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/emain goal of this work is to automatically segment colorectal tumors in 3D T2-weighted (T2w)MRI with reasonable accuracy.
For such a purpose, a novel deep learning-based algorithm suited for volumetric colorectal tumor segmentation is proposed. /e
proposed CNN architecture, based on densely connected neural network, contains multiscale dense interconnectivity between
layers of fine and coarse scales, thus leveraging multiscale contextual information in the network to get better flow of information
throughout the network. Additionally, the 3D level-set algorithm was incorporated as a postprocessing task to refine contours of
the network predicted segmentation. /e method was assessed on T2-weighted 3D MRI of 43 patients diagnosed with locally
advanced colorectal tumor (cT3/T4). Cross validation was performed in 100 rounds by partitioning the dataset into 30 volumes
for training and 13 for testing./ree performance metrics were computed to assess the similarity between predicted segmentation
and the ground truth (i.e., manual segmentation by an expert radiologist/oncologist), including Dice similarity coefficient (DSC),
recall rate (RR), and average surface distance (ASD). /e above performance metrics were computed in terms of mean and
standard deviation (mean± standard deviation). /e DSC, RR, and ASD were 0.8406± 0.0191, 0.8513± 0.0201, and
2.6407± 2.7975 before postprocessing, and these performancemetrics became 0.8585± 0.0184, 0.8719± 0.0195, and 2.5401± 2.402
after postprocessing, respectively. We compared our proposed method to other existing volumetric medical image segmentation
baseline methods (particularly 3D U-net and DenseVoxNet) in our segmentation tasks. /e experimental results reveal that the
proposed method has achieved better performance in colorectal tumor segmentation in volumetric MRI than the other
baseline techniques.

1. Introduction

Colon and rectum are fundamental parts of the gastrointestinal
(GI) or digestive system. /e colon, which is also called the
large intestine, starts from the small intestine and connects to
the rectum. Its main function is to absorb minerals, nutrients,
andwater and remove waste from the body [1, 2]. According to
recent cancer statistics, colorectal cancer is diagnosed as the
second leading cause of cancer death in the United States [3].

Nowadays, magnetic resonance imaging (MRI) is the
most preferable medical imaging modality in primary co-
lorectal cancer diagnosis for radiotherapy treatment plan-
ning [2, 4, 5]. Usually, the oncologist or radiologist
delineates colorectal tumor regions from volumetric MRI
data manually. /is manual delineation or segmentation is
time-consuming and laborious and presents inter- and
intraobserver variability. /erefore, there exists a need for
efficient automatic colorectal tumor segmentation methods
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in clinical radiotherapy practices to segment the colorectal
tumor from large volumetric data, as this may save time and
reduce human interventions. In contrast to natural images,
medical imaging is generally more chaotic, as the shape of
the cancerous regions may vary from slice to slice, as shown
in Figure 1. Hence, automatic segmentation of the colorectal
tumor is a very challenging task, not only because its size
may be very small but also because of its rather inconsistent
behavior in terms of shape and intensity distribution.

Lately, automatic segmentation of the colorectal tumor
from volumetric MRI data based on atlas [6] and supervoxel
clustering [7] has been presented with some good perfor-
mance. Newly, deep learning-based approaches have been
widely employed with impressive results in medical image
segmentation [8–16]: Trebeschi et al. [8] have presented a
deep learning-based automatic segmentation method to
localize and segment the rectal tumor in multiparametric
MRI by incorporating a fusion between T2-weighted (T2w)
MRI and diffusion-weighted imaging (DWI) MRI. Despite
their method displaying good performance, it is unclear
whether only T2w modality, which provides more anatomy
information than DWI modality, could be useful for co-
lorectal tumor segmentation. Secondly, they applied their
implementation on 2D data, as it is very common in real
data, but medical data, such as CT (Computed Tomography)
and MRI, are in 3D volumetric form. /e 2D convolutional
neural network (CNN) algorithms segment the volumetric
MRI or CTdata in a slice-by-slice sequence [9–11], where 2D
kernels are used by aggregating axial, coronal, and sagittal
planes in a one-to-one association, individually. Although
these 2D CNN-based methods demonstrated great im-
provement in segmentation accuracy [17], the inherent 2D
nature of the kernels limits their application when using
volumetric spatial information. Based on this consideration,
3D CNN-based algorithms [12–16] have been recently
presented, where 3D kernels are used instead of 2D to extract
spatial information across all three volumetric dimensions.
For example, Çiçek et al. [12] proposed a 3D U-net volume-
to-volume segmentation network that is an extension of the
2D U-net [18]. 3D U-net used dual paths: an analysis path
where features are abstracted, and a synthesis path or
upsampling path where full resolution segmentation is
produced. Additionally, 3D U-net established shortcut
connections between early and later layers of the same
resolution in both the analysis and synthesis paths. Chen
et al. [13] presented a voxel-wise residual network (Vox-
ResNet) that is an extension of 2D deep residual learning
[19] to 3D deep network. VoxResNet provides a skip con-
nection to pass features from one layer to the next layer.
Even if these 3D U-net and VoxResNet provide several skip
connections to make training easy, the presence of these skip
connections creates a short path from the early layers to the
last one and this may end up transforming the net into a very
simple configuration, with the unwanted additional burden
of producing a very high number of parameters to be ad-
justed during training. Huang et al. [20] introduced a
DenseNet that extends the concept of skip connections in
[18, 19] by constructing direct connections from every layer
to the corresponding previous layers to ensure maximum

