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Abstract
Voluntary movement initiation involves the engagement of large populations of motor cortical neurons around movement
onset. Despite knowledge of the temporal dynamics that lead to movement, the spatial structure of these dynamics across
the cortical surface remains unknown. In data from 4 rhesus macaques, we show that the timing of attenuation of beta
frequency local field potential oscillations, a correlate of locally activated cortex, forms a spatial gradient across primarymotor
cortex (MI). We show that these spatio-temporal dynamics are recapitulated in the engagement order of ensembles of MI
neurons. We demonstrate that these patterns are unique to movement onset and suggest that movement initiation requires
a precise spatio-temporal sequential activation of neurons in MI.
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Introduction

Large ensembles of neurons in primary motor cortex (MI) are
used to initiatemovements. Even the simplest, single jointmove-
ment of the arm or hand recruits neurons distributed across the
entire upper limb region of MI (Sanes and Donoghue 1993; Schie-
ber and Hibbard 1993); however, it remains unknown if the order
in which these units are engaged is related to their spatial
position on the cortical sheet.

At the same time, the amplitude of oscillations in the beta
band (15–30 Hz) of the local field potential (LFP) attenuates
sharply around movement onset (Jasper and Penfield 1949;
Sanes and Donoghue 1993; Murthy and Fetz 1996a; Rubino et al.
2006). It is thought that this attenuation is a mesoscopic reflec-
tion of activated motor cortex and coincides with an epoch of
enhanced corticospinal excitability (Pfurtscheller and Lopes da
Silva 1999). Although the spatio-temporal dynamics of beta at-
tenuation are poorly understood, beta oscillations have been

shown to propagate along the rostro-caudal dimension during
motor preparation (Rubino et al. 2006). These planar waves may
be determined by the underlying pattern of horizontal connectiv-
ity within MI which exhibits a preponderance of long range con-
nections distributed along the rostro-caudal dimension (Gatter
and Powell 1978; Huntley and Jones 1991). Using a Granger caus-
ality analysis, a recent study found that pairs of neurons are pref-
erentially connected along this dimension and that sequential
spiking between these pairs of neurons contains more informa-
tion about movement direction (Takahashi et al. 2015).

We reasoned that if spatial patterning inMI is related to its hori-
zontal connectivity, spatial patternsmay also emerge duringmove-
ment initiation. Thus, we hypothesized that movement initiation is
characterizedbya specific spatio-temporal sequenceof neural activ-
ity structured along the rostro-caudal axis. Furthermore, if such a
pattern is indeed a unique signature of movement initiation, we
would expect it to be absent during preparation, another epoch in
which motor cortex is known to be transiently activated.
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Materials and Methods
Behavioral Task

Four macaque monkeys (Macaca mulatta) of either sex were op-
erantly trained to perform an instructed-delay center-out reach-
ing task (for a complete description of the task, see Rubino et al.
2006). Briefly, each animal used an exoskeletal robot (BKIN Tech-
nologies) to make planar reaching movements that controlled
the position of a cursor on a horizontal screen above the animal’s
arm. The animal had to hold the cursor on a center target for
500 ms before an instruction cue appeared. The instruction cue
signaled the location of a peripheral target to which the animal
had to ultimatelymove. Peripheral targetswere located at 8 even-
ly spaced radial intervals around the center targetwith a distance
of 5–7 cmbetween the center and peripheral targets. After receiv-
ing the instruction cue, the animal had to hold the cursor in the
center target for a random amount of time (uniformly distributed
between 1000 and 1500ms) until a go cue appeared. Upon presen-
tation of the go cue, the animal could move towards the periph-
eral target, and, if it held the cursor at the cued peripheral target
for 500 ms, it received a juice reward (Fig. 1A).

