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Abstract

The ventricular arrhythmia Torsades de Pointes (TdP) is a common form of drug-induced 

cardiotoxicity, but prediction of this arrhythmia remains an unresolved issue in drug development. 

Current assays to evaluate arrhythmia risk are limited by poor specificity and a lack of mechanistic 

insight. We addressed this important unresolved issue through a novel computational approach that 

combined simulations of drug effects on dynamics with statistical analysis and machine-learning. 

Drugs that blocked multiple ion channels were simulated in ventricular myocyte models, and 

metrics computed from the action potential and intracellular (Ca2+) waveform were used to 

construct classifiers that distinguished between arrhythmogenic and non-arrhythmogenic drugs. 

We found that: (1) these classifiers provide superior risk prediction; (2) drug-induced changes to 

both the action potential and intracellular (Ca2+) influence risk; and (3) cardiac ion channels not 

typically assessed may significantly affect risk. Our algorithm demonstrates the value of 

systematic simulations in predicting pharmacological toxicity.

The prediction of drug-induced Torsades de Pointes (TdP) remains a critical issue in drug 

development. TdP, a rare but potentially fatal ventricular arrhythmia, is a leading cause of 

drug withdrawal and relabeling. This arrhythmia is caused by a motley range of compounds, 

including not only cardiovascular drugs, but also antibiotics, antipsychotics, antihistamines, 

chemotherapeutics, and others. The common molecular mechanism behind the diverse set of 

TdP-prolonging drugs was identified as a blockade of the KCNH2, or hERG, channel,1,2 

which carries the rapid delayed rectifier K+ current (IKr), a key repolarizing current in the 

human ventricular myocardium. Reduction in IKr increases the action potential duration 

(APD), which appears as an increased QT interval on the electrocardiogram. For this reason, 

current guidelines from the International Conference of Harmonization stipulate that all 

compounds under development are screened for hERG block and QT prolongation as 

surrogate markers of TdP risk.3 The in vitro hERG block assay is relatively easy to 

implement, but alone is only a fair predictor of QT4 and of TdP.5 Progression to QT studies 
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in humans or even in animals represents an enormous investment for perhaps only a 

marginal increase in predictive power. Thus, the need is twofold for a method that both 

predicts TdP accurately and can be applied inexpensively early in the development process. 

To this end, a new paradigm is emerging in which in silico modeling plays a central role.6,7

A major shortcoming of the hERG assay is the failure to account for multichannel drug 

effects. Indeed, it has been known for years that the arrhythmogenicity of hERG block is 

mitigated by concurrent block of Na+ or Ca2+ channels.8,9 Recently, Kramer et al.10 

published a predictive model that accounts for L-type Ca2+ channel block in addition to 

hERG block. Their model improved discrimination between torsadogenic and non-

torsadogenic drugs over the hERG assay, demonstrating that Ca2+ current block is a 

common mitigating factor in drug torsa-dogenicity. However, the mechanism of the 

protective effect of multichannel block is unclear. It is unlikely that it is purely due to 

diminished action potential (AP) prolongation, as in vivo studies show that multichannel 

block can reduce hERG blockinduced TdP without reduction of the QT interval.8,9,11 An 

alternative possibility is that the protective effect of multichannel block occurs via changes 

in ion concentration homeostasis. In this case, other physiological metrics, derived from the 

AP or from intracellular ionic concentrations, may better predict TdP potential.

The goal of this study was twofold. First, we sought to develop a classifier for improved 

prediction of drug torsadogenicity. Second, we aimed to apply our classifier to identify key 

cellular physiological differences between torsadogenic and nontorsadogenic drugs. To 

accomplish these goals, we took a Quantitative Systems Pharmacology approach that 

combined modeling of physiological dynamics with statistical analysis and machine-

learning. Using mechanistic myocyte models allowed us to simulate multichannel drug 

effects on cellular physiology. We evaluated the simulation results using an unbiased 

approach, in which we computed a variety of metrics from both the AP and intracellular 

Ca2+ waveforms. Machine-learning algorithms trained by clinical torsadogenicity data were 

then used to construct a top-performing classifier. Through this approach we obtained the 

following important results: (1) our classifier provides excellent prediction of torsadogenic 

risk, superior, to our knowledge, to existing methods; (2) simulations indicate that drug-

induced changes to both the AP and intracellular Ca2+ influence TdP risk; and (3) the 

modeling results reveal which cardiac ion channels may have the greatest impact on TdP 

risk, and are therefore the most important to assess early in the drug development process.

