by the same order parameter. The MISTIS approach
allows more flexibility in sampling, by allowing different
transitions from an initial state to use different order parameters
or selection of specific transitions of interest.
The simplest network, A → B, can be studied using the

MISTISNetwork object. The bidirectional A ↔ B network
can be studied using either a MISTISNetwork or a
MSTISNetwork: the ensembles which are created would be
indistinguishable.
These networks are not exhaustive, and other possibilities

might be implemented by users. For example, it might be
interesting to sample transitions from one state to all other states
in an MSTIS simulation. This cannot be done with the built-in
MSTISNetwork, but it would be relatively straightforward to
create another subclass of TransitionNetwork that
allows this.

5.5. Step 3b: The Monte Carlo Move Scheme.
5.5.1. Path Movers. In OPS, each PathMover instance is
connected to specific ensembles. For example, there is a separate
shooting mover for each ensemble and a separate replica
exchange mover for each pair of ensembles that are allowed to
swap in replica exchange. The move method of the Path-
Mover object actually performs theMonte Carlo move. It takes
a SampleSet as input and returns a MoveChange, which

Table 1. Predefined Network Types and the Number of (Physical) Transitions, Sampling Transitions, and Sampling Ensembles
Arising from Different Initialization Parametersa

network and initialization transitions sampling transitions sampling ensembles

TPSNetwork:
A, B 1 1 1
[A, B], [B, C] 3 1 1
[A, B,..., N], [A, B,..., N] N(N − 1) 1 1

MSTISNetwork:
[(A, mA), (B, mB)] 2 2 mA + mB

[(A, mA), (B, mB),..., (N, mN)] N(N − 1) N ∑I mI

MISTISNetwork:
[(A, mAB, B)] 1 1 mAB

[(A, mAB, B) (A, mAC, C), ..., (A, mAN, N)] N−1 N−1 ∑J≠A mAJ

[(A, mAB, B), ..., (A, mAN, N), ...

..., (N, mNA, A)] N(N − 1) N(N − 1) ∑I ∑J≠I mIJ
aVolumes are represented with capital letters (e.g., A or B), and interface sets are represented as mA for the interfaces leaving A in MSTIS or mAB
for interfaces leaving A toward B in MISTIS. The number of interfaces in an interface set is given by mA or mAB, respectively. The total number of
states is assumed to be N (with the final state represented by N). Under each network type, different potential initialization arguments are given.
TPSNetwork can be initialized with two states or two lists of states (with lists in square brackets). MSTISNetwork and MISTISNetwork
are initialized with lists of tuples, with square brackets indicating the list and parentheses indicating the tuple.

Figure 5. Example of a transition network used in the MSTIS alanine
dipeptide examples (see Section 6). Multiple states A−D are defined
according to the dihedral angles ψ and ϕ. The core sets for A−D are
defined as being within 10 degrees of the core center (indicated by black
dot). Each state has its own set of interfaces using the geometric
distance in ψ − ϕ space to the core center, indicated by shaded circles.
The MSTISNetwork object creates for each state the collection of
path ensembles for each interface plus the minus interface. In addition
there is a multiple state union interface for the outermost interfaces.
The plus marks the location of the initial conformation used in the
example.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

822

http://dx.doi.org/10.1021/acs.jctc.8b00626

the PathSimulator applies to the original SampleSet in
order to create the updated SampleSet.
OPS includes a rich toolkit so that developers of newmethods

can create custom methods. Those toolkits are discussed in
detail in the companion paper.47 Here, we will introduce some of
the built-in path movers.

• Shooting movers: OPS has support for both one-way
(stochastic) shooting50,70 as well as the two-way shooting
algorithm. These are implemented as OneWayShoot-
ingMover and TwoWayShootingMover .
In addition to a specific ensemble, the shooting movers
require a ShootingPointSelector to choose the
shooting point. The most commonly used selector is the
UniformSelector, which, by default, selects any
point except the end points of the trajectory (which are in
the defined states) with equal probability. Other
possibilities could also be implemented, such as using a
Gaussian distribution24 or a distribution constrained to
the interface.74 The TwoWayShootingMover also
requires a SnapshotModifier to change the snapshot
in some way (e.g., modifying the velocities). Several
possibilities exist, including either changing the direction
of the velocity for some atoms or completely randomizing
velocities according to the Boltzmann distribution.

• Path reversal mover: Another standard mover is the
PathReversalmover, which takes the current path in
the ensemble and tries to reverse its time direction. For a
path that leaves and returns to the same stable state this
move is always accepted. As stated in Section 2.3, this
move helps to decorrelate the sampled trajectories.

• Replica Exchange mover: A ReplicaExchange-
Mover involves two ensembles (see Figure 6). When a
move is attempted, the mover takes the paths associated
with these ensembles in the current sample set and tries to
exchange them. This trial move will be accepted if both
paths are valid paths in their respective ensembles.

• Minus mover: The MinusMover is a more complicated
PathMover. In essence, it combines replica exchange
with extension of the trajectory. OPS has a toolkit to
simplify the creation of more complicated moves from
simpler ones, which is to be discussed inmore detail in the
companion paper.47 The MinusMover uses both the
minus interface ensemble and the innermost normal TIS
ensemble. It extends the trajectory from the innermost
ensemble until it again recrosses the interface and returns
to the stable state, resulting in a trajectory with two
subtrajectories that satisfy the innermost TIS ensemble.
This trajectory satisfies the minus ensemble. The trajec-
tory that had previously been associated with the minus
ensemble also has two subtrajectories that satisfy the
innermost TIS ensemble, and one of them is selected.
After the move, the newly extended trajectory is
associated with the minus ensemble, and the selected
subtrajectory is associated with the innermost TIS
ensemble.

5.5.2. The MoveScheme and MoveStrategy. The Move-
Scheme creates and contains the move decision tree, which is
essentially the protocol for the simulation. Figure 6 shows a
graphical representation of the decision tree created by a simple
MoveScheme. The decision tree contains the different choices
of move type (e.g., shooting, reversal, replica exchange) and
assigns specified weights to them. At the leaves of the tree are

path movers. Each path mover acts on a certain ensemble
(shown on the right of Figure 6).
The MoveScheme object organizes the path movers in

several mover groups, held in a dictionary called movers, with
strings as keys, and a list of PathMovers are values. Each
group corresponds to a related set of movers (which are used on
different ensembles). For example, the default shooting movers
are in the group ’shooting’ and the default replica exchange
movers are in the group ’repex’.
The most common MoveScheme objects are the

DefaultScheme (for TIS) and the OneWayShooting-
MoveScheme (for TPS). All move schemes require a network;
DefaultScheme and OneWayShootingMoveScheme
also require an engine. The move decision tree can also be
generated by hand and then given as input to a Locked-
MoveScheme, although some additional information (such as
the choice_probability, a dictionary mapping each
path mover to its relative probability of being selected) must be
manually added to a LockedMoveScheme for some analysis
to work. Furthermore, a LockedMoveScheme cannot by
modified using MoveStrategy objects.

Figure 6. Schematic representation of the decision tree as constructed
by the MoveScheme object. Shown is an example for RETIS. The
MoveScheme points to the root of this tree (left). The branches are
the different move levels. The first level is the decision about what type
of move: shooting, replica, reversal. The next level is the decision about
what ensemble needs to be moved. For the shooting, the next level is
about which direction the shot is. For other moves the choice is slightly
different. The right part of the picture shows which ensembles are
affected. Each vertical line denotes an ensemble. At the root of the tree
each ensemble can be chosen. Going down the tree, the ensembles
affected reduce in number. The letters are arbitrary labels for each
ensemble. The gray box around each letter shows the input (red) and
the output (blue). This sort of schematic can be generated using the
paths.visualize.MoveTreeBuilder object.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

823

http://dx.doi.org/10.1021/acs.jctc.8b00626

In general, the easiest way to customize the move scheme is to
start with a DefaultScheme or a OneWayShooting-
MoveScheme and then append strategies that give the desired
behavior. The whole scheme is built by applying the Move-
Strategy objects in sequence. Each subclass of Move-
Strategy has a priority level associated with it, and the
strategies are built in an order sorted first by that priority level
and second by the order in which they were appended to the
scheme (so later additions can override earlier versions). Several
aspects of the way a MoveStrategy contributes to the move
decision tree can be set in its initialization: which ensembles the
strategy applies to, which mover group the strategy is for, and
whether to replace the effects of previous strategies. Addition-
ally, mover-specific parameters (such as shooting point selector
for shooting moves) are passed along to the movers that are
constructed by the strategy.
This allows one to, for example, add a shooting move of a

different type (e.g., two-way instead of one-way or using a
different shooting point selection algorithm) for a specific
ensemble  either overriding the original mover or adding a
second “group” of shooting movers (with a different name, e.g.,
’shooting2’ so as not to conflict with the existing
’shooting’). One might do this so that there are two
kinds of shooting moves: one which causes large decorrelations
in path space (but might have lower acceptance) and one that
has a better acceptance probability.
5.6. Step 4: Obtaining Initial Conditions. The initial

conditions for a path sampling simulation consist of a
SampleSet with at least one Sample for any possible initial
move. As discussed above, each Sample consists of a
trajectory, the ensemble for that trajectory, and a replica ID.
Preparing the initial sample set thus breaks down into two parts:
(1) creating the initial trajectories and (2) assigning them to
appropriate ensembles and giving them individual replica IDs.
The first part, obtaining initial trajectory from the path

ensemble, is in general nontrivial since the events we are
interested in are rare, and the best approach is likely to be system
specific. We discuss several possible approaches in detail in
Appendix A.
The second part is much easier. Once we have trajectories,

scheme.initial_conditions_from_trajecto-
ries will take those trajectories and create appropriate initial
conditions for the move scheme called scheme. This method
attempts to create a sample for every ensemble required by the
move scheme by checking if the given trajectories (or
subtrajectories of them) or their time-reversed versions satisfy
the ensemble. Internally, this uses the ability of the Ensemble
object to test whether a trajectory (or subtrajectory thereof)
satisfies the ensemble.
For some ensembles, such as the minus interface ensemble,

the method extend_sample_from_trajectories
has been implemented, which runs dynamics to create a trajec-
tory that satisfies the ensemble, starting from input subtrajectories.
Last, the move scheme method MoveScheme. assert_

initial_conditions can be used to check if a given set of
initial conditions contains all Samples needed to run the
simulation and raises an AssertionError if not.
5.7. Step 5: Equilibration and Running the Simulation.