Behavioral Data Selection

We computed the reaction time and movement duration of each
trial. We defined reaction time as the difference between themo-
ment the cursor left the center target (i.e., movement onset) and
go cue appearance. We excluded trials with reaction times of
<100 ms and >750 ms. Movement duration was defined as the
time between movement onset and acquisition of the peripheral
target. We imposed a threshold on movement durations such
that they had to be at least 150 ms, but no more than 1500 ms.
Additionally, we observed a small percentage of trials that were
considerably slower than themedian, sowe excluded the slowest
25% of trials from eachmovement direction tominimize variabil-
ity arising from the behavior.

Neurophysiology

All surgical and experimental procedures were approved by the
University of Chicago Animal Care and Use Committee and con-
form to the principles outlined in the Guide for the Care and Use
of Laboratory Animals (NIH publication no 86–23, revised 1985).
All monkeys were implanted with 96-electrode Utah arrays
(1.0 mm length, 10 × 10 grid with 400 µm interelectrode spacing,
Blackrock Microsystems) in MI contralateral to their working
hand. During a recording session, signals fromup to 96 electrodes
were amplified with a gain of 5000, band-pass-filtered between
0.3 Hz and 7.5 kHz, and recorded digitally (14-bit) at 30 kHz
using a Cerebus acquisition system (Blackrock Microsystems).
Local field potentials were sampled at 1 kHz and digitally band-
pass filtered between 0.3 and 500 Hz or 0.3 to 250 Hz using the
Cerebus. Single units were sorted offline using a semimanual
procedure (Offline Sorter, Plexon, Inc.).

Beta Attenuation Analysis

Weperformed a number of preprocessing steps on the LFPs to es-
timate beta attenuation. To begin, we found the frequency of
peak power in the beta range (15–30 Hz) for each dataset, aver-
aged over all electrodes and time. LFPs from each electrode
were then filtered bidirectionally with a band-pass filter (Butter-
worth, fourth order) whose passbandwas 3 Hz on either side (i.e.,
a total bandwidth of 6 Hz) of the peak beta frequency power

(animal Rs, 18 Hz; Rj, 18 Hz; Rx, 27 Hz; V, 21 Hz rounded to the
nearest Hertz). We found that rounding the center of the filter
to the nearest integer frequency had no effect on subsequent re-
sults. Power spectra from each animal were computed using the
chronux (http://chronux.org) function mtspectrumc, log trans-
formed into decibels, and then averaged over electrodes.

The Hilbert transform was applied to the band-pass filtered
data to estimate the instantaneous beta amplitude of each LFP.
For each electrode, the instantaneous amplitudes were trial
aligned to movement onset and then averaged across trials,
thereby estimating beta attenuation.

We found the maximum and minimum values of each elec-
trode’s beta profile in awindow spanning ± 500 ms aroundmove-
ment onset. Beta profiles were normalized so that they ranged
from 0 to 1. The time at which the normalized profile crossed
an attenuation threshold (0.15) was computed for each electrode.
This time, referred as the beta attenuation time (BAT), is one of
the primary summary statistics of this paper. Early analysis ex-
perimented with several values of the attenuation threshold,
and we found comparable results over a moderate range of at-
tenuation thresholds. For some electrodes, visual inspection of
their power spectrum revealed no significant bump in the beta
frequency band; these electrodes were discarded from future
analysis (2 from V and Rs, 4 from Rj, and 7 from Rx).

Computing the Beta Attenuation Orientation

We characterized the spatio-temporal progression of beta
attenuation across the Utah array by using linear regression to
estimate a vector that described the spatial orientation of BATs
from earliest to latest. This vector will henceforth be referred to
as the beta attenuation orientation (BAO). For each electrode,
we predicted the BAT, denoted yrc, from the spatial location of
that electrode. The subscripts r and c are used to indicate the
row and column coordinates of the electrode on the array. Math-
ematically, this relationship can be expressed as follows:

yrc ¼ βrrþ βccþ α;

where βr and βc are the coefficients of the rows and columns, and
α is a constant time offset. The arctangent of the ratio of βr and βc
indicates the orientation of beta attenuation, that is, the BAO.