RESULTS

Human ventricular cell models simulate drug response

To predict the physiological effects of a wide range of drugs, we simulated the application of 

86 drugs at effective free therapeutic plasma concentration (EFTPC) in three recent, 

independently formulated human ventricular myocyte models.12–14 Drugs altered multiple 

aspects of APs (Figure 1a) and Ca2+ transient waveforms (CaTs; Figure 1b), which we 

quantified by calculating the 13 metrics shown in the Figure 1 insets. Figure 1c shows how 

the 86 drugs influenced these metrics, a total of 331 under all conditions. The simulations 

therefore generate a highdimensional set of pseudo-data.
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A novel classification method identifies torsadogenic drugs

The original 331 metrics include a diverse range of measurements from the AP and CaT, 

measured in multiple ventricular cell models under several conditions. This broad sampling 

captures informative metrics with minimal bias but also contains many correlated or 

redundant variables. To reduce the dimensionality of this dataset, we calculated its principal 

components (PCs), and found that the first three PCs describe 88.2% of the variance (Figure 

2a). Furthermore, drug scores in two- and three-PC space show a clear division between 

torsadogenic and nontorsa-dogenic drugs (Figure 2b,c).

The drug scores in the PC space were used to train a support vector machine (SVM) 

classifier. This classification algorithm, appropriate for discrimination when samples fall 

into two categories,15 defines a decision boundary in the space such that drugs on one side 

of the decision boundary are predicted to be torsado-genic, and drugs on the other side are 

predicted to be nontorsadogenic. In building the SVM, we found that including more than 

three PCs did not improve classifier performance.

The SVM classifier performance was evaluated with several methods. With leave-one-out 

cross-validation, we found that the SVM correctly classifies 87.2% and misclassifies 12.8% 

of the drugs studied (Figure 2e and Table 1, “dose-dependent classifier”). Using receiver 

operating characteristic (ROC) analysis16 to evaluate classifier performance, we found that 

the area under the ROC curve (auROC) was 0.963, indicating strong predictive power 

(auROC = 0.5 and auROC = 1 indicate no predictive power, and perfect prediction, 

respectively). This performance is a substantial improvement over classifications based on 

either hERG block or APD at 90% repolarization (APD90), which had auROCs of 0.815 and 

0.854, respectively (Figure 2d). The Matthews correlation coefficient and the F1 score (see 

Methods) also confirmed improved classification compared with these alternative metrics 

(Supplementary Table S1).

Ca2+ dynamics augment action potential duration to identify torsadogenic drugs

Classification based on specific simulated metrics rather than PC scores provides 

physiological insight into differences between drugs. Because the PC analysis indicates that 

two to three orthogonal dimensions are sufficient to distinguish torsadogenic from 

nontorsadogenic drugs, we hypothesized that two to three metrics may allow for accurate 

drug classification. To test this, we performed feature selection on the 331 metrics, as 

described in Supplementary Text. We found that two metrics, APD at 50% repolarization 

(APD50) and diastolic (Ca2+)i, both measured at 1 Hz in the O’Hara, Virág, Varró, and Rudy 

(OVVR) epicardial-model,14 provide comparable discrimination between torsadogenic and 

nontorsadogenic drugs, with an auROC = 0.962 in leave-one-out cross-validation (Figure 

3a).