gradient flow between layers. In [20], DenseNet was proven
as an accurate and efficient method for the natural image
classification. Yu et al. [16] proposed the densely connected
volumetric convolutional neural network (DenseVoxNet)
for volumetric cardiac segmentation which is an extended
3D version of DenseNet [20]. DenseVoxNet utilizes two
dense blocks followed by pooling layers. /e first block
learns high-level feature maps, and the second block learns
low-level feature maps; the latter is followed by a pooling
layer that further reduces the resolution of the learned high-
level feature maps in the first block. Finally, the high-
resolution feature maps are restored by incorporating
some deconvolution layers. In DenseVoxNet, early layers of
the first block learn fine-scale features (i.e., high-level fea-
tures) based on small receptive field, while coarse-scale
features (i.e., low-level features) are learned by later layers
of the second block with a larger receptive field. In short,
fine-scale and coarse-scale features are learned in early and
later layers, respectively, and this may reduce the network
ability to learn multiscale contextual information
throughout network, thus leading to suboptimal perfor-
mance [21].

In this study, a novel method to overcome the above-
mentioned problems in 3D volumetric segmentation is
presented. We propose a 3D multiscale densely connected
convolutional neural network (3D MSDenseNet), a volu-
metric network that is an extension of the recently proposed
2D multiscale dense networks (MSDNet) for the natural
image classification [22]. In summary, we have employed 3D
MSDenseNet for the segmentation of the colorectal tumor,
with the following contributions:

(1) A multiscale training scheme with parallel 3D
densely interconnected convolutional layers for two-
dimensional depth and coarser scales is used where
low- and high-level features are generated from each
scale individually. A diagonal propagation layout is
incorporated to couple the depth features with the
coarser features from the first layer, thus maintaining
local and global (multiscale) contextual information
throughout the network to improve segmentation
results efficiently.

(2) /e proposed network is based on volume-to-
volume learning and interference, which eradicates
computation redundancy.

(3) /e method is validated on colorectal tumor seg-
mentation in 3D MR images, and it has attained
outperformed segmentation results in comparison
with previous baseline methods. From the encour-
aging results obtained withMR images, the proposed
method could be applied for further applications of
medical imaging.

2. Methods

Figure 2 represents an overview of our proposed meth-
odology. We have extended the characterization of the
multiscale densely connected network to colorectal tumor
segmentation with 3D volume-to-volume learning
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fashion. /e network is divided into two paths: depth path
and scaled path. /e depth path is similar to the dense
network, which extracts the fine-scale features with high
resolution. /e scaled path is downsampled with a pooling
layer of power 2. In this path, low-resolution features are
learned. Furthermore, fine-scale features from depth are
downsampled into coarse features via the diagonal path
shown in Figure 2 and concatenated to the output of the
convolution layer in the scaled path. By doing this, both
local and global contextual information is incorporated in
a dense network.

2.1. DenseNet: Densely Connected Convolutional Network.
Generally, in feedforward CNN or ConvNet, the output of
the lth layer is represented as Xl, which is obtained by

mapping a nonlinear transformation Hl from the output of
the preceding layer Xl−1 such that

Xl � Hl Xl−1( 􏼁, (1)

where Hl is composed of a convolution or pooling operation
followed by a nonlinear activation function such as the
rectified linear unit (ReLU) or batch normalization-ReLU
(BN-ReLU). Recent works in computer vision have shown
that a deeper network (i.e., with more layers) increases
accuracy with better learning [20]. However, the perfor-
mance of deeply modeled networks tends to decrease, and its
training accuracy is saturated with the network depth in-
creasing due to the vanishing/exploding gradient [20]. Later,
Ronneberger et al. [18] solved this vanishing gradient
problem in the deep network by incorporating skip

(a) (b) (c)

Figure 1: An illustration of colorectal tumor location, intensity, and size variation in a different slice of the same volume where the
cancerous region is contoured by the red marker.

