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Abstract

Metagenomic sequencing of bacterial samples has become the gold standard for profiling 

microbial populations, but 16S rRNA profiling remains widely used due to advantages in sample 

throughput, cost, and sensitivity even though the approach is hampered by primer bias and lack of 

specificity. We hypothesized that a hybrid approach, that combined targeted PCR amplification 

with high-throughput sequencing of multiple regions of the genome, would capture many of the 

advantages of both approaches. We developed a method that identifies and quantifies members of 

bacterial communities through simultaneous analysis of multiple variable regions of the bacterial 

16S rRNA gene. The method combines high-throughput microfluidics for PCR amplification, 
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short read DNA sequencing, and a custom algorithm named MVRSION (Multiple 16S Variable 

Region Species-Level IdentificatiON) for optimizing taxonomic assignment. MVRSION 

performance was compared to single variable region analyses (V3 or V4) of five synthetic 

mixtures of human gut bacterial strains using existing software (QIIME), and the results of 

community profiling by shotgun sequencing (COPRO-Seq) of fecal DNA samples collected from 

gnotobiotic mice colonized with a defined, phylogenetically diverse consortium of human gut 

bacterial strains. Positive predictive values for MVSION ranged from 65%−91% versus 44%−61% 

for single region QIIME analyses (p<0.01, p<0.001), while the abundance estimate r2 for 

MVRSION compared to COPRO-Seq was 0.77 vs. 0.46 and 0.45 for V3-QIIME and V4-QIIME, 

respectively. MVRSION represents a generally applicable tool for taxonomic classification that is 

superior to singleregion 16S rRNA methods, resource efficient, highly scalable for assessing the 

microbial composition of up to thousands of samples concurrently, with multiple applications 

ranging from whole community profiling to targeted tracking of organisms of interest in diverse 

habitats as a function of specified variables/perturbations.
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1. Introduction

Shotgun sequencing of total community DNA and sequencing of amplicons generated from 

SSU rRNA genes (notably bacterial 16S rRNA), are widely used to profile microbial 

populations; the former method captures gene content and allows species and strain-level 

resolution while the latter method remains popular due to low cost, high sample throughput, 

sensitivity, and fewer sample limitations (e.g. cases of host DNA contamination). However, 

amplicon sequencing is confounded by primer bias and challenges related to the specificity/

resolution that can be achieved for taxonomic assignments (Liu, DeSantis, Andersen, & 

Knight, 2008; Vetrovsky & Baldrian, 2013; Yang, Wang, & Qian, 2016)

Current 16S rRNA profiling methods commonly target only one of the gene’s nine variable 

regions; amplicons produced by PCR from a given region or a portion of that region are then 

sequenced. One solution to the problems of primer biases and taxonomic resolution is to 

amplify and sequence multiple amplicons generated from multiple variable regions of a 

given taxon’s 16S rRNA gene(s).

Producing sequence data from multiple variable regions is technically trivial; however, 

analysis of such data represents a significant challenge. Existing taxonomic classifiers such 

as the UCLUST (Edgar, 2010) consensus taxonomy assigner in QIIME (Caporaso et al., 

2010), the RDP Classifier (Wang, Garrity, Tiedje, & Cole, 2007), the k-Nearest Neighbor 

algorithm in mothur (Schloss et al., 2009), and SPINGO (Allard, Ryan, Jeffery, & Claesson, 

2015) are designed to assign taxonomy to each variable region individually rather than 

integrating information from multiple amplicons.
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2. Results

To achieve an improvement in specificity while maintaining the efficiency of an amplicon-

based sequencing approach, MVRSION was designed with the ability to utilize, in parallel, 

multiple 16S rRNA variable regions in the absence of information linking amplicons from 

different regions together. A multistep filtering strategy is employed to first reduce the 

complexity of the analysis followed by dynamic “discriminatory variable region” selection, a 

process that utilizes information from the initial alignment regarding which bacterial species 

may be present, combined with an assessment of which variable regions contain the 

necessary information to correctly distinguish species with high 16S rRNA sequence 

identity. Figure 1 provides an overview of the process; a complete description of the 

analytical method is presented in Section 5.5.

The initial MVRSION amplicon panel consisted of 14 primer pairs targeting the nine 

variable regions in 16S rRNA (Table 1). In silico analysis with PrimerProspector (Quast et 

al., 2013) indicated that seven of the primer pairs (V1, V3_1, V5_1, V5_2, V6_2, V6_3, V9) 

would amplify very few species present in the SILVA rRNA database (Table 2).

Follow-up in vitro testing of this set of primers was performed using DNA isolated from two 

mixtures of human-associated bacterial taxa: HM-782D, which contains equivalent amounts 

of 20 species (BEI Resources, ATCC, Manassas, VA) and 48G-Eq, which contains 

equivalent amounts of 48 strains representing 45 species (Faith et al., 2013) (Table 3). These 

samples were each sequenced to a depth of ~400,000 reads (2×150 nt paired-end; Table 4). 