Goodness of fit was quantified using the coefficient of deter-
mination, R2, defined as follows:

R2 ¼ 1�
P

rc ðyrc � ŷrcÞ2P
rc ðyrc � �yÞ2 ;

where yrc and ŷrc denote the observed and fitted BATs for
electrode rc, and �y corresponds to the average BAT across all
electrodes.

We used 2 fundamentally different procedures to test for the
significance of the BAO. The first involved performing an F-test
for the significance of our regression model by comparing it
with a model that contained only the offset term α. The second
test for significance of the BAO was based on a spatial shuffling
of our data (Riehle et al. 2013). After computing BATs for each
electrode, we shuffled the spatial location of the BATs on the
Utah array. We then estimated the BAO and corresponding R2 of
the shuffled data. This procedurewas repeated onemillion times
to estimate a null distribution of R2 values in a population where
spatial information had been explicitly destroyed.We additional-
ly tested the consistency of the BAO. We repeatedly (1000 times)
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randomly divided each dataset into 2 equal sized halves and
estimated a BAO for each half. We then computed the angle
between the 2 BAOs and compared it with a null distribution of
BAOs based on spatially shuffled data (using the preceding
shuffling procedure).

Circular Dissimilarity Test

To statistically quantify the similarity between 2 directional vec-
tors (e.g., the BAOs estimated from2discrete subsets of trials), the
angle between them was measured and compared with the dis-
tribution of angles if 2 uniform random vectors were drawn

independently of one another. This null distribution is uniform
between 0° and 180°. To compare multiple angles simultaneous-
ly, their sumwas computed and comparedwith the sumof n uni-
formly distributed random variables (on the interval [0, 180]),
which is given by the Irwin–Hall distribution (rescaled to the
interval [0 180]). For large values of n, the Irwin–Hall distribution
is approximately normal with mean n/2 and variance n/12.

Unit Spiking Analysis

For every dataset, each unit’s spiking activity was binned into
1-ms bins and convolved with a Gaussian kernel (25 ms s.d. for
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Figure 1. Experimental setup and beta attenuation analysis. (A). Animals were trained to perform an instructed-delay center-out reaching task. The animals used a 2-link

robotic exoskeleton to control the position of a cursor on a screen projected above their arm. (B). LFPs were filtered into the beta frequency range and aligned tomovement

onset (MO) for every trial. The beta oscillation of one electrode’s LFP (gray trace) and its amplitude (black trace) in arbitrary units (au) are shown for 3 different example

trials from animal Rs. (C). Beta amplitudes from the electrode in B were averaged across all trials including all movement directions to estimate the trial-averaged beta

amplitude aligned to movement onset (black trace indicates average amplitude, gray area indicates ±2 standard errors of themean [SEM]). (D). LFPs were simultaneously

recorded across multiple sites in MI during the experiment. (E). Trial-averaged beta amplitude profiles for 3 different electrodes (color corresponding to the sites

highlighted in (D) are shown [mean ± 2 SEM]). The time at which the beta amplitude passed an attenuation threshold (horizontal black dashed line) was estimated for

every electrode. Note that beta activity on each electrode does not simultaneously pass the attenuation threshold (E inset). Data are from animal Rs.
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monkeys Rs and V, and 50 ms s.d. for Rj due to lower trial counts)
to smoothfiring rate estimates.We trial aligned the smoothed fir-
ing rates to either the instruction cue, or movement onset, and
then performed an analysis to identify the time at which each
cell was most informative about movement. On every trial, we
predicted the instantaneous probability that the animal was
moving to each of the targets.We used the entropy of these prob-
abilities to quantify the uncertainty aboutmovement direction in
that neuron. These probabilities were estimated from each neu-
ron individually using a multinomial logistic regression model
that will be subsequently described in greater mathematical
detail.