ConcatenationC

3D Conv (1 × 1 × 1)

Upsampling

Softmax

Feature volume maps

Final output 
after postprocessing 

by 3D level-set

Input 
volume 

Softmax/
classification

layer

Upsampling

Layer 3

C

C C

Layer l

C

C

Layer 2

C

C C

Layer 1

C CC

C

C
Scaled

(S2)

Depth (S1)

Final 
prediction

H1
l (·)

H2
l (·)

~

H2
l (·)

~
H 2

l ([X1
1, X1

2, ..., X1
l ])

H 2
l ([X1

1, X1
2, ..., X1

l ])

X2
l =

3D Conv (3 × 3 × 3) + BN + ReLU

3D max pooling strided by power of 2

Identity

Figure 2: Block diagram of the proposed method.

Journal of Healthcare Engineering 3



connection, which propagates output features from layers of
the same resolution in the contraction path to the output
features from the layers in the expansion path. Nevertheless,
this skip connection allows the gradient to flow directly from
the low-resolution path to high-resolution path, which
makes training easy, but this generally produces an enor-
mous feature channel in every layer and lead network to
adjust a large number of parameters during training. To
overcome this problem, Huang et al. [20] introduced a
densely connected network (DenseNet). /e DenseNet ex-
tends the concept of skip connections by constructing a
direct connection from every layer to its corresponding
previous layers, to ensure maximum gradient flow between
layers. In DenseNet, featuremaps produced by the preceding
layer were concatenated as an input to the advanced layer,
thus providing a direct connection from any layer to the
subsequent layer such that

Xl � Hl Xl−1, Xl−1, Xl−1, . . . , X0􏼂 􏼃( 􏼁, (2)

where [· · ·] represents the concatenation operation. In [20],
DenseNet has emerged as an accurate and efficient method
for the natural image classification. Yu et al. [16] proposed
densely connected volumetric convolutional neural network
(DenseVoxNet) for volumetric cardiac segmentation which
is an extended 3D version of DenseNet [20].

2.2. Proposed Method (3D MSDenseNet). In 3D MSDense-
Net, we have two interconnected levels, depth level and
scaled level, for simultaneous computation of high- and
low-level features, respectively. Let X1

0 be an original input
volume, and feature volume produced by layer l at scale s
be represented as Xs

l . Considering two scales in the net-
work (i.e., s1 and s2), we represent the depth level (hori-
zontal path) and scaled level as s1 and s2 individually, as
shown in Figure 2. /e first layer is an inimitable layer
where the feature map of the very first convolution layer is
divided into respective scale s2 via pooling of stride of
power 2. /e high-resolution feature maps (X1

l ) in the
horizontal path (s1) produced at subsequent layers (l> 1)
are densely connected [20]. However, output feature maps
of subsequent layers in the vertical path (i.e., coarser scale,
s2) are results of concatenation of transformed features
maps from previous layers in s2 and downsampled features
maps from previous layers of s1, propagated as the diagonal
way, as shown in Figure 2. In this way, output features of
coarser scale s2 at layer l in our proposed network can be
expressed as

X
2
l �

􏽥H
2
l X1

1, X1
2, . . . , X1

l􏼂 􏼃( 􏼁

H2
l X1

1, X1
2, . . . , X1

l􏼂 􏼃( 􏼁

⎡⎢⎣ ⎤⎥⎦, (3)

where [· · ·] denotes the concatenation operator, 􏽥H
2
l (·)

represents those feature maps from finer scale s1 which are
transformed by the pooling layer of stride of power 2 di-
agonally (as shown in Figure 2), and H2

l (·) indicates those
feature maps from coarser scale s2 transformed by regular
convolution. Here, 􏽥H

2
l (·) and H2

l (·) have the same size of
feature maps. In our network, the classifier only utilizes the

feature maps from the coarser scale at layer l for the final
prediction.

2.3. Contour Refinement with 3D Level-Set Algorithm. 3D
level-set based on the geodesic active contour method [23] is
employed as a postprocessor to refine the final prediction of
each network discussed above. 3D level-set adjusts the
predicted tumor boundaries by incorporating prior in-
formation and a smoothing function. /is 3D level-set
method identifies a relationship between computation of
geodesic distance curves and active contours. /is re-
lationship provides a precise detection of boundaries even in
existence of huge gradient disparities and gaps. /e level-set
method based on the geodesic active contour is more elu-
cidated with the mathematical derivations in [23, 24]. In
order to simplify this algorithm, let φ(Pl, t � 0) be a level-set
function which is initialized with the provided initial surface
at t� 0. Here, Pl is the probability map yielded by each
method./is probability map, Pl, is employed as the starting
surface to initialize the 3D level-set./ereafter, the evolution
of the level-set function regulates the boundaries of the
predicted tumor. In the geodesic active contour, the partial
differential equation is incorporated to evolve the level-set
function [23] such that