As with other simulation techniques, such as molecular dynam-
ics and configurational Monte Carlo, the equilibration process
for path sampling is often just a shorter version of the
production run. Both equilibration and production require
creating a PathSimulator object, which creates the

runnable simulation. The examples here focus on PathSam-
pling, but other subclasses of PathSimulator include
CommittorSimulation and DirectSimulation
(for rates and fluxes). The PathSampling simulator is
initialized with a storage file, a move scheme, and initial
conditions. It has a runmethod which takes the number of MC
trial steps to run. All the simulation and storage to disk is done
automatically.

5.8. Step 6: Analyzing the Results.OPS has many built-in
analysis tools, and users could create a wide variety of custom
analyses: the companion paper includes several examples.47

However, nearly all analysis of path sampling falls into two
categories: either the analysis provides information about the
ensemble that is sampled (often tied to observables such as the
rate) or the analysis provides information about the sampling
process itself. Both analysis types are extremely important 
poor behavior of the sampling process would indicate low
confidence in the calculated observable, and, of course, com-
bining insights from both can yield understanding of the physical
process under study. The basic use of OPS analysis tools to
calculate rates from MSTIS and MISTIS simulations and
mechanistic information (path densities) from TPS simulations,
as well as properties of the sampling process such as the replica
history tree (a generalization of the “TPS move tree” in the
existing literature), measures of mover acceptance ratios, and
measures of the replica exchange network and its efficiency, will
be illustrated in the following examples.

6. ILLUSTRATIVE EXAMPLES

In this section, we give and discuss several examples. These
examples are meant to show the user how to set up, run,
and analyze several basic applications of TPS, MSTIS, and
MISTIS. In the examples, the following set of initial imports is
assumed:

These imports load not only the required modules, notably the
OPS modules, but also modules such as MDTraj,86 OpenMM,80

the toy dynamics, and the Python plotting modules. We note that
the explicit code given in this section is for illustrative purposes
only and refers to the 1.0 release. Up-to-date versions of the
examples are available as interactive Jupyter notebooks on the
Web site http://openpathsampling.org.

6.1. TPS on Alanine Dipeptide. This example illustrates
details about setting up transition path sampling calculations,
both with fixed and flexible path length ensembles. This example
and the next consider alanine dipeptide (AD) in explicit
TIP3P90 water, using the AMBER9691 force field to enable
comparison to some previous work.92,93 This model has been
widely used as a biomolecular test system for rare events
methods. We use a VVVR-Langevin integrator at 300 K,94 with a
2 fs time step and a collision rate of 1 ps−1. The long ranged
interactions were treated with PME with a cutoff of 1 nm. The
AD molecule was solvated with 543 water molecular in a cubic
box and equilibrated at constant pressure of 1 atm using aMonte
Carlo barostat. Afterward the box size was set to the average

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

824

http://openpathsampling.org
http://dx.doi.org/10.1021/acs.jctc.8b00626

value of 25.58 Å, as obtained in the NPT run. All subsequent
simulations were done in the NVT ensemble.
While the example is based on the explicit solvent calculations

by Bolhuis, Dellago, and Chandler,95 we differ in several details,
including our choice of force field and the details of our
ensembles: ref 95 used a shorter fixed-length TPS ensemble,
whereas we use both a flexible-length TPS ensemble and an 8 ps
fixed-length TPS ensemble.
6.1.1. Setting up the Molecular Dynamics. We use

OpenMM to set up an MD engine for the AD system. The
OpenMM-based OPS engine is essentially a wrapper for the
OpenMM Simulation object. As with the OpenMM
Simulation, it requires an OpenMM System, and an
OpenMM Integrator. The interactive OpenMM simu-
lation builder tool [http://builder.openmm.org/] allows us
construct an appropriateSystem andIntegrator. In addi-
tion, the OpenMM Simulation takes a openmm_prop-
erties dictionary, which we must define.
To build the OPS engine, we also need to fill an

engine_options dictionary with some OPS-specific and
OpenMM-specific entries. All OPS engines should define
n_steps_per_frame, the number of time steps per
saved trajectory frame, and n_frames_max, an absolute
maximum trajectory length. For the alanine dipeptide examples,
we save every 20 fs (10 steps) and abort the trajectory if it
reaches 40 ps:

After creating the OpenMM system, the OpenMM integrator,
the OpenMM properties dictionary, and the OPS engine
options dictionary, all of these can be combined to create on
OpenMM-based OPS engine:

where thetemplate is a snapshot loaded from a PDB file with
omm.snapshot_from_pdb(ˈˈfile.pdbˈˈ). The tem-
plate snapshot will be used again to provide the storage file
with a template to automatically identify the sizes of various
arrays to be saved. The above engine-creation command also
associates a name with the engine, which makes it easier to
reload from storage for reuse.
6.1.2. Defining States and Interfaces. The collective vari-

ables of interest for alanine dipeptide are the backbone ϕ and ψ
dihedrals. To create a collective variable for these angles, we use
our wrapper around MDTraj’s compute_dihedrals
function:

The ϕ angle is defined similarly, consisting of the atoms with
indices 4, 6, 8, and 14.
MDTraj reports dihedral angles in radians. The MDTraj-

FunctionCV wrapper can wrap any function that uses
MDTraj; we use the simplest example here for illustrative
purposes. It would be straightforward to write a Python function
that converts this to degrees and to use that in place of
md.compute_dihedrals; the AD MSTIS example in
section 6.2 uses a more complicated approach to wrapping
CVs.

In this example, we define two states, C7eq and αR, similarly to
ref 95. Since we are using a different force field, we use slightly
different values for the ψ angles. Our state C7eq is defined (in
degrees) by 180 ≤ ϕ < 0 and 100 ≤ ψ < 200 (wrapped
periodically), whereas αR is given by 180≤ ϕ < 0 and −100 ≤ ψ
< 0. To convert between degrees and radians, we define deg =
np.pi/180. The code to define C7eq is:

and state αR can be coded accordingly.
For nonperiodic CVs, the equivalent form is CVDefined-

Volume, and it does not include the period_min
and period_max arguments. The periodic version allows
the C7eq state to wrap across the periodic boundary in the ψ
variable: We define the state from 100 degrees to 200 degrees,
even though the function reports values between −180 deg
and 180 deg. We would get the exact same behavior by
setting lambda_max to −160 degrees. For a TPS simulation,
we only need to define the states  there are no interfaces to
define.

6.1.3. Setting up the Transition Network andMove Scheme.
The transition network creates and contains all the ensembles to
be sampled. In this case, there is only one ensemble. Later
examples will deal with sets of ensembles. The fixed and flexible
path length examples diverge here: the fixed path length TPS
simulation uses a fixed path length network with path length
400 frames (8 ps), created with:

For the flexible path length, which is better in practice,
we use

This one line of code selects between the two approaches.
Multiple state TPS can be set up similarly. For instance, a multi-
ple state TPS with states A, B, and C (allowing all transitions)
can be created by

Next, we set up the move scheme. For the TPS simulations,
we only need a shooting move. This move scheme is created with

The selector defines how to choose the shooting points, e.g.,
UniformSelector selects the points uniformly. Another
option would be to use the GaussianBiasSelector-
(lambda, alpha, l_0), which takes the collective variable
lambda and biases the shooting point selection according to
exp(−α(λ−l0)2), where l0 is the position of the maximum, and α
determines the width of the distribution.96

6.1.4. Obtaining Initial Conditions. We obtained an initial
trajectory by running at high temperature (T = 500 K) until both
states had been visited. Appendix A provides details on this and
other possible methods to obtain initial trajectories.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

825

http://builder.openmm.org/
http://dx.doi.org/10.1021/acs.jctc.8b00626

We generate the trajectory for fixed length TPS by taking the
appropriate trajectory for flexible length TPS, adding frames to
either side, and using the fixed-length ensemble’s ensem-
ble.split to select a segment of the appropriate length that
satisfies the requirements.
To assign this first trajectory to the ensemble we will be

sampling, we use the move scheme’s scheme.initial_
conditions_from_trajectories method.
6.1.5. Equilibration and Running the Simulation. All OPS

simulation details and simulation results are stored in a single
NetCDF storage file. The storage requires a template
snapshot to determine sizes of arrays to save per snapshot.
Before running the simulations, we need to create a file to
store our results in. A new file namedtps_AD.nc can be created
with

The PathSampling simulator object is created with

We can run the OPS simulation using

with n_steps trial moves. We use 10,000 steps for the TPS
examples.
In all molecular simulation approaches initial conditions are

unlikely to be representative for the equilibrium distribution
(e.g., one could start with the solventmolecules on a grid, or with
a high temperature snapshot), and equilibration is usually
required before one can take averages of observables. Likewise,
we need to equilibrate the path sampling before we can take
statistics, when the initial trajectories are not from the real
dynamics (e.g., generated with metadynamics or high-temper-
ature simulation). As with MD and MC approaches, the
equilibration phase can be just a short version of the produc-
tion run.
6.1.6. Analyzing the Results. Analysis of a simulation

is usually done separately from running the simulation.
The first step is to open the storage file with the simulation
results.

will open a file for reading.
The tables of stored data objects are attributes of the storage.