As expected, drugs with dramatic AP prolongation are torsadogenic (Figure 3b). More 

interestingly, drugs with moderate AP prolongation can fall into either category (Figure 3b 

inset). A measurement of Ca2+ dynamics, the diastolic (Ca2+)i, provides the additional 

information necessary to classify these drugs. That is, although many torsadogenic and 

nontorsadogenic drugs may cause the same extent of moderate AP prolongation, 
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nontorsadogenic drugs consistently result in lower intracellular (Ca2+). For example, 

dofetilide, a torsadogenic class III antiarrhythmic, and piperacillin, a safe beta-lactam 

antibiotic, cause nearly identical simulated AP-prolongation. The former drug, however, 

increases diastolic Ca2+ and CaT amplitude, whereas piperacillin has opposite effects 

(Figure 3c).

Risk prediction is robust across a large range of doses

Our classifier is based on simulations performed with each drug at its typical clinical 

concentration (EFTPC), a variable that is unlikely to be known early in drug development. 

To develop a method that does not require EFTPC, we repeated the classification analysis 

after simulating each drug at 0.1, 1, 10, and 100 times EFTPC. Because the 35 drugs in the 

highest CredibleMeds risk category (“risk of Torsades”) averaged 2.5 units from the decision 

boundary at EFTPC, we considered 2 units as our threshold of +TdP prediction. Figure 4 

shows the dose dependence of each drug’s distance from the decision boundary. Larger 

positive/negative distances from the boundary can be interpreted as stronger predictions of 

torsadogenicity/nontorsadogenicity, respectively.

As drug concentration increases, truly dangerous drugs reveal their risk (Table 1). For 

instance, amiodarone, imipramine, and solifenacin were close to the origin at EFTPC, but 

higher concentrations of these drugs moved them onto the correct, torsadogenic side of the 

decision boundary.

However, several “safe” drugs are predicted to be dangerous at extreme concentrations 

(100× EFTPC). These drugs were close to the decision boundary at EFTPC, and moved onto 

the wrong side at the highest concentrations. Interestingly, a drug that we classified as such a 

false-positive, donepezil, was identified as torsadogenic by CredibleMeds after the 

completion of this study. Furthermore, four of the remaining false-positives, quetiapine, 

diphenhydramine, amitriptyline, and fluvoxamine, have case reports of TdP.5,6,17 Therefore, 

our classification algorithm correctly predicted the torsadogenicity of donepezil, and it 

seems to be identifying drugs with the capacity to produce TdP at extremely high doses, 

albeit with not enough current evidence to meet the criteria for the torsadogenic category.

Importantly, this evaluation over a four-order of magnitude concentration range suggests a 

procedure for classifying drugs in preclinical development, when EFTPC is not yet known. 

Each candidate drug would be simulated at increasing concentrations until its score reaches 

a predetermined distance from the decision boundary, at which point its risk will be 

predicted. This approach was validated with our trial set of drugs and correctly classified 

89.5% of drugs (Table 1, “dose-independent classifier”), with an area under the curve of 

0.936 (Supplementary Figure S2).

A synthetic population stratifies drug risk

Differences between individuals in ionic current properties can influence differential drug 

responses, such as the wide range in AP prolongation seen with hERG-blocking drugs due to 

variability in repolarization reserve.18–20 To study the role of interindividual variation in 

predicting drug arrhythmia risk, we generated a synthetic population of 24 individuals by 

randomly varying ionic current parameters and calibrating the population variability to 
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experimental data21 (see Supplementary Text for details). The full drug set was simulated in 

each of the 24 individuals, and drug risk was determined using the classifier built on APD50 

and diastolic Ca2+ simulated in the OVVR model.