zφ
zt

� αX Pl( 􏼁 · ∇φ− βY Pl( 􏼁|∇φ| + cZ Pl( 􏼁κ|∇φ|, (4)

where X(·), Y(·), and Z(·) denote the convection function,
expansion/contraction, and spatial modifier
(i.e., smoothing) functions, respectively. In addition, α, β,
and c are the constant scalar quantities. /e values of α, β,
and c bring the change in the above functions behavior. For
example, negative values of β lead the initial surface to
propagate in the outward direction with a given speed, while
its positive value conveys the initial surface towards the
inward direction. Evaluation of the level-set function is an
iterative process; therefore, we have set the maximum
number of iterations as 50 to stop the evolution process.

3. Experimental Setup

3.1. Experimental Datasets. /e proposed method has been
validated and compared on T2-weighted 3D colorectal MR
images. Data were collected from two different hospitals:
namely, Department of Radiological Sciences, Oncology and
Pathology, University La Sapienza, AOU Sant’Andrea, Via di
Grottarossa 1035, 00189 Rome, Italy; and Department of
Radiological Sciences, University of Pisa, Via Savi 10, 56126
Pisa, Italy. MR data were acquired in a sagittal view on a
3.0 Tesla scanner without a contrast agent. /e overall
dataset consists of 43 volumes T2-weighted MRI, and each
MRI volume consists of several slices, which are varied in
number across subjects in the range 69∼122 and have di-
mension as 512× 512× (69∼122). /e voxel spacing was
varying from 0.46× 0.46× 0.5 to 0.6× 0.6×1.2mm/voxel
across each subject. As the data have a slight slice gap, we
did not incorporate any spatial resampling. /e whole
dataset was divided into training and testing sets for 100
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repeated rounds of cross validation; i.e., 30 volumes were
used for training and 13 for test until the combined results
have given a numerically stable segmentation performance.
/e colorectal MR volumes were acquired in a sagittal view
on a 3.0 Tesla scanner without a contrast agent. All MRI
volumes went for preprocessing where they were normalized
so that they have zero mean and unit variance. We cropped
all the volumes with size of 195×114× 61mm. Furthermore,
during training, the data were augmented with random
rotations of 90°, 180°, and 270° in the sagittal plane to enlarge
the training data. In addition, two medical experts using
ITK-snap software [25, 26] manually segmented the co-
lorectal tumor in all volumes. /ese manual delineations of
tumors from each volume were then used as ground truth
labels to train the network and validate it in the test phase.

3.2. Proposed Network Implementation. Our network ar-
chitecture is composed of dual parallel paths, i.e., depth and
scaled path, as illustrated in Figure 2, which achieves 3D
end-to-end training by adopting the nature of the fully
convolutional network. /e depth path consists of eight
transformation layers, and the scaled path consists of nine
transformation layers. In each path, every transformation
layer is composed of a BN, a ReLU followed by 3× 3× 3
convolution (Conv), by following the similar fashion of
DenseVoxNet. Furthermore, a 3D upsampling block has
been utilized like DenseVoxNet. Like DenseVoxNet, the
proposed network uses the dropout layer with a dropout rate
of 0.2 after each Conv layer to increase the robustness of the
network against overfitting. Our proposed method has
approximately 0.7million as total parameters, which is much
fewer than DenseVoxNet [16] with 1.8 million and 3DU-net
[12] with 19.0 million parameters. We have implemented
our proposed method in the Caffe library [27]. Our
implementation code is available online at the Internet link
http://host.uniroma3.it/laboratori/sp4te/teaching/sp4bme/
documents/codemsdn.zip.

3.3. Networks Training Procedures. All the networks—3D
FCNNs [15], 3D U-net [12], and DenseVoxNet [16]—were
originally implemented in Caffe library [27]. For the sake of
comparison, we have applied a training procedure which is
very similar to that utilized by 3D U-net and DenseVoxNet.