To see the number of items stored, the standard Python len
function can be used. For example, len(storage.steps)
gives the number of Monte Carlo steps run (plus 1 for the initial
conditions).
The move scheme serves as the starting point for much of the

analysis. Since there is only one in storage, we obtain the correct
move scheme with scheme = storage.schemes[0].
The command

returns a quick overview of the moves performed and
information on the acceptance ratios. Since our TPS move
scheme contained only one PathMover, all performed moves
were shooting moves. In this example, we find a 56% acceptance

ratio for flexible length TPS and a 50% acceptance rate for fixed
length TPS.
As discussed in Section 4, every Monte Carlo step in the

storage consists of two main parts: the SampleSet of active
samples, given by step.active, and the PathMove-
Change with details about the move, given by step.-
change. Typically, analysis begins with a loop over steps and
then extracts the relevant information. The first step (step 0)
corresponds to the initial conditions. For example, a list of all the
path lengths (in frames) can be obtained with

which loops over each MC step in storage.steps and
takes the length of the trajectory associated with replica
ID 0 in the active sample set. For TPS, this is the only
replica, so this gives us the length of every accepted trajectory,
weighted correctly for the ensemble. From here, we can use
standard Python libraries to analyze the list, obtaining, for
example, the maximum (max(path_lengths)), the mean
(np.mean(path_lengths)), and the standard deviation
(np.std(path_lengths)), or to plot a histogram
(plt.hist(path_lengths)). In this specific example,
we are often interested not in the exact number of frames but in
the time associated with that number of frames. This can be
accessed by multiplying the path length by engine.snap-
shot_time step, which gives the time between saved
snapshots. In the case of the OpenMM engine, this result even
includes correct units, and we find that the average path length
for the flexible path length simulation is 1.6 ps, with a maximum
path length of 10.1 ps.
One of the tools for checking the behavior of path sampling

simulations, particularly of one-way flexible length path sam-
pling, is the visualization known as the “path tree”. This has
several uses, including checking for path decorrelation and that
there is sufficient alternation between accepted forward shots
and accepted backward shots.97 In OPS, we generate this object
with

which works with any list of steps, although the visualizations
get unwieldy for large numbers of steps. The generator describes
how to generate the list of samples to be displayed from steps.
In TPS, there is only one replica (replica = 0), but trees can
also be used to track the move history of a specific replica in TIS,
where there are multiple replicas.
This PathTree object only consists of the data and data

structures to create and analyze the visualization. The actual image
can be generated (in SVG format) using path_tree.svg()
for visualization in a Jupyter notebook or written to file. The
resulting image, shown in Figure 7, shows the original trajectory
in gray, the forward shots in red, and the backward shots in blue.
However, these colors are customizable using CSS options that
can be modified by the user. The top uses an additional
CSS-based customization to show the individual snapshots.
Additional information is shown to the left of the tree. At the
far left, a number indicates the MC trial step index. Next to that, a
vertical bar contains horizontal lines to indicate groups of
correlated paths (paths which share at least one configuration in
common).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

826

http://dx.doi.org/10.1021/acs.jctc.8b00626

The list of first-decorrelated paths (the first member of each
such group) can be obtained with replica_history.
decorrelated_trajectories. This number is a good
estimate of the number of uncorrelated samples drawn from an
ensemble. For the flexible path length simulation, we have 893
decorrelated trajectories, decorrelating on average every 11.2
MC steps. For the fixed path length simulation, there are only
409 decorrelated trajectories, decorrelating every 24.4MC steps.
Note that this set itself has no special relevance but rather gives
an indication of the sampling efficiency.
Besides analyzing the sampling statistics, we can, of course,

perform normalMD trajectory analysis on trajectories generated
by OPS. For example, suppose we wanted the active trajectory
after the 10th MC step. We can obtain this with

where, again, TPS only has one replica, with replica ID 0.
We can directly analyze this trajectory with the tools in OPS. For
example, taking phi(trajectory) will give us the list of
values of ϕ for each frame in the trajectory. Any other OPS
collective variable will work similarly, whether it was used in
sampling or not.
The path density gives the number of paths in the ensemble

that visit a particular region in the projected collective variable
space. The appropriate histogram requires defining the
(inclusive) lower bound of a bin and the width of the bin in
each collective variable. In OPS, we can calculate the path
density with

utilizing a bin width of 2 degrees.
In principle, an OPS path density can be in any number of

collective variables. However, in practice, path densities are
almost always shown as 2D projections. Figure 8 gives the path
density for the flexible path length ensemble in the (ϕ, ψ) plane,
along with two representative trajectories.
If one would rather use other tools, it is possible to convert an

OPS trajectory generated by OpenMM to an MDTraj86

trajectory with

From there, we can analyze the trajectory with MDTraj
or export it to any of the file formats supported by MDTraj,
to be read in by other analysis programs. In addition,
MDTraj can be used as a gateway to other libraries, such as
NGLView.98

The step.change starts from the root of the move
decision tree and therefore also contains information about what
kind of move was decided. This is very simple in TPS but can be
much more complicated for the move schemes used in TIS. The
details that are probably of greatest interest can be accessed with
step.change.canonical. The nature of a given
step.change.canonical depends on the type of
Monte Carlo move. However, as discussed in Section 4 and
shown in Figure 2, all changes have a few properties: a
Boolean as to whether the trial was accepted, a link to the
actual mover that created the change, and a list of attempted
samples in trials.
Sometimes we might want to study the rejected trajectories,

for example, to determine whether they continued to the maxi-
mum possible time in flexible length TPS. This could indicate a
metastable state that was not considered. The list of rejected
samples (which contain the trajectories, as well as the associated
ensembles) can be created with

Figure 8. Path density histogram for flexible path TPS of the C7eq→ αR
transition in alanine dipeptide from Section 6.1. The path density is a
2D histogram of the number of paths that traverse a (discrete) ψ − ϕ
value.71 On top of the path density we plot two individual trajectories,
one for each of the two observed channels. Note that the left channel
between C7eq and αR around ϕ ≈ −135 is much more frequently
sampled.

Figure 7. Path sampling history tree for alanine dipeptide TPS
simulations from Section 6.1. Top: The path tree for first 25 trial MC
moves using flexible path length TPS. Here the initial path is
represented by a gray horizontal line of a length equal to the path
length. Going downward, the sequential MC shooting moves are
indicated. The vertical line indicates the shooting point. Red and blue
horizontal lines indicate forward and backward shots, respectively.
Note that these are partial paths, replacing the old path from the
shooting point forward (or backward). The remainder of the path is
retained from the previous paths. To the left is indicated the MC step
(trial) index. Only accepted paths are shown. The bars to the left
indicate complete decorrelation of the previous decorrelated path.
Bottom: the path tree for fixed path length TPS. Note that the width is
scaled differently; paths in the bottom tree are much longer than
the top tree.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

827

http://dx.doi.org/10.1021/acs.jctc.8b00626

Since each step.change.canonical.trials is a
list, we use Python’s sum function to add (extend) the lists with
each other. For more complicated move schemes, we might
want to add a restriction such as step.change.mover = =
desired_mover with an and in the if statement. The
code above results in a list of Sample objects. The trajectories
can be extracted with

These rejected trajectories can be analyzed in the same way as
above.
6.2. Multiple State Replica Exchange TIS on Alanine

Dipeptide. 6.2.1. Setting up the Molecular Dynamics. In this
example we use the same system as in the previous example, with
the same MD engine. In the online Jupyter notebook  which
contains additional details not presented here  we set up the
engines from scratch. However, as OPS saves all the details of
the engine, we can reload a usable engine from the output file of
the previous example. In fact, we can even use that file to reload
the collective variables that we defined:

6.2.2. Defining States and Interfaces. In contrast to the
above example we take the MSTIS state definitions for alanine
dipeptide from ref 62 to make the results comparable with that
work. The states are defined by a circular region around a center
in ϕ − ψ space, while interfaces are defined by circular regions
with increasing diameter λ. For instance, for state A we can
define

For convenience, Python dict objects can be used to contain
the centers and interface levels for all states (e.g.,
state_centers[″A″]), although in this example we will
use separate objects for each.
In MSTIS, each state is associated with an order parameter

(CV). In simple cases like this one, a single functional can be
used for all the order parameters. In OPS, this can be
accomplished by creating a single Python function which takes
a Snapshot as its first argument and parameters for the
functional as the remaining arguments. This was also done
implicitly in the previous example, where the md.compu-
te_dihedrals Python function is actually a functional
with indices as parameters. In this case, we need to
explicitly create a Python function with the signature
circle_degree(snapshot, center, cv_1,
cv_2), where snapshot is an OPS Snapshot, center
is a two-member list like state_centers_A, and cv_1
and cv_2 are OPS collective variable objects (in all cases, we
will use our phi and psi variables).
In this example, we could redefine the phi and psi variables

inside the function, but using them as parameters has an
additional advantage: they will only be calculated once, and then
the values will be cached in memory (and optionally saved to
disk). This is extremely useful for expensive CVs that are likely to
be reused as part of other CVs.