We represented the firing rate of a given neuron, i, in amatrix,
X, where each row corresponded to the jth of J trials, and each
column corresponded to a time, t, relative to movement onset.
At every moment in time and on every trial, that is, for each
t and j, we used thefiring rate of neuron i as the input of ourmulti-
nomial logistic regression model. This model may be expressed
as follows:

p̂kjt ¼
exp αkt þ βkt × Xi

jt

h i

P8
k¼1 exp αkt þ βkt × Xi

jt

h i ;

where p̂kjt represents the estimated probability that the animal
moved to target k on trial j at time t, and αkt; βkt represents the
regression coefficients associated with target k at time t. Due to
low trial counts in monkey Rj, we pooled adjacent movement
directions as a single target location (e.g., targets at 0° and 45°
were pooled). These 8 (4 for Rj) probabilities comprise a probabil-
ity distribution, Zjt, andwe estimated the entropy of that distribu-
tion, H(Zjt), as follows:

HðZjtÞ ¼ �
XK

k¼1

p̂kjtlog2p̂kjt:

To disambiguate chance fluctuations in entropy due to sto-
chastic spiking from behaviorally significant modulation, we
performed a bootstrap analysis. We repeatedly shuffled target
locations (200 times) and recomputed the entropy, H(Zjt),
for each neuron. For each moment in time, we subtracted the
fifth percentile of bootstrapped entropy values (corresponding
to reductions in entropy due to stochastic spiking) from the
unshuffled entropy values and added back 3 bits so that the
corrected data were on approximately the same scale as un-
corrected data. After performing this correction, only entropy
values of <3 bits (2 for Rj) were considered significantly task
modulated.

We manually identified local minima in the entropy profiles
during the instruction (50–350 ms after the instruction) and exe-
cution epochs (175 ms before to 50 ms after movement onset for
Rs and V, 325 to 25 beforemovement onset for Rj because its beta
attenuation range was earlier, and longer). The time of the local
entropy minimum defined that unit’s modulation time, that is,
its UMT. In additional analyses, we defined UMTs based on the
timing of threshold crossings in the entropy profiles and ob-
served no qualitative difference between minima and threshold
crossings. The same linear regression procedure that was used
to find the BAO was also used to find the unit modulation orien-
tation (UMO). The UMO represents the spatial orientation along
which motor cortical neurons are sequentially engaged from
early to late.

Results
We recorded single unit spiking activity and LFPs frommultielec-
trode arrays implanted in the primary motor cortex (MI) of 4
rhesus macaques while they engaged in an instructed-delay,
center-out reaching task (Fig. 1A). The amplitude of beta oscilla-
tions attenuated aroundmovement onset (Fig. 1B–C) as has been
shown in many previous studies (Sanes and Donoghue 1993;
Murthy and Fetz 1996a). This phenomenon is considered to be
a mesoscopic reflection of local motor cortical activation and is
often measured using macroscopic EEG electrodes in humans
or intracortical electrodes in animals without reference to their
spatial position within MI under the assumption that the entire
cortical area is activated simultaneously. Instead, we considered
whether MI is activated in a spatio-temporally organized fashion
at movement onset by measuring the time at which the ampli-
tude of beta band activity crossed an attenuation threshold
across different sites in MI (Fig. 1D–E, see Materials and Methods
for details). These trial-averaged BATs varied systematically
along a rostro-caudal axis and were characterized using a linear
regression model that predicted the BAT of an electrode from its
spatial location on the array (Fig. 2A–B). BATs werewell predicted
by thismodel (R2, Monkey V: 0.37, Rx: 0.70, Rs: 0.45, Rj: 0.30), and it
was highly significant compared with a null model without spa-
tial information (F-test, P < 0.00001 for all monkeys). The result-
ant vector of our regression model defined a BAO corresponding
to the gradient from earliest to latest BAT (arrows in Fig. 2B). As a
further independent test for the significance of the BAO, we per-
formed a shuffle analysiswherewe randomly shuffled the spatial
position of each BAT and fit a planar regression model to the
shuffled BATs. We repeated this shuffling procedure one million
times and compared the model goodness of fit to the unshuffled
data with that of the shuffled data (Fig. 2C).