Firstly, we randomly initialized the weights with a
Gaussian distribution with μ� 0 and σ � 0.01. /e stochastic
gradient descent (SGD) algorithm [28] has been used to
realize the network optimization. We set the metaparameters
for the SGD algorithm to update the weights as batch size� 4,
weight decay� 0.0005, and momentum� 0.05. We set the
initial learning rate at 0.05 and divided by 10 every 50 epochs.
Similar learning rate policy in DenseVoxNet, i.e., “poly,” was
adopted for all the methods. /e “poly”-learning rate policy
changes the learning rate over each iteration by following a
polynomial decay, where the learning rate is multiplied by the
term (1− (iteration/maximum_iterations))power [29], where
the term power was set as 0.9 and 40000 maximum iterations.
Moreover, to ease GPU memory, the training volumes were
cropped randomly with subvolumes of 32× 32× 32 voxels as

inputs to the network and the major voting strategy [30] was
incorporated to obtain final segmentation results from the
predictions of the overlapped subvolumes. Finally, the soft-
max with cross-entropy loss was used to measure the loss
between the predicted network output and the ground truth
labels.

3.4. Performance Metrics. In this study, three evaluation
metrics were used to validate and compare the proposed
algorithm, namely, Dice similarity coefficient (DSC) [31],
recall rate (RR), and average symmetric surface distance
(ASD) [32]. /ese metrics are briefly explained as follows.

3.4.1. Dice Similarity Coefficient (DSC). /e DSC is a widely
explored performance metric in medical image segmenta-
tion. It is also known as overlap index. It computes a general
overlap similarity rate between the given ground truth label
and the predicted segmentation output by a segmentation
method. DSC is expressed as

DSC Sp, Sg􏼐 􏼑 �
2TP

FP + 2TP + FN
�
2 Sp ∩ Sg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Sp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + Sg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (5)

where Sp and Sg are the predicted segmentation output and
the ground truth label, respectively. FP, TP, and FN indicate
false positives, true positives, and false negatives, in-
dividually. DSC gives a score between 0 and 1, where 1 gives
the best prediction and indicates that the predicted seg-
mentation output is identical to the ground truth.

3.4.2. Recall Rate (RR). RR is also referred as the true-
positive rate (TPR) or sensitivity. We have utilized this
term as the voxel-wise recall rate to assess the recall per-
formance of different algorithms. /is performance metrics
measure misclassified and correctly classified tumor-related
voxels. It is mathematically expressed as

recall �
TP

TP + FN
�

Sp ∩ Sg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Sg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (6)

It also gives a value between 0 and 1. Higher values
indicate better predictions.

3.4.3. Average Symmetric Surface Distance (ASD). ASD
measures an average distance between the sets of boundary
voxels of the predicted segmentation and the ground truth
and is mathematically given as

ASD Sp, Sg􏼐 􏼑 �
1

Sp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + Sg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
× 􏽘

pk∈Sp

d pk, Sg􏼐 􏼑 + 􏽘
pg∈Sg

d pg, Sp􏼐 􏼑⎛⎜⎝ ⎞⎟⎠,

(7)

where pk and pg represent the kth voxel from Sp and Sg sets,
respectively. /e function d denotes the point-to-set distance
and is defined as d(pk, Sg) � 􏽐pg∈Sg ‖pk −pg‖, where ‖ · ‖

is the Euclidean distance. Lower values of ASD indicate
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higher closeness between the two sets, hence a better seg-
mentation, and vice versa.

4. Experimental Results

In this section, we have experimentally evaluated the ef-
ficacy of multiscale end-to-end training scheme of our
proposed method, where parallel 3D densely inter-
connected convolutional layers for two-dimensional depth
and coarser scales paths are incorporated. Since this study
is focused on the segmentation of tumors by 3D networks,
the use of 2D networks is out of the scope of this paper.
Nevertheless, we tried 2D networks in preliminary trials
with a short set of image data. /e 2D network was able to
correctly recognize the tumor but could not segment the
whole tumor accurately, especially in the presence of small
size tumors.

In this work, the proposed network has been assessed on
3D colorectal MRI data. For more comprehensive analysis
and comparison of segmentation results, each dataset was
divided into ground truth masks (i.e., manual segmentation
done by medical experts) and training and validation sub-
sets. Quantitative and qualitative evaluations and compar-
isons with baseline networks are stated for the segmentation
of the colorectal tumor. First, we have analyzed and com-
pared the learning process of each method, like described in
Section 4.1. Secondly, we have assessed the efficiency of each
algorithm qualitatively; Section 4.2 presents a comparison of
qualitative results. Finally, in Section 4.3, we have quanti-
tatively evaluated the segmentation results yielded by each
algorithm, using evaluation metrics as described below in
Section 3.4.

4.1. LearningCurves. /e learning process of each method is
illustrated in Figure 3, where loss versus training and loss
versus validation are compared, individually, to some
baseline methods. Figure 3 demonstrates that each method
does not exhibit a serious overfitting as their validation loss
consistently decreases along with decrement in training loss.
Each method has adopted 3D fully convolutional archi-
tecture, where error back propagation is carried on pervoxel-
wise strategy instead of the patch-based training scheme
[33]. In other words, each single voxel is independently
utilized as a training sample, which dramatically enlarges the
training datasets and thus reduces the overfitting risk. In
contrast to this, the traditional patch-based training scheme
[33] needs a dense prediction (i.e., many patches are re-
quired) for each voxel in the 3D volumetric data, and thus
the computation of these redundant patches for every voxel
makes the network computationally too complex and im-
practical for volumetric segmentation.