Once the functional has been defined, we can wrap it in an
OPS FunctionCV for each state. For state A:

We can now use this CV to define the volume associated with
the state:

All of this is analogous to the TPS example; however, TIS also
requires defining interfaces. These can be created with:

In many cases, the innermost interface volume is identical to the
state. For those examples, one could first create the interfaces
and then select the innermost using

The state definition used here is illustrated in Figure 5. In this
example we restrict the states to {A, B, C, D}. The transitions to
the E and F states are extremely rare and require additional
restricted path sampling.62

6.2.3. Setting up the Transition Network.MSTIS can make
use of the optional multistate outer interface, in which all state-
to-state paths are allowed, as long as they cross the outer
interface MSOuterInterface. This special interface allows
switching paths from one associated state to another when
reversing a transition path. Note that in all other interface
ensembles/replicas such reversal trials are rejected by con-
struction. We create this multistate outer interface with

where the lambdas are the interface levels as defined above,
and the dots indicate a short hand for all other state volumes and
interfaces. We now construct the Network that contains the
structure of states and interfaces.

We finally construct the DefaultScheme with

This scheme includes minus moves, moves for the multistate
outer interface ensemble, as well as the standard shooting, path
reversal, and nearest neighbor replica exchange moves.

6.2.4. Obtaining Initial Conditions. Initial conditions for the
MSTIS simulation can be obtained with an approach similar to
the one used in the TPS example in Section 6.1. The initial
conditions must include a trajectory that satisfies each
(interface) ensemble. However, the same trajectory can be
reused for multiple ensembles, and a trajectory that transitions
from a given state to another must exit all interfaces associated
with the initial state. A trajectory that visits all states has (when
considering both the trajectory and its time-reversed version) at
least one subtrajectory that represents a transition out of every
state.
As with the TPS example, we therefore use the approach des-

cribed in Appendix A, using a temperature of T = 1000 K. Again,

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

828

http://dx.doi.org/10.1021/acs.jctc.8b00626

the scheme.initial_conditions_from_tra-
jectories method is used to identify the specific
subtrajectories and associate them with the correct
ensembles.

When the initial paths for the minus ensembles are not
directly found, we use the innermost TIS ensemble trajectories
and extend them until they match the required (minus)
ensemble (or fail in doing so) using the .extend_sam-
ple_from_trajectories method and associating them
with the correct ensembles using scheme.initial_con-
ditions_from_trajectories.

6.2.5. Equilibrating and Running the Simulation. As in the
TPS examples, the path replicas first need to be equilibrated
since the initial trajectories are not from the real dynamics (e.g.,
generated with metadynamics, high temperature, etc.) and/or
because the initial trajectories are not likely representatives of
the path ensemble (e.g., if state-to-state transition trajectories
are used for all interfaces).
As with straightforward MD simulations, running equilibra-

tion can be the same process as running the total simulation.
However, in path sampling we could equilibrate without replica
exchange moves or path reversal moves, for instance. In the
example below, we create a new move scheme that only includes
shooting movers, to achieve equilibration of the interface
ensemble replicas,

and run this scheme for 500 steps the way we run any other
scheme, using the PathSampling object.

Figure 9 shows the set of initial and final samples. Note that
the large coverage of phase space at high temperature narrows
after cooling down, as expected.
Finally, we run the simulation for 100,000 steps using the

PathSampling object as in a previous example, with the default
scheme as defined above, a Storage object, and the initial
conditions from the equilibration.

Figure 9. Comparison between initial sample after generation at high temperature and room temperature equilibration for alanine dipeptide in the
psi−phi plane from Section 6.2. The trajectories are plotted as connect dots, where each dot represents a snapshot. The stable state and interface
definitions for A, B, C, and D are plotted in the background. Note that after cooling to room temperature the trajectories are sampling a more narrow
path samples, as expected.

Table 2. Rate Constant Matrix for Alanine Dipeptidea

A B C D

A 0 0.06512 0.003514 0.0009725
B 0.07606 0 0.001202 0.001107
C 0.05311 0.01103 0 0.1202
D 0.01102 0.005624 0.06909 0

aThe average rate constant matrix, in units of ps−1, for the four-state
Markov model based on several independent runs. Rows denote
leaving, and columns denote arriving states. Subscript denotes error in
the last 2 digits.

Table 3. Fluxes and Outer Interface Crossing Probabilities
for TIS Simulation of Alanine Dipeptidea

ϕ0I [ps
−1] PI(λmI |λ0I) ϕmI [ps

−1]

A 1.56 0.06609 0.10313
B 1.85 0.05909 0.11017
C 1.67 0.19313 0.32321
D 2.29 0.07109 0.16220

aFlux at the first interface (second column), the crossing probability
from the first to the outermost interface (third column), and the flux
at the outermost interface (last column).

Table 4. Conditional Transition Probability Matrix between
Alanine Dipeptide Statesa

A B C D

A 0.3506 0.6106 0.03208 0.009012
B 0.7203 0.2603 0.01102 0.01108
C 0.1702 0.03307 0.4003 0.4001
D 0.06605 0.03413 0.4203 0.4804

aThese probabilities follow directly from the path sampling in the
multistate outer ensemble. Rows denote leaving, and columns arriving
states.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

829

http://dx.doi.org/10.1021/acs.jctc.8b00626

6.2.6. Analyzing the Results. To do analysis on the path
simulation results we first have to load the production file for
analysis:

Then we can run analysis on this storage. One of the main
objectives for doing multiple state replica exchange TIS is to
compute the rate constant matrix. To obtain the rate constant
matrix, we run

which gives as an output the full rate constant matrix kIJ,
obtained from a computation of the fluxes ϕ0I, the crossing
probabilities PI(λmI|λ0I), and the conditional transition matrix
PI(λ0J|λmI) (see eq 5).
An example of such a rate constant matrix computation is

shown in Table 2, which agrees well with the results in ref 62. For
comparison, the computed fluxes ϕ0I and crossing probabilities
PI(λmI|λ0I) are presented in Table 3, while Table 4 reports the
conditional state-to-state transition matrix PI(λ0J|λmI), which
represents the probabilities to reach a state provided that the
trajectories have passed the outermost interface of a state.
OPS also includes other analysis tools such as the crossing

probabilities and the sampling statistics. Both are important for
purposes of checking the validity of the simulations results. The
crossing probability graphs in Figure 10 can be helpful in
interpreting the rate matrix. The sampling statistics provides the
Monte Carlo acceptance ratio for the different movers. Of
course, each trajectory in the ensemble can be accessed and
scrutinized individually, as in previous sections.
6.3. MISTIS on a Three-State 2D Model System. This

example deals with a three-state 2Dmodel system, which we also
refer to as a toy model. OPS includes simple code to simulate the
dynamics of small toy models like the one considered here. This
is intended for use for either educational purposes or for rapid
prototyping of new methodologies. Since the overall path
sampling code is independent of the underlying engine, many
types of new methods could be developed and tested on the toy
models and would be immediately usable for more complicated
systems, simply by changing the engine.
6.3.1. Setting up theMolecular Dynamics.We create a simple

2D model with a potential consisting of a sum of Gaussian wells

∑= + −
=

− − + −V x y x y e(,)
i

x x y y6 6

0

2
12(() ())i i

2 2

(6)

with (x0, y0) = (−0.5, 0.5), (x1, y1) = (−0.5,− 0.5), and (x2, y2) =
(0.5, − 0.5) using

This results in a potential energy surface with three stable states,
caused by the Gaussian wells at (−0.5, − 0.5), (0.5, − 0.5), and
(−0.5, 0.5) . We call those states A, B, and C, respectively. This
potential interface surface, along with the state and interface
definitions described below, is illustrated in Figure 11.
To integrate the equations of motion, we use the BAOAB

Langevin integrator of Leimkuhler and Matthews,99 which we
initialize with

The toy engine employs units where kB = 1. The “topology”
for the toy engine stores the number of spatial degrees of free-
dom, as well as a mass for each degree of freedom and the potential
energy surface. We also create an options dictionary for the
engine.

We then instantiate an engine with toy_eng =
toys.Engine(options, topology).