Reads associated with all 14 amplicons were observed (range, 0.5% to 14.6% of total reads/

sample). The results verified the in silico prediction as very few species received a 

significant number (>1%) of the total reads with the seven primer pairs described above 

(Table 2). Consequently, amplicons produced with these primers were removed leaving 

amplicons corresponding to eight variable regions (V1, V2, V3, V4, V5, V6, V7, and V8) 

for the MVRSION method.

For the purposes of performance evaluation, MVRSION was compared to single variable 

region (V3 or V4) QIIME analyses of the test samples. This evaluation used comparative 

measures of calculated True Positives (TP), False Positives (FP), False Negatives (FN), 

Positive Predictive Value (PPV), and Sensitivity. Detailed descriptions of the comparative 

measures are presented in Section 5.7. MVRSION thresholds used for the analyses are 

presented Section 5.5 and the QIIME commands are in Section 5.6.

In the initial comparison utilizing HM-782D, MVRSION and the V3-QIIME analyses 

identified all 20 bacterial species in the sample (100% sensitivity), while V4-QIIME 

identified 19 (95% sensitivity) (Figure 2a). However, both the V3-QIIME and V4-QIIME 

analyses produced nearly double the number of false positives (20 and 19, versus 11 for 

MVRSION), resulting in Positive Predictive Values (PPVs) for V3-QIIME and V4-QIIME 

of 50% versus 65% for MVRSION (Figures 2e). Similarly, for the 48GEq sample, 

MVRSION demonstrated superiority in both PPV (79%) and sensitivity (84%) compared to 

V3-QIIME (45%, 64%) and V4-QIIME (53%, 71%) (Figures 2b,f).
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Microbial community samples rarely contain equivalent mixtures of all members. Therefore, 

three synthetic DNA mixtures of known uneven composition were tested; 48G-Stg1, 48G-

Stg2, and 48G-Stg3 contain genomic DNA from the same strains as 48G-Eq but at relative 

abundances varying over a 1000-fold range (Table 3). Analysis of these uneven mixtures 

indicated equivalent sensitivity for MRVSION and the two QIIME single-region analyses, 

while MVRSION was significantly better in its ability to correctly identify component 

species [PPV of 85±6.9% (mean ± SD) compared to 49±1.6% for V3-QIIME (p<0.001, two-

tailed unpaired t-test, equal variance) and 58±3.5% for V4-QIIME (p<0.01); see Figure 2c,g 

for results combined from all three uneven communities].

To further benchmark MVRSION performance, 92 fecal DNA samples were profiled from 

gnotobiotic mice harboring a consortium of 68 sequenced members of the human gut 

microbiota. These mice had been subjected to a series of diet oscillations where the 

representation of various micronutrients was intentionally manipulated (Hibberd et al., 

2017). Consistent with our findings with the synthetic communities that had been assembled 

in vitro, a substantial reduction in false positives was noted for MVRSION compared to 

QIIME single variable region analyses (Figure 2d). Consequentially, MVRSION 

demonstrated a significant PPV advantage (88±1.6%; mean ± SD) over V3-QIIME (65%

±3.7%) and V4-QIIME (72±3.5%) (p<0.0001, two-tailed unpaired t-test, equal variance; 

Figure 2h). Though modest in magnitude, a significant improvement in mean sensitivity was 

also observed for MVRSION (67±5.7%; mean ± SD) versus V3-QIIME (58±4.7%) and V4-

QIIME (62±5.2%) (p<0.0001, two-tailed unpaired t-test, equal variance; Figure 2h).

Since variation in sequence depth could affect sensitivity and PPV, 48 of the 92 mouse fecal 

DNA samples were re-sequenced to approximately 4,000,000 reads per sample (2×150 nt 

paired-end reads; Table 4). Comparison to the original dataset disclosed that this 10-fold 

increase in sequencing depth had no significant effect on sensitivity or PPV for the 

MVRSION or QIIME analyses (p>0.05, two-tailed unpaired t-test, equal variance).

In addition to the sensitivity and specificity analyses, abundance estimates were computed 

for all samples with MVRSION and QIIME (n=97). These estimates were correlated with 

the known relative abundances of members of the synthetic mixtures or, in the case of the 

mouse fecal samples, to abundances determined by short read shotgun sequencing of the 

fecal DNAs (Community PROfiling by Sequencing; COPRO-Seq). MVRSION 

demonstrated superior correlation with known composition (r2 = 0.77 versus 0.46 for V3-

QIIME and 0.45 for V4-QIIME; Figure 2i-k).

3. Discussion

3.1 QIIME abundance filtering

In both the mixture and gnotobiotic mice samples, MVRSION has a marked advantage in 

specificity compared to QIIME. It is possible to reduce false positives and increase 

specificity in QIIME by filtering low abundance taxonomic calls. To evaluate the effect of 

abundance filtering on QIIME sensitivity and specificity (PPV), multiple abundance filter 

levels were tested for the 92 fecal samples obtained from gnotobiotic mice colonized with 

the defined model human gut microbial community. Adjusting the minimum abundance 
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filter above 0% for the QIIME analyses did introduced improvements in PPV. However, this 

improvement came at substantial cost to sensitivity. At the commonly used filter level of 

0.1%, V4-QIIME sensitivity was reduced from 60±5.3% (mean ± SD) to 44±4.3% to 

achieve a PPV of 80±2.6%, which is still significantly lower than that of MVRSION 

(88±1.6%, P < 0.0001; two-tailed unpaired t-test, equal variance) (Figure 2l). Thus, the 

single variable region QIIME analyses could be optimized to approach MVRSION on either 

axis of sensitivity or specificity (PPV) but not both.