After comparing the learning curves of 3D FCNNs
(Figure 3(a)), 3D U-net (Figure 3(b)), and DenseVoxNet
(Figure 3(c)), the 3D U-net and DenseVoxNet converge
much faster with the minimum error rate than the 3D
FCNNs. /is demonstrates that both the 3D U-net and
DenseVoxNet successfully overcome gradients vanishing/
exploding problems through the reuse of the features of early

layers till the later layers. On the contrary, it is also shown
that there is no significant difference between learning
curves of the 3D U-net and DenseVoxNet, although the
DenseVoxNet attains a steady drop of validation loss in the
beginning. It further proves that the reuse of the features
from successive layers to every subsequent layer by Den-
seVoxNet, which propagates the maximum gradients in-
stead of the skipped connections employed by 3D U-net, is
able to propagate output features from layers with the same
resolution in the contraction path to the output features
from the layers in the expansion path. Furthermore,
Figure 3(d) shows that the proposed method, that in-
corporates the multiscale dense training scheme, has the best
loss rate among all the examined methods. It reveals that the
multiscale training scheme in our method optimizes and
speeds up the network training procedure. /us, the pro-
posed method has the fastest convergence with the lowest
loss rate than all.

4.2. Qualitative Results. In this section, we report the
qualitative results to assess the effectiveness of each seg-
mentationmethod of the colorectal tumors. Figure 4(a) gives
a visual comparison of colorectal tumor segmentation re-
sults achieved from the examined methods. In Figure 4(a),
from the left to right: the first two columns are the raw MRI
input volume and its cropped volume, and the three fol-
lowing columns are related to the segmentation results
produced by each method, where each column represents
the predicted foreground probability, the initial colorectal
segmentation results, and the refined segmentation results
by the 3D level set. Moreover, the segmentation results
produced by each method are outlined in red and over-
lapped with the true ground truth which is outlined in green.
In Figure 4(b), we have overlapped the segmented 3D mask
with the true ground truth 3D mask to visually evidence the
false-negative rate in the segmentation results. It can be
observed that the proposed method (3D MSDenseNet)
outperforms the other methods, with the lowest false-
negative rate, in respect to DenseVoxNet, 3D U-net, and
3D FCNNs. It is also noteworthy that the segmentation
results obtained by each method significantly improves if a
3D level set is incorporated.

4.3. Quantitative Results. Table 1 presents the quantitative
results of colorectal tumor segmentation produced by each
method. /e quantitative results are obtained by computing
mean and standard deviation of each performance metric for
all the 13 test volumes. We have initially compared the results
obtained by each method without postprocessing by the 3D
level set, considered here as baseline methods. /en, we
present a comparison by incorporating the 3D level set as a
postprocessor to refine the boundaries of the segmented
results obtained by these baseline algorithms. In this way, we
have got a total of eight settings, named as in the following: 3D
FCNNs, 3D U-net, DenseVoxNet, 3D MSDenseNet, 3D
FCNNs+ 3D level set, 3D U-net + 3D level set,
DenseVoxNet + 3D level set, and 3D MSDenseNet + 3D level
set, respectively. Table 1 reveals that the 3D FCNNs have the
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lowest performance among all the metrics, followed by 3D
U-net and DenseVoxNet, whereas the proposed method has
maintained its performance by achieving the highest value of
DSC and RR and the lowest value of ASD. When comparing
the methods after postprocessing, every method has effec-
tively improved their performance in the presence of the 3D
level set: 3D FCNNs+3D level set has improved DSC and RR
as 16.44% and 15.23%, individually, and it reduced ASD to
3.0029 from 4.2613mm. Similarly, 3D U-net + 3D level set
and DenseVoxNet + 3D level set have attained improvements
in DSC and RR as 5% and 5.97% and 4.99% and 4.29%,
correspondingly. Also, they both have got a significant re-
duction in ASD as 3D U-net + 3D level set and
DenseVoxNet + 3D level set reduce ASD to 2.8815 from
3.0173 and to 2.5249 from 2.7253, respectively. However, 3D
MSDenseNet + 3D level set denotes a progress in DSC and RR
as 2.13% and 2.42%, respectively, and it reduces ASD to 2.5401
from 2.6407. Nevertheless, the 3DMSDenseNet + 3D level-set

method could not attain a significant improvement by uti-
lizing the postprocessing step but still outperforms among all.
Considering both qualitative and quantitative results, it can be
observed that the addition of the 3D level set as a post-
processor improves the segmentation results of each method.