The consistency of the BAO was established in 3 ways: across
trials, across attenuation thresholds, and across frequencies. We
assessed the consistency of the BAO across trials by randomly
partitioning the data into 2 subsets and comparing the BAOs
across the 2 halves (Fig. 2D). As a further test of the consistency
of the BAO across trials, we computed movement direction-
specific BAOs and found that they were oriented similarly
(Supplementary Fig. 1). We assessed the consistency of the BAO
at different values of the attenuation threshold (ranging from
0.1 to 0.4 in steps of 0.05) using a circular dissimilarity test. In
each animal, we found strong evidence that the BAOs were not
significantly different across threshold values (V: h21 = 0.10; Rx:
h21 = 4.21; Rs: h21 = 0.23; Rj: h21 = 2.53; all P < 0.000001). To address
the consistencyof the BAOacross frequencies,we analyzedwide-
band-filtered beta band activity (15–30 Hz). We computed the
sample correlation, ρ, between BATs and wide-band BATs
(wBATs). In each dataset, a significant correlation was observed
(V: ρ = 0.55, P < 0.000003; Rx: ρ = 0.42, P < 0.00004; Rs: ρ = 0.74,
P < 1e-17; Rj: ρ = 0.44, P < 0.000007). As a further test, we compared
the BAO with the wide-band BAO (wBAO). We found that there
was a significant correspondence between the BAO and wBAO
using a circular dissimilarity test (h4 = 160.0, P < 0.026).

In all animals, the BAOwas organized along the rostro-caudal
axis, although its precise directionality varied across animals.
The BAOwas rostro-caudal for Monkeys V and Rx and caudo-ros-
tral for Monkeys Rs and Rj. One potential explanation for this dif-
ference in BAO is that the electrode arrayswere placed at different
positions medio-laterally along MI. For animals V and Rx, the
array centers were 3 and 4 mm, respectively, medial to the genu
of the arcuate sulcus, whereas for animals Rs and Rj, the array
centers were exactly at the genu of the arcuate sulcus. Therefore,
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the BAO was oriented in the caudal direction for the arrays in a
more medial position, whereas the BAO was in the rostral direc-
tion for the arrays situatedmore laterally. As itwould be expected
if attenuation reflects local activation of MI, BATs occurred before
movement onset, and, their temporal range was ∼50 ms from
earliest to latest across the 4 mm extent of the array, which we
term the beta attenuation epoch.

If beta attenuation is truly a reflection of local network activa-
tion, then the spatial patterning in beta activity should also be
present in the engagement order of single units across MI. The
temporal dynamics of individual neurons, in MI, however, are
quite heterogeneous across neurons prior to movement onset
and firing rate modulation times vary with different movement
directions (Murphy et al. 1985; Lecas et al. 1986; Scott 1997;

Churchland and Shenoy 2007), so directly measuring activation
times from firing rates is challenging (Supplementary Fig. 2). In-
stead, we inferred modulation times of individual neurons by
measuring when they were most informative about the upcom-
ing movement direction (Fig. 3, see Materials and Methods for
computational details). Of the 82, 113, and 51 neurons with firing
rates greater than 2 Hz in monkeys Rs, Rj, and V (no unit spiking
data were available from animal Rx), we found that 63 (77%), 71
(63%), and 40 (78%) of neurons, respectively, exhibited significant
direction-specific modulation during movement execution
(Fig. 3A–C shows 3 exemplar neurons recorded on the red,
green, and blue electrodes from Fig. 1D–E), consistent with the
previous observation that ∼75% of MI neurons are directionally
tuned (Georgopoulos et al. 1982). Significant direction-specific
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modulation was also observed during motor preparation (i.e.,
during the instructed-delay epoch); however, fewer cells were
modulated (46 [56%], 38 [34%], and 13 [25%] for Rs, Rj, and V,

respectively; Fig. 3D–F shows 3 different exemplar neurons
whose spatial position is indicated in Fig. 1D). Neurons were gen-
erally less informative about movement direction during motor
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preparation (KS test on entropy values, P < 0.00005 for all
animals).