Simulating drug effects in a synthetic population allows us to compute probabilities of TdP 

risk, because a given drug may be classified as torsadogenic in some individuals and 

nontorsadogenic in others. Drugs with a well-established, high risk of Torsades 

(CredibleMeds risk category 1, red bars) had a positive prediction in several, sometimes 

even in a majority of individuals (Figure 5a). Drugs with a probable risk of Torsades 

(Credible-Meds risk category 2, pink bars), tended to have positive predictions in a low but 

substantial portion of the population (up to 16.7%). Drugs in the “conditional risk” category 

(CredibleMeds risk category 3, cyan bars) had 0–1 positive predictions. Finally, drugs with 

no known risk of Torsades (blue bars) were generally predicted to be safe in all individuals, 

although several had a positive prediction in a single individual. Therefore, evaluation in the 

synthetic population may provide a prediction of the degree of risk and incidence of 

Torsades. Figure 5b illustrates this with three example drugs: ibutilide, nitrendipine, and 

nilotinib. Ibutilide, a class III antiarrhythmic with a well-established risk of Torsades, is 

predicted to be dangerous in the majority (71%) of individuals. In contrast, nitrendipine is a 

dihydropyridine Ca2+-channel blocker with no known risk of Torsades that is predicted to be 

safe in all individuals in the population. Finally, nilotinib, a small-molecule tyrosine kinase 

inhibitor with a black box warning for QT-prolongation and sudden death,22 is predicted to 

be safe in the majority of individuals, but torsadogenic in a subset (12.5%).

To compare this approach to the results presented earlier, Figure 5c shows, for each drug, the 

percent of the population with a positive risk prediction vs. the drug’s distance from the 

decision boundary in the simulations that did not incorporate variability. For drugs with a 

positive prediction in at least one individual, we found that this distance has a strong 

correlation with the proportion of the population in which the drug is predicted to be 

torsadogenic. Additionally, drugs initially predicted to be nontorsadogenic also had a 

negative prediction in 96–100% of the population. This demonstrates that the severity of risk 

is consistently predicted by both the population approach and the distance from the decision 

boundary.

Off-target interactions influence drug risk

Because our classifier is based on physiological metrics, it can be used to predict the 

torsadogenicity of any drug that affects the AP and CaT. This means that drug targets other 

than those in the training set can be evaluated. To predict which additional targets are the 

most influential, we generated 100 hypothetical drugs that alter the activity of nine ion 

channels, pumps and transporters distinct from those targeted by the original drug set. These 

drug actions were simulated by varying the model parameters governing the activity of each 

target molecule (e.g., ion channel maximal conductance). By simulating the application of 

these hypothetical drugs, we could apply the SVM classifier and predict which drugs would 

cause TdP and which would not.

We used this set of hypothetical drugs to predict the influence of each parameter on drug 

risk. Influence was determined by performing a Wilcoxon rank sum test between the drugs 
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with positive and negative predictions of TdP (Supplementary Table S2). Figure 6a shows 

the four targets with the most significant effects on predicted drug risk via a “wheel of 

fortune”-style plot (as in refs. 23,24). Each radial “slice” represents one drug: how it alters 

each of the four targets and the resulting risk. We predict that alterations to the Na+-Ca 2+ 

exchanger have the largest effect on TdP risk, with increased current leading to decreased 

risk. The Na+-K+ ATPase, background Ca2+ current and the SERCA pump followed in 

significance (Supplementary Table S2). In other words, this analysis predicts that these four 

currents have a large influence on Torsades risk, meaning that the torsadogenic risk of some 

drugs may be modulated by off-target drug interactions with these ion transport pathways.

To investigate the influence of these parameters further, we performed simulations in which 

each parameter was individually perturbed at intervals from 50–200% of the control value. 

We found that increases in the activity of the Na+ -K+ ATPase and the Na+ -Ca2+ exchanger 

were protective, whereas decreases were predicted to be torsadogenic (Figure 6b). Note, 

however, that enhancing the exchanger activity by more than ~400% results in a prediction 

of Torsades risk (Supplementary Figure S3a). It is likely that moderately increased 

exchanger activity is favorable due to decreased Ca2+ load, but even larger activity levels 

may cause excessive AP prolongation. This is supported by simulations in which a 10-fold 

increase in exchanger activity resulted in an EAD in the OVVR model (Supplementary 

Figure S3b). One caveat of this analysis is that some predictions fall in regions of risk space 

that do not contain any data from real drugs, so the prediction that these combinations of 

physiological changes are torsadogenic is not well-supported. This is the case for decreased 

activity of both the ATPase and the exchanger.