5. Discussion

In this work, we have tested the method 3D FCNNs+ 3D level
set [15], devised from mostly the same authors as this paper,
together with two further prominent and widely explored
volumetric segmentation algorithms, namely, 3D U-net [12]
and 3D DenseVoxNet [16], for volumetric segmentation of
the colorectal tumor from T2-weighted abdominal MRI.
Furthermore, we have extended their ability for the colorectal
tumor segmentation task by the incorporating 3D level set in
their original implementations. In order to improve the
performance, we have proposed a novel algorithm based on
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Figure 3: Comparison of learning curves of the examined methods. (a–d) Learning curves which correspond to 3D FCNNs, 3D U-net,
DenseVoxNet, and the proposed 3D MSDenseNet methods, respectively.
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3D multiscale densely connected neural network (3D
MSDenseNet). Many studies were carried out in the literature
to develop techniques for medical image segmentation; they
are mostly based on geometrical methods to address the
hurdles and challenges for the segmentation of medical im-
aging, including statistical shape models, graph cuts, level set,
and so on [34]. Recently, level set-based segmentation

algorithms were commonly explored approaches for medical
image segmentations. Generally, they utilize energy mini-
mization approaches by incorporating different regularization
terms (smoothing terms) and prior information (i.e., initial
contour etc.) depending on the segmentation tasks. Level set-
based segmentation algorithms take advantage of their ability
to vary topological properties of segmentation function [35],
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Figure 4: Qualitative comparison of colorectal tumor segmentation results produced by each method. In (a), from left to right columns are
the raw MRI input volume and cropped volume, first three columns correspond to predicted probability by 3D FCNNs, and segmentation
results by 3D FCNNs (red) and 3D FCNNs+ 3D level set (red) overlapped with true ground truth (green), correspondingly. Similarly,
second, third, and fourth three columns are related to predicted probability and segmentation results by rest of methods: 3DU-net (red), 3D
U-net + 3D level set (red), DenseVoxNet (red), DenseVoxNet + 3D level set (red), 3DMSDensenet (red), and 3DMSDensenet + 3D level set
(red), respectively. In (b), we have overlapped the 3D masks segmented by each method with the ground truth 3D mask. In (b), from left to
right are ground truth 3Dmask, overlapping of segmented 3Dmask by 3D FCNNs (red), 3D FCNNs + 3D level set (red), 3DU-net (red), 3D
U-net + 3D level set (red), DenseVoxNet (red), DenseVoxNet + 3D level set (red), 3DMSDensenet (red), and 3DMSDensenet + 3D level set
(red) with the ground truth 3D mask (green points). /e green points which are not covered by the segmentation results (red) of each
method are referred as false negatives.
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so it becomes attractive. However, they always require an
initial appropriate contour initialization to segment a desired
object. /is initial contour initialization requires an expert
user intervention in the medical image segmentation. In
addition, since medical images have disordered intensity
distribution and show high variability (among imaging
modalities, slices, etc.), a segmentation based on statistical
models of intensity distribution is not successful. More
precisely, level set-based approaches, given their simple ap-
pearance model [36], and lack of generalization ability and
transferability are in some cases unable to learn alone the
chaotic intensity distribution in medical images. Currently,
CNNs deep learning-based approaches (i.e., CNNs) have been
successfully explored in the medical imaging domain, spe-
cifically for classification, detection, and segmentation tasks.
Usually, deep learning-based approaches learn a model by
extracting features deeply from intricate structures and pat-
terns from well-defined big training datasets where the
trained model are used for prediction. In contrast to level set-
based approaches, deep learning-based approaches can learn
appearance models automatically from the big training data,
which improves its transferability and generalization ability.
However, deep learning-based approaches are not capable to
provide an explicit way to incorporate a function to have the
tendency of delivering regularization or smoothing terms like
the level-set function has. /erefore, in order to take the
advantages of both level-set and deep learning into account,
we have incorporated 3D level set in each method that we
used in our task.

Moreover, traditional CNNs are 2D in nature and were
designed especially for 2D natural images, whereas medical
images like MRI or CT are inherently in the 3D form.
Generally, these 2D CNNs with 2D kernels have been used for
medical image segmentation where volumetric segmentation
was performed in a slice-by-slice sequential order. Such 2D
kernels are not able to completely make use of volumetric
spatial information by sharing spatial information among the
three planes. A 3D CNN architecture that utilizes 3D kernel
which simultaneously share spatial information among three
planes can offer a more effective solution.