As a preliminary analysis to relate unit engagement order
with mesoscopic patterning of beta activity, we computed the
scalar projection of each unit’s spatial location onto the BAO
and compared that unit’s position along the BAO with its modu-
lation time (Fig. 4A). Here, a unit’s modulation time was oper-
ationally defined to be the moment when that cell was most
informative about movement direction. We found that position
along the BAO predicted unit modulation times (UMT) during
movement execution when data were pooled across animals
(F-test on regression slope, F1,175 = 18.6, P < 0.00003). A similar re-
sult was found in 2 of the 3 animals individually, whereas the
third showed a consistent, but insignificant trend (Rs: F1,61 = 10.5
P < 0.002; Rj: F1,74 = 7.64, P < 0.007; V: F1,38 = 2.34, P < 0.13). We also
examined the relative timing of BATs and UMTs and found that
UMTs significantly precede BATs (Supplementary Fig. 3).

We then examined UMT for direct evidence of spatial pattern-
ing and used the same regression procedure thatwas used to find
the BAO to identify an UMO. We found a spatial progression of
UMT across the cortical sheet along the rostro-caudal axis
(Fig. 4B; UMO model statistics: Monkey Rs: R2 = 0.15, F2,60 = 5.27,
P < 0.008; Rj: R2 = 0.10, F2,73 = 3.94, P < 0.024; V: R2 = 0.06, F2,37 = 1.16,
P < 0.32; additional controls, see Supplementary Fig. 4).

There appeared to be a close correspondence between the
BAO and UMO during movement onset (Fig. 4C), so we developed
a statistical test to quantitatively assess the similarity between
these 2 vectors based on the angular difference between them.
To apply a test to the group of animals as a whole, the angular
differences between the BAO and UMO were added across ani-
mals to generate a test statistic, h. We found strong evidence
that the BAO and UMO were similarly oriented in the 3 animals
(h = 28.62, P < 0.0007).

Directional modulation of single MI neurons is present not
only during movement initiation but also during motor prepar-
ation, an epoch where overt movement does not occur. We com-
pared these 2 task epochs to verify whether the spatio-temporal
patterning of unitmodulationwas a unique feature ofmovement
initiation. During preparation,modulation timingwas not linear-
ly related to position along the BAO (Fig. 4D, F1,94 = 0.13, P < 0.72)
and exhibited no significant spatial gradient (Fig. 4E, Rs: F2,44 =
1.07, P < 0.35; Rj: F2,35 = 1.02, P < 0.37; V: F2,10 = 0.23, P < 0.80), in con-
trast to the UMO that was identified at movement onset.

Discussion
Relationship of Beta LFP to Unit Spiking Activity

Beta attenuation has often been interpreted as a reflection of
activated motor cortex (Pfurtscheller and Lopes da Silva 1999).
Here, we have provided further support for this perspective by
showing that the sequential engagement of unit spiking activity
is aligned with the spatio-temporal progression of beta attenu-
ation during movement onset. We determined the engagement
order of cells by measuring when they were most informative
about movement direction. Our findings do not, however, imply
that directionally selective unit modulation is sufficient to
cause beta attenuation. We found that cells in MI also exhibited
significant directional modulation during motor preparation,
and yet no beta attenuation occurred during this interval. In
fact, beta oscillations are highest in amplitude and propagate
as traveling waves during motor planning (Rubino et al. 2006).

How, then, might directional modulation in cells give rise to
beta attenuation during execution, but not during preparation?