The perturbations to the exchanger and the ATPase are compared to perturbations to the 

maximal conductance of the slow delayed rectifier (GKs) and the inward rectifier (GK1) in 

Figure 6b. As expected, blocking either K+ current is predicted to be torsadogenic, and 

enhancing either is protective. Interestingly, and consistent with the hypothetical drug 

analysis (Supplementary Table S2), the magnitude of the effects of perturbing the K+ 

currents is less than that of perturbing the exchanger or pump, supporting the idea that 

alterations in ion concentration homeostasis may play a central role in torsadogenesis.

DISCUSSION

We have developed a classifier, with superior prediction of torsadogenic risk, for use in early 

drug development. To do this, we took a Quantitative Systems Pharmacology strategy, 

running extensive mechanistic simulations based on results from a large drug dataset. This 

provided advantages over more traditional approaches. First, by comprehensively evaluating 

multiple parameters, multiple outputs, and a large set of drugs, we were able to abstract 

general rules that would not have been apparent from focused studies on select drugs. 

Second, our time course simulations provide deeper insight into the physiological 

mechanisms of drug action than the “snapshot” one obtains using high throughput 

measurements, such as ion channel block or altered gene expression. These two aspects, 

simulations of dynamics and relatively large scale analysis, are essential ingredients in the 

emerging discipline of Quantitative Systems Pharmacology.
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The prediction of drug-induced TdP is an unresolved issue in drug development. Since the 

institution of the ICH S7B and E14 guidelines for cardiac safety testing in 2005,3 no new 

torsadogenic drugs have reached the market. However, it is widely recognized that the TdP 

surrogates mandated by these guidelines, hERG block and QT prolongation, are nonspecific 

and most likely prevent the development of efficacious, nontorsadogenic drugs.7 The use of 

in silico screening methods, such as the classifier described in this study, has the potential 

both to reduce the rejection of truly safe drugs and to shift attrition of dangerous drugs to 

earlier stages of development. Our classifier is specifically designed for use in early drug 

development, as it requires only in vitro data that are typically acquired prior to animal or 

human studies (IC50 values for hERG, Nav1.5, and Cav1.2). In this sense, our approach 

builds on prior work to design drug classifiers.6,10 For instance, a predictive model based on 

changes in APD90 after simulated exposure to drug demonstrated the importance of 

multichannel block.6 Subsequently, Kramer et al.10 developed a high-performing 

classification model that did not involve simulations but required only the ratio between 

hERG and Cav1.2 blocking potencies. Our classifier, which incorporates multichannel block, 

simulated physiological responses, multiple myocyte models, and large sets of simulated 

data, can identify torsadogenic drugs with a misclassification rate of 12.8% and an auROC 

of 0.963 under leave-one-out cross-validation (Figure 2). This is the highest performing 

drug-induced TdP predictor that we are aware of.

Our study demonstrates the value of simulations to not only predict cellular drug responses, 

but to direct experimental studies. Specifically, simulations such as those presented here can: 

(1) inform drug inhibition experiments by prioritizing which channels to examine (Figure 6); 

and (2) assist in the design of in vitro cellular studies by demonstrating that metrics derived 

from CaTs are also useful in predicting TdP risk (Figure 3).

A benefit of our strategy is that we do not assume the primacy of particular physiological 

responses, such as AP prolongation. Instead, we calculate from simulations a wide range of 

metrics, and then systematically determine which are most informative. In principle, this 

same approach can be used to evaluate the predictive utility of other proposed surrogates, 

such as Triangulation, Reverse use dependency, electrical Instability of the action potential, 

and Dispersion (TRIaD),25 the electromechanical window,26 and beat-to-beat variability of 

repolarization.27 These particular questions, however, must be addressed with models that 

simulate additional phenomena, such as stochastic ion channel gating and drug effects on 

multidimensional tissue. Nonetheless, this study illustrates a general method to determine 

the most appropriate surrogates for drug-induced adverse events, a strategy that can be 

extended to predict other types of toxicity.