Another challenge of 3D CNN involves controlling the
hurdles in network optimization when the network goes
deeper. Deeper networks are more prone to get risk of
overfitting, due to vanishing of gradients in advance layers.
/is has been confirmed in this work. From the segmentation

results produced by 3D FCNNs, we can see from Figure 4 that
how the patterns/gradients have been lessened. In order to
preserve the gradients in next layers when the network
goes deeper, 3D U-net and DenseVoxNet reuse the fea-
tures from early to next layers. In this way, 3D U-net
overcomes the vanishing gradient problem in deep net-
work by incorporating skip connection, which propagates
output features from layers of the same resolution in the
contraction path to the output features from the layers in the
expansion path. Nevertheless, such a skip connection allows
the gradient to flow directly from the low-resolution path to
the high-resolution one, which makes the training easy, but
this generally produces a very high number of feature
channels in every layer and leads to adjust a big number of
parameters during training. To overcome this problem, the
DenseVoxNet extends the concept of skip connections by
constructing a direct connection from every layer to its
corresponding previous layers, to ensure the maximum
gradient flow between layers. In simple words, feature maps
produced by the preceding layer are concatenated as an input
to the advanced layer, thus providing a direct connection
from any layer to the subsequent layer. Our results have
proven that the direct connection strategy of DenseVoxNet
provides better segmentation than the skip connection
strategy of 3D U-net. However, DenseVoxNet has a deficit as
the network individually learns high-level and low-level
features in early and later layers; this limits the network to
learn multiscale contextual information throughout the
network and may lead the network to a poor performance.
/e network we have proposed provides a multiscale dense
training scheme where high-resolution and low-resolution
features are learned simultaneously, thus maintaining max-
imum gradients throughout the network. Our experimental
analysis reveals that reusing features throughmultiscale dense
connectivity produces an effective colorectal tumor seg-
mentation. Nevertheless, although the proposed method has
obtained better performance in colorectal tumor segmenta-
tion, the algorithm presented herein has higher variance in
DSC and RR values, compared with the other methods, as
shown in Table 1. It evidences that the proposed algorithm
may not be able to compare contrast variations in a cancerous
region and variations of slice gap along the z-axis among the
datasets. A better normalization and superresolution method
with more training samples might then be required to cir-
cumvent this problem.

Table 1: Quantitative comparison of colorectal tumor segmentation results.

Methods
Performance metrics

DSC RR ASD (mm)
3D FCNNs [15] 0.6519± 0.0181 0.6858± 0.1017 4.2613± 3.1603
3D U-net [12] 0.7227± 0.0128 0.7463± 0.0302 3.0173± 3.0133
DenseVoxNet [16] 0.7826± 0.0146 0.8061± 0.0187 2.7253± 2.9024
3D MSDenseNet (proposed method) 0.8406 ± 0.0191 0.8513 ± 0.0201 2.6407± 2.7975
3D FCNNs+ 3D level set [15] 0.7591± 0.0169 0.7903± 0.0183 3.0029± 2.9819
3D U-net + 3D level set 0.8217± 0.0173 0.8394± 0.0193 2.8815± 2.6901
DenseVoxNet + 3D level set 0.8261± 0.0139 0.8407± 0.0177 2.5249 ± 2.8004
3D MSDenseNet + 3D level set (proposed method) 0.8585 ± 0.0184 0.8719 ± 0.0195 2.5401± 2.402
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6. Conclusion

In this research work, a novel 3D fully convolutional
network architecture (3D MSDenseNet) is presented for
accurate colorectal tumor segmentation in T2-weighted
MRI volumes. /e proposed network provides a dense
interconnectivity among the horizontal (depth) and ver-
tical (scaled) layers. In this way, finer (i.e., high-resolution
features) and coarser (low-resolution features) features are
coupled in a two-dimensional array of horizontal and
vertical layers, and thus, features of all resolutions are
produced from the first layer on and maintained
throughout the network. However, in other network (viz.
traditional CNN, 3D U-net, or DenseVoxNet) coarse level
features are generated with an increasing network depth.
/e experimental results show that the multiscale scheme
of our approach has attained the best performance among
all. Moreover, we have incorporated the 3D level
set algorithm within each method, as a postprocessor that
refines the segmented prediction. It has been also shown
that adding a 3D level set increases the performance of all
deep learning-based approaches. In addition, the proposed
method, due to its simple network architecture, has a total
number of parameters consisting of approximately 0.7
million, which is much fewer than DenseVoxNet with 1.8
million and 3D U-net with 19.0 million parameters. As a
possible future direction, the proposed method could be
further validate on other medical volumetric segmentation
tasks.
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