3.2 Fluidigm Platform

The Fluidigm platform used to generate amplicons for sequencing provides additional 

benefits. The practical lower limit of input DNA mass with the Fluidigm Access Array 

platform is not currently known. Sample concentrations below the limit of detection of the 

Qubit dsDNA High-Sensitivity kit (<500 pg/microliter) have been tested; these low 

concentration samples have produced results comparable on all levels (mapped reads, 

species called, etc.) to their higher concentration counterparts. Furthermore, recent 

improvements in Fluidigm microfluidic circuits allow up to 192 samples to be processed on 

the Access Array system per run to generate multiplexed amplicon libraries. As ever more 

sequencing indexes become available, the number of amplicon libraries that can be 

processed by short read sequencing platforms (Illumina) scales, allowing for very high 

through-put sample handling.

3.3 MVRSION Software

A python implementation of the MVRSION algorithm is available at https://bitbucket.org/

WUGTAC/mvrsion. Instructions for downloading the MVRSION formatted SILVA database 

used in this paper can also be found on the website. The software requires a NovoAlign 

license to run although BWA support may be added in the future. On a machine with eight 

AMD Opteron 2435 (2009) cores and 8GB of memory, MVRSION processed the validation 

samples at an average wall time of 382 seconds per 100,000 150nt paired-end reads (±229 

seconds STD) and a maximum of 1307 seconds (i.e., an average wall time of 25 minutes per 

sample and a worst case of 1 hour 30 minutes.) For processing samples in parallel, the 

MVRSION implementation supports submitting jobs via PBS/TORQUE, SLURM, and 

SGE.

4. Conclusions

In summary, selection of multiple variable regions of the bacterial 16S rRNA gene provides 

clear advantages compared to traditional single variable region approaches, particularly in 

regard to detection specificity as measured by PPV. Although this study focused on bacterial 

16S rRNA variable regions, in principle any collection of informative sequences, including 

additional SSU rRNAs, could be employed to classify closely related species or strains of 

other organisms. As such, MVRSION has multiple applications ranging from whole 

community profiling to targeted tracking of the representation of a series of organisms of 

interest in diverse environmental and animal host habitats as a function of specified 

variables/perturbations.
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5. Methods

5.1 Selection of Primers

Published literature was searched for bacterial 16S rRNA primer pairs that satisfied the 

following criteria: (i) specificity validated in published literature; (ii) product ㍤ 300bp in 

length, and (iii) detect bacterial taxa represented across a variety of animal and 

environmental habitats (Table 1). 14 primer pairs were selected that amplify all nine variable 

regions in the bacterial 16S rRNA gene.

5.2 Synthetic Community Mixtures

Five DNA samples consisting of synthetic mixtures of bacteria for validation of the method 

were obtained; Human Microbiome Project sample, HM-782D (Microbial Mock 

Community B; Even, Low concentration, v5.1L; BEI Resources, Manassas, VA), which is 

composed of DNA from 20 diverse bacterial species represented in equivalent abundances, 

and four samples containing DNA from 48 human gut bacterial isolates, in equal 

concentration (48G-Eq) or various staggered concentrations (48G-Stg1, 48G-Stg2, 48G-

Stg3) spanning roughly four orders of magnitude (Faith et al., 2013). This collection of 48 

isolates included different strains of the same species with the result that a total of 45 species 

were represented (see Table 3).

5.3 Fecal Samples from Gnotobiotic Mice

Genomic DNA was prepared from fecal pellets collected from gnotobiotic mice. Animals 

were initially fed a nutritionally-sufficient defined diet and then gavaged with a mixture of 

92 cultured sequenced human gut bacterial strains. Animals were subsequently exposed to a 

series of manipulations of dietary micronutrient content (Hibberd et al, 2017). DNA was 

isolated from fecal pellets that were collected over the course of the experiment. The relative 

abundances of each strain in these samples were determined by short-read shotgun 

sequencing (Hibberd et al., 2017); the 68-species identified across these samples are listed in 

Table 3.

5.4 Generation of Amplicon Libraries

DNA samples were processed using the Fluidigm Access Array System according to the 

manufacturer’s protocol (Fluidigm Access Array Users Guide). Up to 48 samples were 

loaded onto the Access Array using an integrated fluidic circuit (model LP 48.48 IFC). For 

each sample, 1μl of DNA (5 ng) was mixed with 4μl of PCR reaction buffer containing High 

Fidelity FastStart Reaction Buffer without MgCl2 (Roche), 4.5 mM MgCl2 (Roche), 5% 

DMSO (Roche), 200 μM PCR Grade Nucleotide Mix (Roche), 0.05 U/μl FastStart High 

Fidelity Enzyme Blend (Roche), and 1X Access Array Loading Reagent (Fluidigm). Four 

microliters of the reaction mixture were loaded into the Sample Inlets of the fluidic circuit. 