An important result was the finding that drug-induced changes in diastolic (Ca2+ ) were 

nearly as important as changes in APD to differentiate between torsadogenic and 

nontorsadogenic drugs. Additionally, our simulations with hypothetical drugs identified the 

Na+-K+ ATPase, Na+-Ca2+ exchanger, background Ca2+ current, and the SERCA pump as 

the most significant potential modulators of TdP risk. Taken together, these findings indicate 

a major role for Ca2+ homeostasis in TdP generation. During the prolonged AP plateau 

caused by QT-prolonging drugs, more Ca2+ enters the myocyte with each beat. This 

alteration to Ca2+ homeostasis can have several effects, including higher SR Ca2+ load, 
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activation of Ca2+-calmodulin dependent kinase II, and further membrane depolarization 

when Ca2+ is extruded from the cell via Na+-Ca2+ exchange. Indeed, when viewed in light 

of recent experimental studies indicating that hERG block may lead to spontaneous cellular 

Ca2+ release,28,29 our simulations suggest a central role of intracellular Ca2+ in the 

generation of TdP.

Because we designed our classification algorithm for use early in drug safety testing, the 

characteristics of data available at this stage impose several limitations. We use 

measurements of inhibition of IKr, ICaL, and INa, but interaction with additional channels 

will also influence risk, as our simulations suggest (Figure 6). Moreover, the measurement 

of peak INa inhibition does not account for specific effects on the late Na+ current (INaL). 

Because this current can potentiate the torsadogenicity of hERG-blocking drugs,30 specific 

measurements of INaL block, and improved representations of this current in mathematical 

models, would likely improve classifier performance. Because early safety testing does not 

include the detailed measurements needed to parameterize more complex models, we use the 

simple pore-block model of drug action, which does not account for the kinetics of channel 

block or state-dependent drug binding. Our method also does not include drug effects on 

channel trafficking, which plays a role in the torsadogenesis of some drugs.31,32 Drug safety 

testing, however, continues to evolve, and routine in vitro tests may soon include both block 

of additional channels and protocols designed to detect effects on channel expression and 

regulation. Modification of our classifier to include these additional measurements would be 

straightforward and may improve its predictive ability. Nevertheless, even with simple 

inputs, our classifier identifies clinically torsadogenic drugs with high accuracy.

METHODS

Complete methods are provided in the online Supplementary Information, with only a few 

critical aspects of the procedures highlighted here.

Models and simulations

Each drug was simulated in three human ventricular myocyte models. To avoid any potential 

bias resulting from the model development choices of a particular research group, we 

conducted simulations in three independent models: (1) OVVR14; (2) ten Tusscher and 

Panfilov12; and (3) Grandi, Pasqualini, and Bers.13 Drug effects on three important ion 

channels were simulated with a simple pore block model described in the Supplementary 

Information. Simulated myocytes were electrically stimulated at rates of 2 Hz, 1 Hz, and 0.5 

Hz to steady state.33 In total, each drug was simulated under 24 different conditions: at 3 

pacing rates × 8 cell types (3 transmural layers in OVVR and ten Tusscher and Panfilov, 2 

layers in Grandi, Pasqualini, and Bers). For each drug under each of the 24 conditions, we 

calculated several metrics from the APs and intracellular (Ca2+) time courses (Figure 1, 

Supplementary Table S3).

Initial simulations examined each drug at its EFTPC and simulated each model with its 

baseline, published parameters. Later simulations examined: (1) multiple concentrations of 

each drug; (2) a population of cells exhibiting biological variability19,34,35; and (3) 
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hypothetical drugs that inhibited additional ion transport pathways, as described in the 

Supplementary Information.

Databases

Drug inhibition of the rapid delayed rectifier K+ current (IKr), the L-type Ca2+ current 

(ICaL), and the fast Na+ current (INa) was incorporated into our classification algorithm using 

reported half-maximal inhibitory concentrations (IC50). We obtained these data for 86 drugs 

published in the studies by Kramer et al.10and Mirams et al.6 which constitute our drug 

training set (Supplementary Table S4).