6.3.2. Defining States and Interfaces. In this calculation, we
will set up multiple interface set transition interface sampling
(MISTIS).76 This involves defining different interface sets for
each transition. To simplify and to highlight some of the
flexibility of MISTIS, we will only focus on the A → B, B → A,
and A → C transitions.
First, we define simple collective variables. We use the

Cartesian x and y directions for both our state definitions and for
our interfaces. We define these as standard Python functions, for
example

and xval is similar but returns the [0][0] element, where
the first index refers to the atom number and the second to the

Figure 10.TIS crossing probabilities for alanine dipeptide, from section 6.2. Lef t:Total crossing probability as a function of the order parameter (CV)
λ for each individual state (A−D). Center: Natural logarithm of the total crossing probability per state. Right: Per interface crossing probabilities for
state A. The master curve (black) is obtained by reweighting.65,74

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

830

http://dx.doi.org/10.1021/acs.jctc.8b00626

spatial dimension. We wrap these functions in OPS collective
variables with, for example, cvX = FunctionCV(ˈˈxˈˈ,
xval). We define a volume called x_lower for x < − 0.35
with CVDefinedVolume(cvX, float(ˈˈ-infˈˈ),
−0.35). Similarly we define x_upper for x ≥ 0.35 and use
the same bounds for y with y_lower and y_upper. With
these, we define our states as

For our TIS analysis, the order parameter must increase with the
interface. So for the B → A transition we create another
collective variable, cvNegX, based on a function that returns
-snapshot[0][0]. For all of these, we will set interfaces at
−0.35, −0.3, −0.27, −0.24, −0.2, and −0.1. The A → C
transition has an additional interface at 0.0. The A → B and
B → A transitions will share a multiple state outer interface
at 0.0. Note that, for the B → A transition, the interface asso-
ciated with cvNegX = −0.35 is actually at x = 0.35, since
cvNegX returns−x. These interfaces are created by, for example

with similar lines for interfacesAC and interfaces-
BA. The multiple state outer interface, which connects
the A→ B and B→ A transitions, can be created at x = 0.0 with

6.3.3. Setting up the Transition Network and Move
Scheme. Like the MSTISNetwork, the syntax for setting up
a MISTISNetwork requires a list of tuples. However,
since MISTIS requires a f inal state as well an initial state, it also
requires that the final state be included as an extra piece of
information in that tuple. So we set up our desired MISTIS
network with

The strict_sampling argument means that an A→ C
path will be rejected if sampling the A→ B transition. Note that
A is the initial state for transitions to two states, whereas B is the
initial state for transitions to one state, andC is not an initial state
at all. The flexibility to define arbitrary reaction networks is an
important aspect of the MISTIS approach.
The move scheme is set up in exactly the same way as for

MSTIS: scheme = DefaultScheme(network,
toy_eng). One could also use a single replica move scheme
with aMISTIS network, just as was done in theMSTIS example.

6.3.4. Obtaining Initial Conditions. Here, we will use the
bootstrapping approach to obtain initial trajectories. This
approach is most effective with simple systems like this, where
the collective variables we have chosen as order parameters are
good representations of the actual reaction coordinate. The
bootstrapping runs separately on each transition A→ B, A→ C,
and B → A. Given an initial snapshot snapA in state A, the
initial samples for the A → B transition can be obtained with

This will create a trajectory for each of the normal interface
ensembles, as well as the multiple state outer interface
ensembles. The other transitions can be prepared similarly,
although they can omit the extra_ensembles option,
since there is only one multiple state outer ensemble to fill.
Whereas snapshots for the OpenMM engine used in the
previous examples came from PDBs or other files, for the toy
engine, the initial snapshot can be manually created:

The individual sample sets created by the FullBoot-
strapping approach can be combined into one using

From here, the setup follows that of the MSTIS example: the
trajectories can be assigned to ensembles using scheme.
initial_conditions_from_trajectories, and
the minus ensembles, of which there is one for each state, can
be filled using minus.extend_sample_from_tra-
jectories.

6.3.5. Running the Simulation and Analyzing the Results.
The path sampling follows exactly as with the previous examples.
The PathSampling object is created with a storage file, the
move scheme, and the initial conditions. We use the .run-
(n_steps) method to run the simulation.
One difference with the MSTIS approach is that trajectories

from themultiple setminus interface cannot be used to calculate the
flux. To obtain the flux, we do a separate calculation, which we call
DirectSimulation and which runs a molecular dynamics
trajectory and calculates the flux and the rates from the direct MD.
Setting up the DirectSimulation requires the same

toy_engine object. The set of all states is given by

Figure 11. Potential energy surface, states, and interfaces for the 2D toy
model. States are light blue, boundaries of normal interfaces are red, and
the boundary of the multiple state outer interface is dark blue.
For clarity when showingmultiple interface sets, the interface bondaries
are only drawn part of the way. They continue in an infinite
straight line.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

831

http://dx.doi.org/10.1021/acs.jctc.8b00626

To determine the flux out of a given state and through a given
interface, it needs the pairs of (state, interface) for each
transition. We can create this with

The simulation is then created with

where we choose not to store the output, and where we can use
any snapshot as our initial snapshot. The method sim.run
(n_steps) runs the simulation for the given number of MD
steps. Note that, although the direct simulation here is for the
MISTIS network, it would work equally well for any other
network. However, the flux calculation based on the minus
interface is more convenient for the MSTIS case.
Once the direct simulation has been run, we can obtain the

flux from it using sim.fluxes. This returns a Python
dictionary with the (state, interface) pairs as keys
and the calculated flux as value. Prior to the rate matrix
calculation, we can set the fluxes for the network by using
network.set_fluxes(sim.fluxes).
Aside from setting the flux, the analysis for the MISTIS

network is exactly as it is for other path sampling methods. The
rate matrix for this model is presented in Table 5. Note that the
rate matrix only includes the specific transitions we selected for
study by MISTIS; others are not listed. The MISTIS rates
represent the average of 10 runs of 105 MC steps each, with the
standard deviation as the reported error. To demonstrate
correctness, we compare these rates to those from a direct MD
simulation (also performed using OPS), with a length of 8 × 108

frames. The cumulativeMD time for the 10MISTIS simulations
was less than 1.8 × 107 frames. Errors for the direct MD rate
were determined by splitting the total simulation into 10
sequential blocks and calculating the standard deviation of the
rate in each block. Rates and error bars from the two methods
compare favorably, even though the MD simulation took more
than 40 times more CPU time.

7. CONCLUSION
In this paper we have presented a new easy-to-use Python
framework for performing transition path sampling simulations
of (bio)molecular systems. The OpenPathSampling framework
is extensible and allows for the exploration of new path sampling
algorithms by building on a variety of basic operations. As the

framework provides a simple abstraction layer to isolate path
sampling from the underlying molecular simulation engine, new
molecular simulation packages can easily be added. Besides
being able to execute existing complex path sampling simu-
lations schemes, tools are provided to facilitate the implementa-
tion of new path sampling schemes built on basic path sampling
components. In addition, tools for analysis of, e.g., rate constants
are also provided. Modules that provide additional functionality
are continuously added to be used by the community (see, e.g.,
the repositories at https://gitlab.e-cam2020.eu/Classical-MD_
openpathsampling).
In summary, the OpenPathSampling package can assist in

making the transition path sampling approach easier to use for
the (bio)molecular simulation community.

■ APPENDIX A: OBTAININGAN INITIAL TRAJECTORY

Just as configurational Monte Carlo requires a valid initial
configuration for input, path sampling Monte Carlo requires a
valid initial trajectory for input; and just as with configurational
Monte Carlo, an unrealistic initial state can equilibrate into a
realistic state, but more realistic starting conditions are
preferred. Unrealistic starting conditions can take longer to
equilibrate and can get trapped in unrealistic metastable basins.
In the case of path sampling, this can mean sampling a transition
with a much higher energy barrier than is realistic.
Obtaining a good first trajectory is thus of paramount

importance. However, there is no single best method to do so.
Here we review a few options and explain how OPS can facilitate
first trajectory generation. In all of these, the key OPS functions
that simplify the process are the Ensemble.split function,
which can identify subtrajectories that satisfy the desired
ensemble, and the MoveScheme.initial_condi-
tions_from_trajectories function, which attempts
to create initial conditions for the desired move scheme based on
given trajectories. The fundamental trade-off for these approaches
is between how “realistic” the initial trajectory is and how
computationally expensive it is to obtain the first trajectory.

A.1. Long-Time MD
While a transition from an unbiasedMD trajectory will provide a
realistic initial trajectory, these are difficult to obtain for rare
events. Nevertheless, distributed computing projects like
Folding@Home100 and special-purpose computers for MD
such as Anton101 might yield trajectories that include a transition.
TheEnsemble.split function can then select subtrajectories
that satisfy a desired ensemble.
In these trajectories frames are often saved very infrequently,

leading to transitions with only one or two (or even zero) frames
in the “no-man’s land” between the states. Path sampling requires at
least a few to a few tens of frames. ACommittorSimulation
using the desired states as end points and any frames between
the two states as input could generate an initial trajectoriy by
joining two path segments ending in different states, provided
the committor for at least one of the intermediate frames is
reasonable.

A.2. High Temperature MD
In the alanine dipeptide example, we use MD at high
temperature to increase the probability of getting a transition.
This method could cause problems in larger systems, by allowing
transitions that are not accessible at the relevant low tem-
perature. However, it works well on simple systems such as AD
and is very easy to set up.