Sequencing primers for the 14 amplicons were loaded into the Assay Inlets at a 

concentration of 200 nM in 1X Access Array Loading Reagent (Fluidigm). PCR 

amplification was performed on the BioMark HD system from Fluidigm. Each sample 

(consisting of the 14 amplicons) was harvested and Illumina sequencing adapters were 

attached using 14 rounds of PCR where the 3’ ends of the primer anneal to Fluidigm specific 
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sequences attached to the 5’ end of the 16S rRNA primers. Samples were pooled, subjected 

to a bead-based purification (AMPure XP, Beckman) and then sequenced on a single lane of 

a flow cell using an Illumina MiSeq or HiSeq 3000 instrument (see Table 4 for sequencing 

depths). Reads from the individual samples were de-multiplexed based on their unique index 

tags.

5.5 MVRSION Algorithm

An overview of the analysis method is provided in Figure 1. A detailed technical description 

of each component of the process is provided below.

5.5.1 Curated 16S rRNA database preparation, in silico PCR, and predicted 
amplicon sequences—MVRSION relies on a curated 16S rRNA database to identify 

known bacterial sequences within a sample. For this work, we started with the non-

redundant, Silva SSU database (Ref NR 99 release 123) (Quast et al., 2013). The annotated 

species were compared to accepted species names from the List of Prokaryotic Names with 

Standing in Nomenclature (LPSN) (Euzeby, 1997). Sequences in SILVA that did not contain 

a species identifier within the LPSN list were removed. All information beyond the species 

name was subsequently discarded. The final form of the database included the following 

files; (i) A fasta file of full length 16S rRNA sequences annotated with unique sequence ids 

and a matching NovoAlign index file, and (ii) a table matching each sequence id with a 

species-level taxonomic string

The predicted amplicon sequence dataset was prepared by performing in silico PCR on the 

curated database with the primer set using PrimerProspector (Walters et al., 2011) 

commands: “analyze_primers.py” (default parameters)

“get_amplicons_and_reads.py –min_seq_len 100 –read_len 151”

This dataset consists of (i) Fasta files for each primer pair containing amplicon sequences 

from running PrimerProspector on the full length 16S rRNA sequences, and (ii) a table 

detailing what fraction of a species’ full-length 16S rRNA sequences have in silico 
amplification for each amplicon.

5.5.2 Preprocessing of sequencing data—Raw fastq files are demultiplexed by 

sample and then processed with the adapter trimming program scythe (Buffalo, 2011). The 

following procedure is applied to each read pair to identify the origin amplicon and to 

remove primer sequences:

• Let 𝐿(𝑁, 𝑠1,𝑠2) be the Levenshtein distance between the first N letters of two 

strings

• Let 𝑅1 and 𝑅2 be a read pair

• Let p1
A be the forward Fluidigm primer and p2

A the reverse Fluidigm primer from 

amplicon A

Annotate read pair as originating from amplicon A if the following condition is met:
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L N, p1
A, R1 ≤ L(N, p2

A, R2) ≤ M

where N is set to the length of the longest primer in the amplicon panel. M was set to 4 in 

our validation tests. Any reads with multiple or zero amplicon annotations are removed from 

the data. For each read remove the 3’ subsequence 𝑅′ such that

arg min
R

L R′, pA

5.5.3 Candidate Species Identification—Annotated reads are aligned to the database 

with NovoAlign (version 3.07.00) with the options:

“novoalign –t 60 –Hk –I PE 50–400 –r Random –d database”

Alignments are filtered to consider only read pairs that are both aligned to sequences from 

the same species. For each species, we define a set of 𝐷 = {𝛼1, 𝛼2,…, 𝛼𝑁} where 𝛼𝑖 is the set 

of all reads originating from amplicon i that were mapped to any reference sequence 

belonging to the species. We define a filter function f (D, δ) = {α ∈ D: |α\≥ δ} which returns 

the α sets from D that have greater than or equal to δ reads. The decision function used to 

determine the presence of a species is

F(D, θ, β, ρ) = k ∈ 1, 2, …ρ : f D, θβp − k ≥ k

F takes as input the data D, a baseline number of reads θ, a scaling factor β, and a maximum 

number of amplicons ρ. k is the number of α sets that the filter function must return for F to 

return a positive result. The scaling factor β exponentially increases the number of reads 

required by the filter function when k is fewer than ρ amplicons are required. The decision 

function F is applied to all species that have at least one alignment. A species is defined as 

present if F does not return the null set.