We defined the torsadogenicity of the drugs in our training set using the CredibleMeds 

database (https://www.crediblemeds.org) and the study from Champeroux et al.36 as 

described in the Supplementary Text.

Classification of drugs

To reduce the dimensionality of the dataset containing 331 metrics, the PCs of the metrics 

were calculated. These PCs were used to train a SVM classifier15 with a linear kernel. The 

SVM classifier defined a planar decision boundary in the PC space using the sequential 

minimal optimization algorithm, with a box constraint of one, to determine the boundary 

with a maximal margin between the two categories. Classification was performed with 

leave-one-out cross validation (i.e., the SVM used to predict any particular drug was built 

using only results from the remaining drugs in the dataset). Classifier performance was 

evaluated through three methods: (1) calculating an ROC curve; (2) the Matthews correlation 

coefficient, based on true and false-positives and true and false-negatives16; and (3) the F1 

score, based on sensitivity and positive predictive value.37

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?

☑ All potential drugs are screened for TdP arrhythmia liability during development. 

However, current assays that measure block of the hERG potassium channel and 

lengthening of the cardiac action potential are limited by poor specificity.

WHAT QUESTION DID THIS STUDY ADDRESS?

☑ Can computational myocyte models that predict changes to both the action potential 

and intracellular Ca2+ provide more accurate Torsades risk prediction?

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

☑ Arrhythmia risk depends on drug-induced changes to both the action potential and 

intracellular Ca2+. These changes can be predicted with high accuracy using in vitro 
measurements and computational models suitable for use in early drug development.

HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND 
THERAPEUTICS

☑ This method can increase the sensitivity and specificity of TdP arrhythmia screening 

during drug development.
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Figure 1. 
Drug response in human ventricular cell models. (a) Action potential (AP) traces for 

baseline model and under simulated exposure to each drug. Torsadogenic (+Torsades de 

Pointes (TdP)) drug APs are red, and nontorsadogenic (-TdP) drug APs are in blue. Inset, 

AP metrics: (1) upstroke velocity; (2) peak membrane voltage (Vm); (3) AP duration (APD) 

at 50% repolarization; (4) APD at-60 mV; (5) APD at 90% repolarization; (6) AP 

triangulation; and (7) resting Vm. (b) Ca2+ transient (CaT) traces for baseline model and 

under simulated exposure to each drug. Torsadogenic (+TdP) drug CaTs are red, and 

nontorsadogenic (-TdP) drug CaTs are in blue. Inset, CaT metrics: (8) resting (Ca2+)i (9) 

CaT amplitude, (10) Peak (Ca2+)i (11) CaT duration at 50% return to baseline, (12) CaT 

duration at 90% return to baseline, and (13) CaT triangulation. (c) Heatmap of 331 metrics 

measured under exposure to drug set. Color indicates percent change in metric from baseline 

value. Drugs and metrics are ordered by unsupervised hierarchical clustering. [Color figure 

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 2. 
Principal components (PCs) analysis with support vector machine (SVM) classification 

discriminates torsadogenic from nontorsadogenic drugs. (a) Variance explained by the first 

four PCs. Cumulative percentages are labeled. (b) Drug scores on the first two PCs. SVM 

decision boundary is shown as a black line, torsadogenic (+Torsades de Pointes (TdP)) drugs 

are shown as red circles, and nontorsadogenic (-TdP) drugs are shown as blue circles. (c) 

Drug scores on the first three PCs at two viewing angles. SVM decision boundary shown as 

hatched plane. (d) Accuracy of classification assessed using receiver operating characteristic 

analysis. The SVM model based on drug scores on three PCs is compared to SVM models 

based on hERG block (hERG IC50/effective free therapeutic plasma concentration (EFTPC)) 

and action potential duration at 90% repolarization (APD90). Predictive power is quantified 

by the area under the curve in parentheses in the legend. (e) Misclassification rate under 

leave-one-out cross-validation. [Color figure can be viewed in the online issue, which is 

available at wileyonlinelibrary.com.]
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Figure 3. 
Selected action potential and Ca2+ transient metrics discriminate torsadogenic from 

nontorsadogenic drugs. (a) Accuracy of classification assessed using receiver operating 

characteristic analysis. The support vector machine (SVM) model based on diastolic Ca2+ 