Table 5. Rates Constants for the Toy Model, Multiplied
by 104a

A B C

A 1.9814 1.9517
B 2.0016

A B C

A 1.9443 2.2065
B 2.1037

aSubscripts indicate error in the last two digits. Top: Rate constant
calculated from a very long direct molecular dynamics simulation.
Bottom: Rate constant calculated using MISTIS. By symmetry, all
three rate constants in each table should be nearly the same.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

832

https://gitlab.e-cam2020.eu/Classical-MD_openpathsampling
https://gitlab.e-cam2020.eu/Classical-MD_openpathsampling
http://dx.doi.org/10.1021/acs.jctc.8b00626

First, we create an engine with a higher temperature. For the
AD example, we use OPS’s OpenMM engine. For the 2-state
system, we used a high temperature of 500 K. For the 4-state
system, we used a high temperature of 1000 K in order to easily
reach the higher-lying states.
To ensure that we visit all states, we generate a trajectory using

the ensemble

which creates the union of AllOutXEnsembles for each
state. Running with this ensemble as the continue condition
means that the trajectory will stop with the first trajectory that
does not satisfy it, i.e. the first trajectory with at least one frame in
each state. For MSTIS, this guarantees that a subtrajectory (or
its reversed version) will exist for every path ensemble.
We obtain the relevant trajectories by using the ensem-

ble.split method with the outermost ensemble for each
sampling transition (see also ref 47).

These trajectories can then be given to the MoveScheme.
initial_conditions_from_trajectoriesmethod.
Relaxing the high temperature initial trajectories down to

ambient conditions might be difficult, requiring many shooting
attempts before a valid room temperature path is created. Again,
a CommittorSimulation can alleviate this problem, by
joining forward and backward committor segments from a
snapshot with a finite committor value.
A.3. Bootstrapping/Ratcheting
In the toy model example in Section 6.3.4, we use a
“bootstrapping” approach, which is specifically useful for TIS.
In this approach, we initialize a trajectory in a stable state, e.g. A,
and performMD until the first interface is crossed, which allows
the first interface ensemble to be populated. Subsequently, TIS
is performed until the second interface is crossed, allowing the
second interface to be populated, etc. In this way one can ratchet
oneself up the barrier and populate each TIS interface. All this is
taken care of by the FullBootstrapping method. Note
that this path ensemble needs to be equilibrated subsequently.
A.4. Using Biased Trajectories
The use of unbiased dynamics is not necessary, as the goal is to
obtain an initial trajectory that is just “reasonably close” to the
unbiased dynamics. Subsequent path sampling will then
equilibrate the trajectories with the unbiased dynamics.
Recent work53 has employed metadynamics16 to obtain an

initial trajectory. Although metadynamics biases the underlying
dynamics, the first transition in a metadynamics simulation will
not have added much bias to the barrier region. Therefore,
further path sampling can equilibrate the first metadynamics
trajectories into the unbiased dynamics path ensemble. This
initial metadynamics trajectory could be generated with
PLUMED84 and then read into OPS.
The same basic approach could be employed for other

approaches to generate a nonphysical initial transition trajectory,
including steered MD,102 nudged elastic band,103 or the string
method.104

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: dwhs@hyperblazer.net.
*E-mail: jan.prinz@choderalab.org.

*E-mail: frank.noe@fu-berlin.de.
*E-mail: john.chodera@choderalab.org.
*E-mail: p.g.bolhuis@uva.nl.

ORCID
John D. Chodera: 0000-0003-0542-119X
Peter G. Bolhuis: 0000-0002-3698-9258
Author Contributions
∞D.W.H.S. and J.H.P. contributed equally to this work.

Funding
D.W.H.S. and P.G.B. acknowledge support from the European
Union’s Horizon 2020 research and innovation program, under
grant agreement No. 676531 (project E-CAM). J.D.C. acknowl-
edges support from Cycle for Survival, NIH grant
P30CA008748, and NIH grant R01GM121505. J.D.C., J.H.P.,
and D.W.H.S. gratefully acknowledge support from the Sloan
Kettering Institute. F.N. acknowledges ERC consolidator grant
772230 “ScaleCell”, DFG NO 825/2-2, and SFB1114, project
A04. The Chodera laboratory receives or has received funding
from multiple sources, including the National Institutes of
Health, the National Science Foundation, the Parker Institute
for Cancer Immunotherapy, Relay Therapeutics, Entasis
Therapeutics, Silicon Therapeutics, EMD Serono (Merck
KGaA), AstraZeneca, theMolecular Sciences Software Institute,
the Starr Cancer Consortium, Cycle for Survival, a Louis V.
Gerstner Young Investigator Award, and the Sloan Kettering
Institute. A complete funding history for the Chodera lab can be
found at http://choderalab.org/funding. The content is solely
the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

Notes
The authors declare the following competing financial
interest(s): J.D.C. was a member of the Scientific Advisory
Board for Schrodinger, LLC during part of this study, and is a
current member of the Scientific Advisory Board of OpenEye
Scientific Software.

■ ACKNOWLEDGMENTS

The authors are grateful for feedback from many people who
helped beta-test the software, whose names are listed at http://
openpathsampling.org/latest/acknowledgments.html. The
authors are particularly grateful to Sander Roet (University of
Amsterdam) for his feedback and to Jocelyne Vreede
(University of Amsterdam) for the feedback obtained by using
OPS as a teaching tool in courses on biomolecular simulation.

■ REFERENCES
(1) Buch, I.; Giorgino, T.; De Fabritiis, G. Complete reconstruction of
an enzyme-inhibitor binding process by molecular dynamics simu-
lations. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 10184−10189.
(2) Plattner, N.; Doerr, S.; Fabritiis, G. D.; Noe,́ F. Complete protein-
protein association kinetics in atomic detail revealed by molecular
dynamics simulations and Markov modelling. Nat. Chem. 2017, 9,
1005−1011.
(3) Silva, D.-A.; Bowman, G. R.; Sosa-Peinado, A.; Huang, X. A Role
for Both Conformational Selection and Induced Fit in Ligand Binding
by the LAO Protein. PLoS Comput. Biol. 2011, 7, e1002054.
(4) Schütte, C.; Fischer, A.; Huisinga, W.; Deuflhard, P. A Direct
Approach to Conformational Dynamics Based onHybridMonte Carlo.
J. Comput. Phys. 1999, 151, 146−168.
(5) Schütte, C.; Huisinga, W. In Handbook of Numerical Analysis;
Ciaret, P. G., Lions, J.-L., Eds.; Elsevier: 2003; Vol. X, pp 699−744,
DOI: 10.1016/S1570-8659(03)10013-0.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

833

mailto:dwhs@hyperblazer.net
mailto:jan.prinz@choderalab.org
mailto:frank.noe@fu-berlin.de
mailto:john.chodera@choderalab.org
mailto:p.g.bolhuis@uva.nl
http://orcid.org/0000-0003-0542-119X
http://orcid.org/0000-0002-3698-9258
http://choderalab.org/funding
http://openpathsampling.org/latest/acknowledgments.html
http://openpathsampling.org/latest/acknowledgments.html
http://dx.doi.org/10.1016/S1570-8659(03)10013-0
http://dx.doi.org/10.1021/acs.jctc.8b00626