• For the initial filter stage β =5, ρ = 3 and θ = 10−4∑i|αi|

• For the second filter stage β =5, ρ = 4 and θ = 10−4∑i|αi|

Species passing the initial filter stage are regarded as candidate species because the final 

calls of the algorithm will come from this group. A sub-database is created that contains 

only 16S rRNA sequences from the candidate species. The purpose of this sub-database is to 

eliminate erroneous mapping of reads to species that are likely not present in the sample.

5.5.4 Dynamic Discriminatory Variable Region Selection—For final species calls, 

the decision function is applied to a group of species-specific amplicon sets instead of the 

entire amplicon panel. These amplicon sets are chosen by their ability to distinguish a 

species from the other candidate species. To generate these amplicon sets, fasta files created 

by PrimerProspector for each amplicon are aligned by NovoAlign to the sub-database:

“novoalign –t 60 –Hk –I PE 50–400 –r All 400”
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From this alignment, a list for each sequence is created of possible multi-mappings to 

sequences from other species. For each species, the list of possible multi-mapping to other 

species is fed into the procedure MakeModel and its component subroutines.

Intersection:  Find the smallest set of amplicons such that the intersection of their multi-

mapping lists is the empty set.

Backup:  Sort the amplicons by increasing length of multi-mapping lists. Return all 
r + 1

r
sets of amplicons from the first r+1 sorted amplicons.

MakeModel:  Remove from consideration any amplicons with predicted amplification of 

less than 80% of a species’ sequences. Run Intersection recursively, removing the selected 

amplicons from consideration in the following Intersection call. If no valid intersections can 

be found, run Backup and return.

MakeModel returns one or more amplicon sets, any of which can be used to call an 

organism. Multiple models are generated to allow for the unexpected failure of one of the 

amplicons.

5.5.5 Final Species Calls – Assignment and Abundance Estimation—The 

processed fastq files are realigned to the sub-database sequences using NovoAlign.

“novoalign –t 60 –Hk –I PE 50–400 –r Random”

For each species, apply the procedure FinalCall.

Call:  Apply the decision function F (defined in the Initial Filter section) to data containing 

only reads originating from amplicons in the model amplicon set.

FinalCall:  Run Call on each of the amplicon sets returned by MakeModel and call species 

as present if Call returns true for any of the sets. Re-run MakeModel removing any species 

not called as present from the multi-mapping lists. Apply Call again to each of the amplicon 

sets returned by the second MakeModel call and return the final set of called species.

The final output of MVRSION is a list of species that were called ‘present ‘in the sample 

along with a relative abundance p based on the number of reads that aligned to the species.

For a species S, relative abundance is calculated as:

Let N be the number of amplicons.

Let 𝛼𝑖 be the set of reads aligning to S from amplicon i and

Let 𝐴𝑖 be the set of reads aligning to any species from amplicon i.

pi =
αi
Ai
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p = p1, p2, ⋯, pN

5.6 QIIME Analysis

QIIME comparator data were constructed with both V3_2 and V4 amplicons (Table 1) to 

provide insights about variation between regions. For both amplicons, the paired-end 

amplicon-annotated reads were joined using fastq-join with default parameters (Aronesty, 

2011). Reads were then processed with QIIME version 1.9.0

“pick_open_reference_otus –m uclust –p qiime_parameters.txt”

The qiime_parameters.txt file is available upon request. OTUs at 97% sequence identity 

were generated with UCLUST using the MVRSION database full-length 16S rRNA fasta 

file as the --reference_fp value. Taxonomy was assigned by QIIME’s UCLUST consensus 

taxonomy assigner at the default similarity parameter of 0.9, and using the MVRSION 

database sequence id to taxonomy table as the --id_to_taxonomy_fp value.

The final set of QIIME relative abundance values was generated with

“summarize_taxa.py –i otu_table_mc2_w_tax_no_pynast_failures.biom”

The species level taxonomic summary file generated by this command is processed by the 

procedure NonSpeciesFilter and then the procedure AbundanceFilter with filter value λ.

NonSpeciesFilter: Remove any taxonomic call that has an empty value for the species 

name from all samples.

AbundanceFilter—For each sample, remove any taxonomic calls that have relative 

abundance less than λ. Calculate PPV, sensitivity, and specificity using all remaining 

taxonomic calls.

Figure 2l was generated by performing multiple QIIME analyses on the gnotobiotic mice 

samples with different values of λ. The QIIME results presented in Figures 2a-k were run 

with λ = 0.

5.7 Assessment of Species Calls

For each sample and both MVRSION and QIIME, the True Positives (TP), False Positives 

(FP) and False Negatives (FN) are defined in the following way. Let 𝑅𝑆 be the relative 

abundance of species S called by a method and let 𝐾𝑆 be the known abundance or the 

COPRO-Seq determined relative abundance value for species S. Each species call is 

classified accordingly:

TP is 𝑅𝑠𝑆 > 0 and 𝐾𝑆 > 0

FP is 𝑅𝑆 > 0 and 𝐾𝑆 = 0
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FN is 𝑅𝑆 = 0 and 𝐾𝑆 > 0
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• MVRSION performs microbial taxonomic profiling utilizing multiple 16S 

rRNA amplicons

• The method was validated utilizing samples containing well-characterized 

microbial DNA

• Improved specificity and sensitivity as compared to single-region QIIME 

analysis

• Improved relative abundance estimates as compared to single-region QIIME 

analysis
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Figure 1. Overview of the MVRSION method for identifying microbial species.
There are two major components to the MVRSION algorithm. (a) Two MVRSION 

databases are compiled for use with all sequencing datasets. A curated database contains 

accurately annotated (bacterial species-level), full length 16S rRNA sequences from public 

sources (SILVA). Using this curated 16S rRNA database and known amplicon primer 

sequences, in silico PCR predicts a list of all amplicon sequences across the nine 16S rRNA 

variable regions of all bacterial species in the curated database. These databases are 

subsequently used for processing all input datasets. (b) For sample processing, amplicon 

sequencing reads are mapped to the 16S rRNA sequences in the curated database. A list of 

candidate species is generated from all species with reads mapping to four or more variable 

regions. For each candidate species, the predicted amplicons are compared to all other 

candidate species. From the predicted amplicon comparison, variable region(s) with 

sequences most unique to that candidate species versus all other candidates are selected as 

its “discriminatory variable regions”. In parallel, the original input reads are re-aligned to 

just the candidate species, as all other species from the curated 16S rRNA database have 

been eliminated from consideration. If a requisite number of reads have been mapped to a 

candidate species discriminatory variable region(s) from this realignment, the species is 

called present. For all species called present, the abundance is estimated as described in 

Section 5.5.5.
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Figure 2. MVRSION and single 16S rRNA variable region QIIME comparative analyses.
(a-d) Species-level assessments of the comparative measures True Positives (TP), False 

Positives (FP), and False Negatives (FN) as computed for the three analytical methods 

(MVRSION, V3-QIIME, and V4- QIIME) utilizing the synthetic mixtures (HM-782D, 48G-

Eq, combined 48G-Stg1–3), and 92 fecal samples from gnotobiotic mice, respectively. (e-h) 

Calculated Positive Predictive Values (PPV) and Sensitivity (Sens) for the three analytical 

methods and samples. Statistical comparisons are significantly improved for MVRSION 

compared to single variable region analyses with QIIME, **, P<0.01; ***, P<0.001; ****, 

P<0.0001 (two-tailed unpaired t-test, equal variance). (i-k) MVRSION, V3-QIIME, and V4-

QIIME estimated relative abundance for all taxa identified in all samples, compared to their 

relative abundance based on known DNA concentrations in synthetic mixtures or COPRO-

Seq analysis of DNAs prepared from fecal samples obtained from gnotobiotic mice 

harboring a defined model human gut microbiota. While all correlations are significant 

(P<0.0001), MVRSION demonstrates a markedly higher r2 value (0.77) compared to V3-

QIIME (0.46) and V4-QIIME (0.45). (l) V4-QIIME analysis was run at multiple levels of 

abundance filtering, as described in Section 5.6, to illustrate the optimization of MVRSION 

for both sensitivity and specificity.
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Table 1.
Primer Sequences and Sources.

Primer sequences associated with the 14 PCR amplicons covering 9 variable regions tested for the MVRSION 

method.

Bacterial 16S rRNA Variable Region Amplicon Primers

Region Amplicon Size (bp) Name Primer Sequence Name Sequence Reference PMID

V1-V2 300 V1-V2 F AGAGTTTGATCCTGGCTCAG V1-V2 R TGCTGCCTCCCGTAGGAGT 19892944,
18264105, 22179717

V1 113 V1 F AGAGTTTGATCMTGGCTCAG V1 R TTACTCACCCGTICGCCRCT 18047683

V2 261 V2 F AGYGGCGIACGGGTGAGTAA V2 R CYIACTGCTGCCTCCCGTAG 18047683

V3 200 V3_1 F ACTYCTACGGRAGGCWGC V3_1 R GTGCCAGCMGCCGCGGTAA 23579286, 18047683

V3 170 V3_2 F CCTACGGGAGGCAGCAG V3_2 R GTATTACCGCGGCTGCTGG 22853944, 21460107

V4 250 V4 F GTGCCAGCMGCCGCGGTAA V4 R GGACTACHVGGGTWTCTAAT 22179717, 20534432

V5 140 V5_1 F ATTAGATACCYTGTAGTCC V5_1 R CCGTCAATTCMTTTGAGTTT 18047683

V5 100 V5_2 F AGGATTAGATACCCT V5_2 R CRTACTHCHCAGGYG 22853944

V5-V6 280 V5-V6 F AGGATTAGATACCCTGGTA V5-V6 R CRRCACGAGCTGACGAC 23791918, 18665274

V6 167 V6_1 F AAACTCAAAKGAATTGACGG V6_1 R ACGAGCTGACGACARCCATG 18047683

V6 100 V6_2 F CNACGCGAAGAACCTTANC V6_2 R CGACAGCCATGCANCACCT 20962877

V6 76 V6_3 F CAACGCGARGAACCTTACC V6_3 R ACAACACGAGCTGACGAC 20711427

V7-V8 300 V7-V8 F GYAACGAGCGCAACCC V7-V8 R GACGGGCGGTGWGTRC 20880993

V9 116 V9F GTACACACCGCCCGT V9 R TACCTTGTTACGACTT 18047683
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Table 2
Amplicon Coverage and Model Utilization.