One possibility is that directional modulation is sufficiently
gated during preparation to prevent beta attenuation, though re-
cent studies have demonstrated this explanation is unlikely
(Kaufman et al. 2014). An alternative explanation is that the be-
havior of MI neurons during preparation and execution is funda-
mentally different. In particular, it has been previously noted
that a majority of MI neurons become entrained to high ampli-
tude beta oscillations (Murthy and Fetz 1996b), that is, during
preparation. Yet, at movement onset (when beta attenuates),
the temporal firing rate profiles (Churchland and Shenoy 2007)
and tuning properties (Suminski et al. 2015) of these cells change,
becoming heterogeneous and no longer phase locked to beta os-
cillations. Thus, beta attenuation represents the desynchron-
ization of these cells around movement onset.

We observed that the temporal range of UMT is substantially
longer than the range of BATs. This finding is not necessarily
inconsistent with our interpretation of beta attenuation. In previ-
ous studies, it has been shown that modulation times of MI
neurons span several hundred milliseconds in reaching tasks
(Murphy et al. 1985; Lecas et al. 1986), and more generally, firing
rate profiles are extremely heterogeneous (Churchland and
Shenoy 2007). We have shown that the spatial location of a unit
is one important factor for determining when that unit will be-
come modulated, however, other factors are also involved. We
speculate that at least some of these other factors are intrinsic
to the neuron and not shared amongst neighboring cells. The
beta LFP, being an aggregate signal, then, will average away this
intrinsic component. Thus, we might expect that if we could re-
cord from tens to hundreds of cells on an electrode the average of
their UMTs would converge to the BAT for that electrode. In this
view, the temporal range of UMTs is larger than the range of BATs
because the UMTs are inherently more variable. Nevertheless,
the relationship between BATs and UMTs remains tentative
and represents an opportunity for further inquiry. Specifically,
a better understanding of the mechanistic link between beta at-
tenuation and unit modulation may explain why the duration of
UMTs is longer than BATs.

Several of the unit spiking results that were significant in
animals Rj and Rs wereweaker in animal V. However, all of ani-
mal V’s results were, at minimum, qualitatively consistent
with the other 2 animals. In this animal, we recorded from
only 64 electrodes on the Utah array distributed over a smaller
spatial area than the other 2 animals. Accordingly, we specu-
late that unit spiking results in animal V were weaker because
we sampled fewer units over a smaller area than the other 2
animals.

Spatio-Temporal Patterning of Motor Cortical Activity

Considering the motor cortex is a physical neural substrate with
intrinsic connectivity, it is perhaps not surprising that the regular
temporal dynamics within neural state space (Churchland et al.
2012) are manifested in specific spatio-temporal patterns on the
cortical surface. And yet, any functional spatial structure within
MI has remained elusive. Unlike most primary sensory cortical
areas that exhibit clear topographic organization, the motor cor-
tex reveals highly distributed responses over a large area (Schie-
ber and Hibbard 1993; Sanes et al. 1995; Rubino et al. 2006;
Mollazadeh et al. 2011; Riehle et al. 2013; Peters et al. 2014). For ex-
ample, whereas the somatosensory cortex possesses distinct re-
presentations of the segments of the upper limb, the somatotopic
organization of upper limbMI is rather crudewith highly overlap-
ping representations, particularly between the elbow and shoul-
der (Kwan et al. 1978; Park et al. 2004). And yet, we have shown
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that a regular, spatio-temporal pattern of neural activity accom-
panies movement onset.