(6) Noe,́ F.; Horenko, I.; Schütte, C.; Smith, J. C. Hierarchical analysis
of conformational dynamics in biomolecules: Transition networks of
metastable states. J. Chem. Phys. 2007, 126, 155102.
(7) Chodera, J. D.; Singhal, N.; Pande, V. S.; Dill, K. A.; Swope, W. C.
Automatic discovery of metastable states for the construction of
Markov models of macromolecular conformational dynamics. J. Chem.
Phys. 2007, 126, 155101.
(8) Chandler, D. In Classical and Quantum Dynamics in Condensed
Phase Simulations; Berne, B. J., Ciccotti, G., Coker, D. F., Eds.; World
Scientific: 1998; Chapter Barrier crossings: classical theory of rare but
important events, pp 3−23.
(9) Peters, B. Reaction Rate Theory and Rare Events; Elsevier Science:
Amsterdam, 2017.
(10) Bolhuis, P. G.; Chandler, D.; Dellago, C.; Geissler, P. Transition
path sampling: Throwing ropes over mountain passes, in the dark.
Annu. Rev. Phys. Chem. 2002, 53, 291−318.
(11) Torrie, G. M.; Valleau, J. P. Monte Carlo Free Energy Estimates
Using Non-Boltzmann Sampling: Application to the Sub-Critical
Lennard-Jones Fluid. Chem. Phys. Lett. 1974, 28, 578.
(12) Carter, E.; Ciccotti, G.; Hynes, J. T.; Kapral, R. Constrained
Reaction Coordinate Dynamics for the Simulation of Rare Events.
Chem. Phys. Lett. 1989, 156, 472.
(13) Huber, T.; Torda, A.; van Gunsteren, W. J. Comput.-Aided Mol.
Des. 1994, 8, 695.
(14) Grubmüller, H. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat.
Interdiscip. Top. 1995, 52, 2893−2906.
(15) Voter, A. F. A method for accelerating the molecular dynamics
simulation of infrequent events. J. Chem. Phys. 1997, 106, 4665.
(16) Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl.
Acad. Sci. U. S. A. 2002, 99, 12562.
(17) Darve, E.; Pohorille, A. Calculating free energies using average
force. J. Chem. Phys. 2001, 115, 9169.
(18) Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics
method for protein folding. Chem. Phys. Lett. 1999, 314, 141−151.
(19) Marinari, E.; Parisi, G. Simulated Tempering - A new monte-
carlo scheme. Europhys. Lett. 1992, 19, 451−458.
(20) Zheng, L.; Chen, M.; Yang, W. Randomwalk in orthogonal space
to achieve efficient free-energy simulation of complex systems. Proc.
Natl. Acad. Sci. U. S. A. 2008, 105, 20227−20232.
(21) Gao, Y. Q. An integrate-over-temperature approach for enhanced
sampling. J. Chem. Phys. 2008, 128, 064105.
(22) Dellago, C.; Bolhuis, P. G.; Csajka, F. S.; Chandler, D. Transition
path sampling and the calculation of rate constants. J. Chem. Phys. 1998,
108, 1964−1977.
(23) Dellago, C.; Bolhuis, P. G.; Geissler, P. L. Transition path
sampling. Adv. Chem. Phys. 2003, 123, 1−78.
(24) Dellago, C.; Bolhuis, P. G. Transition Path Sampling and Other
Advanced Simulation Techniques for Rare Events. Adv. Polym. Sci.
2009, 221, 167−233.
(25) Allen, R.; Frenkel, D.; ten Wolde, P. Simulating rare events in
equilibrium or nonequilibrium stochastic systems. J. Chem. Phys. 2006,
124, 024102.
(26) Cerou, F.; Guyader, A.; Lelievre, T.; Pommier, D. A multiple
replica approach to simulate reactive trajectories. J. Chem. Phys. 2011,
134, 054108.
(27) Faradjian, A. K.; Elber, R. Computing time scales from reaction
coordinates by milestoning. J. Chem. Phys. 2004, 120, 10880−10889.
(28) Moroni, D.; Bolhuis, P. G.; van Erp, T. S. Rate constants for
diffusive processes by partial path sampling. J. Chem. Phys. 2004, 120,
4055−4065.
(29) Villen-Altamirano, M.; Villen-Altamirano, J. Analysis of
RESTART simulation: Theoretical basis and sensitivity study. Eur.
Trans. Telecom. 2002, 13, 373−385.
(30) Berryman, J. T.; Schilling, T. Sampling rare events in
nonequilibrium and nonstationary systems. J. Chem. Phys. 2010, 133,
244101.
(31) Dickson, A.;Warmflash, A.; Dinner, A. R. Separating forward and
backward pathways in nonequilibrium umbrella sampling. J. Chem.
Phys. 2009, 131, 154104.

(32) Huber, G.; Kim, S. Weighted-ensemble Brownian dynamics
simulations for protein association reactions. Biophys. J. 1996, 70, 97−
110.
(33) Zhang, B. W.; Jasnow, D.; Zuckerman, D. M. The “weighted
ensemble” path samplingmethod is statistically exact for a broad class of
stochastic processes and binning procedures. J. Chem. Phys. 2010, 132,
054107.
(34) Prinz, J.-H.; Wu, H.; Sarich, M.; Keller, B.; Senne, M.; Held, M.;
Chodera, J. D.; Schütte, C.; Noe,́ F. Markov models of molecular
kinetics: Generation and validation. J. Chem. Phys. 2011, 134, 174105.
(35) Singhal, N.; Snow, C. D.; Pande, V. S. Using path sampling to
build better Markovian state models: Predicting the folding rate and
mechanism of a tryptophan zipper beta hairpin. J. Chem. Phys. 2004,
121, 415−425.
(36) Rogal, J.; Bolhuis, P. G. Multiple state transition path sampling. J.
Chem. Phys. 2008, 129, 224107.
(37) Pronk, S.; Bowman, G. R.; Hess, B.; Larsson, P.; Haque, I. S.;
Pande, V. S.; Pouya, I.; Beauchamp, K.; Kasson, P. M.; Lindahl, E.
Copernicus: A new paradigm for parallel adaptive molecular dynamics.
2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC); 2011; pp 1−10,
DOI: 10.1145/2063384.2063465.
(38) Preto, J.; Clementi, C. Fast recovery of free energy landscapes via
diffusion-map-directed molecular dynamics. Phys. Chem. Chem. Phys.
2014, 16, 19181−19191.
(39) Balasubramanian, V.; Bethune, I.; Shkurti, A.; Breitmoser, E.;
Hruska, E.; Clementi, C.; Laughton, C.; Jha, S. ExTASY: Scalable and
flexible coupling ofMD simulations and advanced sampling techniques.
2016 IEEE 12th International Conference on e-Science (e-Science); 2016;
pp 361−370, DOI: 10.1109/eScience.2016.7870921.
(40) Wu, H.; Mey, A. S. J. S.; Rosta, E.; Noe,́ F. Statistically optimal
analysis of state-discretized trajectory data from multiple thermody-
namic states. J. Chem. Phys. 2014, 141, 214106.
(41) Wu, H.; Paul, F.; Wehmeyer, C.; Noe,́ F. Multiensemble Markov
models of molecular thermodynamics and kinetics. Proc. Natl. Acad. Sci.
U. S. A. 2016, 113, E3221−E3230.
(42)Mey, A. S. J. S.; Wu, H.; Noe, F. xTRAM: Estimating Equilibrium
Expectations from Time-Correlated Simulation Data at Multiple
Thermodynamic States. Phys. Rev. X 2014, 4, 041018.
(43) Rosta, E.; Hummer, G. Free Energies from Dynamic Weighted
Histogram Analysis Using Unbiased Markov State Model. J. Chem.
Theory Comput. 2015, 11, 276−285.
(44) Eastman, P.; Pande, V. S. OpenMM: A hardware-independent
framework for molecular simulations. Comput. Sci. Eng. 2010, 12, 34−
39.
(45) Eastman, P.; Friedrichs, M.; Chodera, J. D.; Radmer, R.; Bruns,
C.; Ku, J.; Beauchamp, K.; Lane, T. J.; Wang, L.-P.; Shukla, D.; Tye, T.;
Houston, M.; Stitch, T.; Klein, C. OpenMM 4: A reusable, extensible,
hardware independent library for high performance molecular
simulation. J. Chem. Theory Comput. 2013, 9, 461.
(46) Lervik, A.; Riccardi, E.; van Erp, T. S. PyRETIS: A well-done,
medium-sized python library for rare events. J. Comput. Chem. 2017, 38,
2439−2451.
(47) Swenson, D. W. H.; Prinz, J.-H.; Noe,́ F.; Chodera, J. D.; Bolhuis,
P. G. J. Chem. Theory Comput. 2018, DOI: 10.1021/acs.jctc.8b00627.
(48) Bolhuis, P. G.; Dellago, C. Reviews of Computational Chemistry;
Wiley-VCH: Hoboken, 2009.
(49) Guarnera, E.; Vanden-Eijnden, E. Optimized Markov state
models for metastable systems. J. Chem. Phys. 2016, 145, 024102.
(50) Juraszek, J.; Bolhuis, P. G. Sampling the multiple folding
mechanisms of Trp-cage in explicit solvent. Proc. Natl. Acad. Sci. U. S. A.
2006, 103, 15859−15864.
(51) Grünwald, M.; Dellago, C.; Geissler, P. L. Precision shooting:
Sampling long transition pathways. J. Chem. Phys. 2008, 129, 194101.
(52)Mullen, R. G.; Shea, J.-E.; Peters, B. Easy transition path sampling
methods: Flexible-length aimless shooting and permutation shooting. J.
Chem. Theory Comput. 2015, 11, 2421−2428.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

834

http://dx.doi.org/10.1145/2063384.2063465
http://dx.doi.org/10.1109/eScience.2016.7870921
http://dx.doi.org/10.1021/acs.jctc.8b00627
http://dx.doi.org/10.1021/acs.jctc.8b00626