Amplicon sequencing data were evaluated using the 20 taxa HM-782D and 48 taxa 48G-Eq samples. Several 

of the amplicons where predicted, by in silico PCR, to have poor amplification for the species present in the 

SILVA 16S rRNA database. A species is ‘Predicted to amplify’ by a primer pair if the primers amplify 80% or 

more of the 16S rRNA sequences belonging to the species in the database. Predictions of poor amplification 

were empirically confirmed by the negligible number of species with a significant number of mapped reads (> 

1% of total) when these two mock community samples were sequenced.

Variable Region Amplicon % SILVA Species 
Predicted to Amplify

HM-782D (20-taxa consortium) 48G-Eq (48 taxa consortium; even)

% Total Reads % Species >1% 
Total Reads

% Total Reads % Species >1% 
Total Reads

V1 0.2% 5.9% 0 3.3% 0

V1-V2 37.9% 4.6% 24 2.4% 21

V2 91.3% 7.6% 28 9.7% 21

V3_1 0.01% 9.7% 1 0.5% 2

V3_2 98.3% 10.6% 31 14.6% 23

V4 97.7% 7.9% 32 7.1% 23

V5-V6 96.6% 7.1% 27 6.3% 21

V5_1 73.8% 5.6% 0 1.7% 0

V5_2 0.1% 5.5% 1 4.6% 0

V6_1 98.6% 6.4% 27 14.2% 21

V6_2 0.04% 5.30% 0 7.6% 0

V6_3 0.04% 5.8% 0 8.3% 0

V7-V8 94.0% 9.0% 30 9.1% 22

V9 0.1% 7.1% 0 5.8% 0
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Table 3.
Sample Species Compositions.

Species information for each of the tested samples. HM-782D (20 species), and all 48G (45 species), samples 

have known DNA quantities added for each of the species. The species composition of fecal microbiota 

samples recovered from gnotobiotic mice was determined by short read shotgun sequencing of community 

DNA and mapping the results reads to the genomes of members of the consortium of cultured human gut 

bacterial strains that had been introduced into the animals. The COPRO-Seq percent relative abundance of 

each species is given as the mean for all 92 gnotobiotic samples plus or minus the standard deviation.

HM-782D (20-taxa consortium) 48G 45-taxa consortium Gnotobiotic Mice 68-taxa consortium

Known Species Known Species Stg1 Rel. % Stg2 Rel. % Stg3 Rel. % Known Species COPRO-Seq Rel. %

Acinetobacter baumannii Akkermansia muciniphila 4.2 0.3 4.2 Akkermansia muciniphila 3.5E+01 ± 6.8E+00

Actinomyces odontolyticus Alistipes indistinctus 0.1 0.5 4.2 Anaerotruncus colihominis 2.7E-01 ± 1.3E-01

Bacillus cereus Anaerococcus hydrogenalis 0.3 4.2 8.4 Bacteroides WH2 7.9E+00 ± 2.4E+00

Bacteroides vulgatus Anaerotruncus colihominis 8.4 1.1 0.1 Bacteroides caccae 1.6E+01 ± 2.7E+00

Clostridium beijerinckii Bacteroides cellulosilyticus 0.3 0.5 0.1 Bacteroides cellulosilyticus 3.0E-01 ± 6.4E-01

Deinococcus radiodurans Bacteroides dorei 8.4 2.1 1.1 Bacteroides coprophilus 4.2E-04 ± 6.0E-04

Enterococcus faecalis Bacteroides eggerthii 1.1 8.4 0.3 Bacteroides dorei 5.3E+00 ± 4.9E+00

Escherichia coli Bacteroides finegoldii 0.1 0.1 0.5 Bacteroides eggerthii 1.8E+00 ± 8.3E-01

Helicobacter pylori Bacteroides intestinalis 1.1 4.2 1.1 Bacteroides finegoldii 1.5E-01 ± 1.0E-01

Lactobacillus gasseri Bacteroides ovatus 8.4 1.1 0.1 Bacteroides intestinalis 1.2E-01 ± 1.4E-01

Listeria monocytogenes Bact. thetaiotaomicron 1.1 17.3 5.4 Bacteroides ovatus 1.5E-01 ± 1.7E-01

Neisseria meningitidis Bacteroides uniformis 2.1 0.3 4.2 Bacteroides plebeius 6.1E-04 ± 6.6E-04

Propionibacterium acnes Bacteroides vulgatus 1.1 0.1 0.3 Bact, thetaiotaomicron 6.9E+00 ± 1.3E+00

Pseudomonas aeruginosa Bacteroides xylanisolvens 0.1 2.1 0.5 Bacteroides uniformis 8.3E-01 ± 2.3E-01