Previously, spatio-temporal patterning in MI was interpreted
as a cortical correlate of the proximal-to-distal sequence of

muscle activation during prehension (Murphy et al. 1985; Riehle
et al. 2013). Such an interpretation, however, is unlikely to explain
the spatio-temporal phenomena we observed in this study. The
planar reaching movements used in this study only involved
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arm movements of the shoulder and elbow, which have been
shown to evoke a diversity of muscle activation patterns includ-
ing proximal-to-distal and distal-to-proximal patterns (Karst and
Hasan 1991; Scott 1997). And yet, we observed that the BAO was
relatively consistent across all movement directions. Moreover,
there is no clear delineation between shoulder and elbow repre-
sentations on the cortical surface, although the extent to which
they overlap remains the subject of some debate (Schieber
2001). This does not, however, imply that the spatio-temporal
patterning we have documented here is independent of any pu-
tative somatotopic map. Indeed, we speculate that the precise
orientation of the BAOmay be influenced by the local somatotopy
underneath the Utah array. The BAO was oriented in the caudal
direction for the arrays placed in a more medial position (mon-
keys V and Rx), whereas the BAO was in the rostral direction for
the arrays placedmore laterally (monkeys Rs and Rj). Several pa-
pers have suggested a horseshoe somatotopic organization
where the proximal sites in MI form a horseshoe pattern sur-
rounding a central distal core (Park et al. 2001, 2004). We specu-
late that the arrays in V and Rx may be situated in the medial
arm of the horseshoe whereas the arrays in Rs and Rj are lo-
cated in the lateral arm, and this differential positioning with
respect to the underlying somatotopic representation drives
the different orientations of the BAO. Further research will be
needed to explain why different BAOs were observed across
animals.

Rather than interpreting spatio-temporal activity patterns on
the motor cortical surface as correlates of sequential muscle ac-
tivation, we suggest that these patterns aroundmovement onset
reveal that MI performs a spatially distributed computation to
initiate a movement. Inputs to MI from other cortical areas and
subcortical structures, such as the cerebellum and basal ganglia,
are presumably responsible for activating the motor cortex dur-
ing movement initiation (Donoghue and Sanes 1994); yet, how
these inputs interact with the intrinsic spatio-temporal activity
patterns in MI is unknown (Khanna and Carmena 2015). We
speculate that inputs to motor cortex are spatially distributed
across large regions of MI and integrated via the dense network
of horizontal connectivity (Gatter and Powell 1978; Huntley and
Jones 1991). Using an information theoretic analysis, it has
been previously shown that single units exhibit a preponderance
of directed, functional connections along the rostro-caudal axis
after the onset of a visual cue to initiate movement (Quinn
et al. 2011). Moreover, it has recently been demonstrated that
the sequential spiking activity of pairs of functionally connected
neurons distributed along this axis contains more information
about movement direction (Takahashi et al. 2015). Thus, the
spatio-temporal dynamics documented here may be supported,
in part, by these functional connections aligned along the
rostro-caudal axis.

The spatio-temporal patterning that we observed during
movement initiation could serve to optimally drive downstream
targets of MI, and specifically, muscles. Transcranial magnetic
stimulation (TMS) experiments in humans have documented
that motor evoked potentials (MEPs) in the muscles are differen-
tially affected depending on the direction of current delivered
across themotor cortex. In particular, theMEP amplitude is larger
when the induced cortical currents occur along the anterior–
posterior axis (Brasil-Neto et al. 1992). Moreover, studies have ob-
served differential MEP thresholds, latencies, and amplitudes
when current flows in the anterior–posterior direction versus
posterior–anterior direction (Brasil-Neto et al. 1992; Kammer
et al. 2001; Sommer et al. 2006; Jung et al. 2012). Thus, the natural
rostro-caudal patternswe observed inmotor cortical activitymay

explain why particular TMS current orientations aremore effect-
ive to drive the motor periphery.

In summary, we found thatmovement initiation is character-
ized by a unique spatio-temporal sequence of neural activity and
that this sequence is evident in both LFPs and unit spiking. From
these findings, we introduced a new hypothesis about the nature
of the motor cortical activity required to initiate movements. Fu-
ture experiments using either electrical or optogenetic stimula-
tion to perturb both the spatial and temporal dynamics of MI
activity will be required to further test this hypothesis.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/online.
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