(dCa) and action potential duration (APD) is compared to the SVM model based on drugs 

scores on three principal components (PCs). Predictive power is quantified by the area under 

the curve, listed in parentheses in the legend. (b) Diastolic Ca2+ (uM) vs. APD (ms) for drug 

set. SVM decision boundary is shown as a black line, torsadogenic (+Torsades de Pointes 

(TdP)) drugs are shown as red circles, and nontorsadogenic (-TdP) drugs are shown as blue 

circles. (c) Ca2+ transients (right), but not action potentials (left), distinguish dofetilide from 

piperacillin. [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 4. 
Dose-dependence of torsadogenicity predictions. Drug distance from decision boundary at 

concentrations of 0.1,1, 10, and 100 times effective free therapeutic plasma concentration 

(EFTPC). Positive distance results in a torsadogenic (+Torsades de Pointes (TdP)) 

prediction, and negative distance results in a nontorsadogenic (-TdP) prediction. Drugs are 

sorted on the y-axis into known torsadogenic and known nontorsadogenic compounds. 

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 5. 
Drug risk prediction in a synthetic population. (a) Percent of individuals in synthetic 

population in whom each drug is classified as torsadogenic (+Torsades de Pointes (TdP)). 

Drug bars are colored by known drug risk. (b) Population distribution in risk space for 

ibutilide, nilotinib, and nitrendipine. APD is the action potential duration. (c) Percent of 

population in whom the drug is classified as torsadogenic vs. drug distance from classifier 

decision boundary in baseline model. Positive distance results in a torsadogenic prediction, 

and negative distance results in a nontorsadogenic prediction. [Color figure can be viewed in 

the online issue, which is available at wileyonlinelibrary.com.]
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Figure 6. 
Most important drug targets in hypothetical drug set. (a) The “wheel of fortune” plot shows 

the four targets with the largest effect on drug risk. Each “slice” represents one drug: how it 

alters the activity of each of the four targets and the resulting risk. Slices are sorted from left 

to right by lowest (-Torsades de Pointes (TdP)) to highest (+TdP) predicted risk. Targets are 

ranked by statistical significance (KNCX p = 1.22E-5, KNaK p = 1.49E-5, PCaB p = 0.000755, 

and KSERCA p = 0.0312). KNCX is the maximal Na+-Ca2+ exchange current, KNaK scales the 

Na+-K+ ATPase current, PCaB is the background Ca2+ current permeability, and KSERCA 

scales total Ca2+ uptake via SERCA pump from myoplasm to NSR. (b) Movement in 

principal component (PC) risk space with single-target perturbations from 50–200% of 

control values. GK1 is the maximal inward rectifier K+ conductance and GKs is the maximal 

slow delayed rectifier K+ conductance. [Color figure can be viewed in the online issue, 

which is available at wileyonlinelibrary.com.]

Lancaster and Sobie Page 18

Clin Pharmacol Ther. Author manuscript; available in PMC 2019 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lancaster and Sobie Page 19

Table 1

Classifier contingency tables and misclassified drugs

+TdP −TdP

Dose-dependent classifier

  Correctly classified 46 29

  Incorrectly classified
3
a

8
b

Dose-independent classifier

  Correctly classified 47 30

  Incorrectly classified
2
c

7
d

TdP, Torsades de Pointes.

a
False-negatives in the dose-dependent model were procainamide, voriconazole, and imipramine.

b
False-positives in the dose-dependent model were amitriptyline, dasatinib, diphenhydramine, duloxetine, fluvoxamine, loratadine, and 

propranolol.

c
False-negatives in the dose-independent model were procainamide and voriconazole.

d
False-positives in the dose-independent model were amitriptyline, dasatinib, diphenhydramine, donepezil, propranolol, fluvoxamine, and 

quetiapine.
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