(53) Brotzakis, Z. F.; Bolhuis, P. G. A one-way shooting algorithm for
transition path sampling of asymmetric barriers. J. Chem. Phys. 2016,
145, 164112.
(54) Riccardi, E.; Dahlen, O.; van Erp, T. S. Fast Decorrelating Monte
Carlo Moves for Efficient Path Sampling. J. Phys. Chem. Lett. 2017, 8,
4456−4460.
(55) van Erp, T. S.; Moroni, D.; Bolhuis, P. G. A novel path sampling
method for the calculation of rate constants. J. Chem. Phys. 2003, 118,
7762.
(56) Rogal, J.; Lechner, W.; Juraszek, J.; Ensing, B.; Bolhuis, P. G. The
reweighted path ensemble. J. Chem. Phys. 2010, 133, 174109.
(57) Dellago, C.; Bolhuis, P. G.; Chandler, D. On the calculation of
reaction rate constants in the transition path ensemble. J. Chem. Phys.
1999, 110, 6617−6625.
(58) Cabriolu, R.; Refsnes, K. M. S.; Bolhuis, P. G.; van Erp, T. S.
Foundations and latest advances in replica exchange transition interface
sampling. J. Chem. Phys. 2017, 147, 152722.
(59) Torrie, G. M.; Valleau, J. P. Monte Carlo Free Energy Estimates
Using Non-Boltzmann Sampling: Application to the Sub-Critical
Lennard-Jones Fluid. Chem. Phys. Lett. 1974, 28, 578.
(60) Borrero, E. E.; Weinwurm, M.; Dellago, C. Optimizing transition
interface sampling simulations. J. Chem. Phys. 2011, 134, 244118.
(61) van Erp, T. S.; Bolhuis, P. G. Elaborating transition interface
sampling methods. J. Comput. Phys. 2005, 205, 157−181.
(62) Du, W.-N.; Marino, K. A.; Bolhuis, P. G. Multiple state transition
interface sampling of alanine dipeptide in explicit solvent. J. Chem. Phys.
2011, 135, 145102.
(63) Du, W.; Bolhuis, P. G. Sampling the equilibrium kinetic network
of Trp-cage in explicit solvent. J. Chem. Phys. 2014, 140, 195102.
(64) Noe, F.; Krachtus, D.; Smith, J.; Fischer, S. Transition networks
for the comprehensive characterization of complex conformational
change in proteins. J. Chem. Theory Comput. 2006, 2, 840−857.
(65) Minh, D.; Chodera, J. Optimal estimators and sysmptotic
variances for nonequilibrium path-ensemble averages. J. Chem. Phys.
2009, 131, 134110.
(66) Du, W.-N.; Bolhuis, P. G. Adaptive single replica multiple state
transition interface sampling. J. Chem. Phys. 2013, 139, 044105.
(67) van Kampen, N. G. Stochastic processes in physics and chemistry,
2nd ed.; Elsevier: 1997.
(68) Noe,́ F.; Schütte, C.; Vanden-Eijnden, E.; Reich, L.; Weikl, T. R.
Constructing the equilibrium ensemble of folding pathways from short
off-equilibrium simulations. Proc. Natl. Acad. Sci. U. S. A. 2009, 106,
19011−19016.
(69) Bolhuis, P. G.; Dellago, C. Practical and conceptual path
sampling issues. Eur. Phys. J.: Spec. Top. 2015, 224, 2409−2427.
(70) Bolhuis, P. Transition-path sampling of beta-hairpin folding.
Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 12129−12134.
(71) Vreede, J.; Juraszek, J.; Bolhuis, P. G. Predicting the reaction
coordinates of millisecond light-induced conformational changes in
photoactive yellow protein. Proc. Natl. Acad. Sci. U. S. A. 2010, 107,
2397−2402.
(72) Brotzakis, Z. F.; Bolhuis, P. G. to be published.
(73) van Erp, T. Reaction Rate Calculation by Parallel Path Swapping.
Phys. Rev. Lett. 2007, 98, 268301.
(74) Bolhuis, P. G. Rare events via multiple reaction channels sampled
by path replica exchange. J. Chem. Phys. 2008, 129, 114108.
(75) van Erp, T. S. Dynamical rare event simulation techniques for
equilibrium and nonequilibrium systems. Adv. Chem. Phys. 2012, 151,
27−60.
(76) Swenson, D. W. H.; Bolhuis, P. G. A replica exchange transition
interface sampling method with multiple interface sets for investigating
networks of rare events. J. Chem. Phys. 2014, 141, 044101.
(77) Lyubartsev, A. P.; Martsinovski, A. A.; Shevkunov, S. V.;
Vorontsov-Velyaminov, P. N. New approach to Monte Carlo
calculation of the free energy: Method of expanded ensembles. J.
Chem. Phys. 1992, 96, 1776−1783.
(78) Tan, Z. Optimally Adjusted Mixture Sampling and Locally
Weighted Histogram Analysis. J. Comput. Graph. Stat. 2017, 26, 54−65.

(79) Newton, A. C.; Groenewold, J.; Kegel, W. K.; Bolhuis, P. G.
Rotational diffusion affects the dynamical self-assembly pathways of
patchy particles. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 15308−15313.
(80) Eastman, P.; et al. OpenMM4: A Reusable, Extensible, Hardware
Independent Library for High Performance Molecular Simulation. J.
Chem. Theory Comput. 2013, 9, 461−469.
(81) van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.
E.; Berendsen, H. J. C. GROMACS: Fast, flexible, and free. J. Comput.
Chem. 2005, 26, 1701−1718.
(82) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS
4: Algorithms for highly efficient, load-balanced, and scalable molecular
simulation. J. Chem. Theory Comput. 2008, 4, 435−447.
(83) Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular
Dynamics. J. Comput. Phys. 1995, 117, 1−19.
(84) Tribello, G. A.; Bonomi,M.; Branduardi, D.; Camilloni, C.; Bussi,
G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun.
2014, 185, 604−613.
(85) Noe,́ F.; Clementi, C. Collective variables for the study of long-
time kinetics from molecular trajectories: Theory and methods. Curr.
Opin. Struct. Biol. 2017, 43, 141−147.
(86) McGibbon, R. T.; Beauchamp, K. A.; Harrigan, M. P.; Klein, C.;
Swails, J. M.; Hernańdez, C. X.; Schwantes, C. R.; Wang, L.-P.; Lane, T.
J.; Pande, V. S. MDTraj: A Modern Open Library for the Analysis of
Molecular Dynamics Trajectories. Biophys. J. 2015, 109, 1528−1532.
(87) Beauchamp, K. A.; Bowman, G. R.; Lane, T. J.; Maibaum, L.;
Haque, I. S.; Pande, V. S. MSMBuilder2: Modeling Conformational
Dynamics on the Picosecond to Millisecond Scale. J. Chem. Theory
Comput. 2011, 7, 3412−3419.
(88) Harrigan, M. P.; Sultan, M. M.; Hernańdez, C. X.; Husic, B. E.;
Eastman, P.; Schwantes, C. R.; Beauchamp, K. A.; McGibbon, R. T.;
Pande, V. S. MSMBuilder: Statistical Models for Biomolecular
Dynamics. Biophys. J. 2017, 112, 10−15.
(89) Scherer, M. K.; Trendelkamp-Schroer, B.; Paul, F.; Peŕez-
Hernańdez, G.; Hoffmann, M.; Plattner, N.; Wehmeyer, C.; Prinz, J.-
H.; Noe,́ F. PyEMMA2: A Software Package for Estimation, Validation,
and Analysis of Markov Models. J. Chem. Theory Comput. 2015, 11,
5525−5542.
(90) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.;
Klein, M. L. Comparison of simple potential functions for simulating
liquid water. J. Chem. Phys. 1983, 79, 926−935.
(91) Kollman, P. A. Advances and Continuing Challenges in
Achieving Realistic and Predictive Simulations of the Properties of
Organic and Biological Molecules. Acc. Chem. Res. 1996, 29, 461−469.
(92) Chodera, J. D.; Swope, W. C.; Pitera, J. W.; Dill, K. A. Long-Time
Protein Folding Dynamics from Short-Time Molecular Dynamics
Simulations. Multiscale Model. Simul. 2006, 5, 1214−1226.
(93) Prinz, J.-H.; Chodera, J. D.; Pande, V. S.; Swope, W. C.; Smith, J.
C.; Noe,́ F. Optimal use of data in parallel tempering simulations for the
construction of discrete-state Markov models of biomolecular
dynamics. J. Chem. Phys. 2011, 134, 244108.
(94) Sivak, D. A.; Chodera, J. D.; Crooks, G. E. Time Step Rescaling
Recovers Continuous-Time Dynamical Properties for Discrete-Time
Langevin Integration of Nonequilibrium Systems. J. Phys. Chem. B
2014, 118, 6466−6474.
(95) Bolhuis, P. G.; Dellago, C.; Chandler, D. Reaction coordinates of
biomolecular isomerization. Proc. Natl. Acad. Sci. U. S. A. 2000, 97,
5877−5882.
(96) Juraszek, J.; Bolhuis, P. G. Rate Constant and Reaction
Coordinate of Trp-Cage Folding in Explicit Water. Biophys. J. 2008,
95, 4246−4257.
(97) Bolhuis, P. G.; Dellago, C. Practical and conceptual path
sampling issues. Eur. Phys. J.: Spec. Top. 2015, 224, 2409−2427.
(98) Nguyen, H.; Case, D. A.; Rose, A. S. NGLview - interactive
molecular graphics for Jupyter notebooks. Bioinformatics 2018, 34,
1241.
(99) Leimkuhler, B.; Matthews, C. Robust and efficient configura-
tional molecular sampling via Langevin dynamics. J. Chem. Phys. 2013,
138, 174102.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

835

http://dx.doi.org/10.1021/acs.jctc.8b00626

(100) Shirts, M. COMPUTING: Screen Savers of the World Unite!
Science 2000, 290, 1903−1904.
(101) Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. How
Fast-Folding Proteins Fold. Science 2011, 334, 517−520.
(102) Isralewitz, B.; Gao, M.; Schulten, K. Steered molecular
dynamics and mechanical functions of proteins. Curr. Opin. Struct.
Biol. 2001, 11, 224−230.
(103) Henkelman, G.; Jońsson, H. Improved tangent estimate in the
nudged elastic band method for finding minimum energy paths and
saddle points. J. Chem. Phys. 2000, 113, 9978−9985.
(104) E, W.; Ren, W.; Vanden-Eijnden, E. Finite Temperature String
Method for the Study of Rare Events. J. Phys. Chem. B 2005, 109, 6688−
6693.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00626
J. Chem. Theory Comput. 2019, 15, 813−836

836

http://dx.doi.org/10.1021/acs.jctc.8b00626