Rhodobacter sphaeroides Bifidobacterium bifidum 0.3 0.3 2.1 Bacteroides vulgatus 4.3E+00 ± 2.6E+00

Staphylococcus aureus Bifid. pseudocatenulatum 0.1 4.2 8.4 Bacteroides xylanisolvens 1.2E-01 ± 5.8E-02

Staph. epidermidis Blautia hansenii 8.4 0.3 0.1 Bifidobacterium adolescentis 1.7E-02 ± 7.9E-03

Streptococcus agalactiae Blautia luti 2.1 1.1 2.1 Bifidobacterium bifidum 1.5E-05 ± 1.0E-04

Streptococcus mutans Clostridium asparagiforme 0.1 0.5 8.4 Bifid. pseudocatenulatum 3.6E-04 ± 8.2E-04

Strep. pneumoniae Clostridium hathewayi 0.3 0.3 0.1 Blautia hansenii 6.7E-01 ± 2.3E-01

Clostridium leptum 0.5 0.1 2.1 Blautia hydrogenotrophica 9.8E-06 ± 9.6E-05

Clostridium nexile 4.7 2.2 0.5 Blautia luti 2.5E-04 ± 5.2E-04

Clost. saccharolyticum 8.4 0.1 4.2 Citrobacter youngae 4.9E-02 ± 5.8E-02

Clostridium sporogenes 2.1 2.1 0.5 Clostridium asparagiforme 1.2E-01 ± 6.0E-02

Collinsella intestinalis 1.1 2.1 1.1 Clostridium bartlettii 5.7E-06 ± 5.6E-05

Coprococcus comes 4.2 1.1 0.5 Clostridium bolteae 1.1E+00 ± 2.6E-01

Dorea formicigenerans 4.2 1.1 0.1 Clostridium hathewayi 3.6E+00 ± 1.3E+00

Dorea longicatena 0.1 0.5 8.4 Clostridium hylemonae 5.2E-02 ± 7.1E-02

Edwardsiella tarda 0.1 8.4 0.1 Clostridium leptum 3.0E-02 ± 1.3E-02

Enterobacter cancerogenus 1.1 0.1 0.5 Clostridium nexile 2.0E-01 ± 1.6E-01

Escherichia coli 0.1 0.1 8.4 Clostridium ramosum 5.6E-01 ± 2.6E-01

Escherichia fergusonii 1.1 0.5 0.1 Clostridium scindens 4.2E-01 ± 1.4E-01
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HM-782D (20-taxa consortium) 48G 45-taxa consortium Gnotobiotic Mice 68-taxa consortium

Known Species Known Species Stg1 Rel. % Stg2 Rel. % Stg3 Rel. % Known Species COPRO-Seq Rel. %

Eubacterium biforme 2.1 8.4 2.1 Clostridium spM62 1 4.5E-05 ± 2.0E-04

Eubacterium eligens 0.3 4.2 0.5 Clostridium sporogenes 1.1E-02 ± 9.6E-03

Eubacterium ventriosum 0.3 0.1 2.1 Clostridium symbiosum 5.1E-01 ± 1.6E-01

Faecalibacterium prausnitzii 4.2 0.1 0.3 Collinsella aerofaciens 9.6E-01 ± 6.6E-01

Parabacteroides johnsonii 0.1 0.1 8.4 Collinsella intestinalis 4.3E-01 ± 2.7E-01

Proteus penneri 4.2 0.1 0.1 Collinsella stercoris 8.6E-01 ± 6.2E-01

Providencia alcalifaciens 2.1 0.1 4.2 Coprococcus comes 2.9E-02 ± 2.4E-02

Roseburia intestinalis 8.4 1.1 0.3 Desulfovibrio piger 3.1E+00 ± 7.6E-01

Ruminococcus gnavus 0.5 4.2 1.1 Dorea formicigenerans 2.5E-03 ± 5.7E-03

Ruminococcus lactaris 0.5 4.2 0.1 Dorea longicatena 2.4E-04 ± 5.2E-04

Ruminococcus torques 2.1 2.1 1.1 Edwardsiella tarda 2.5E-01 ± 2.0E-01

Streptococcus infantarius 0.1 0.3 0.1 Enterobacter cancerogenus 3.8E-02 ± 9.0E-02

Subdoligranulum variabile 0.1 8.4 2.1 Escherichia coli 1.6E-03 ± 5.8E-03

Escherichia fergusonii 2.7E-01 ± 2.5E-01

Eubacterium biforme 7.0E-04 ± 9.7E-04

Eubacterium cylindroides 2.1E-03 ± 1.8E-03

Eubacterium dolichum 3.5E-05 ± 1.6E-04

Eubacterium hallii 2.0E-04 ± 4.6E-04

Eubacterium rectale 2.2E-05 ± 1.3E-04

Faecalibacterium prausnitzii 4.1E-05 ± 1.9E-04

Flavonifractor plautii 1.1E-03 ± 1.2E-03

Fusobacterium varium 1.7E+00 ± 6.4E-01

Holdemania filiformis 3.6E-01 ± 1.0E-01

Lactobacillus ruminis 4.6E-04 ± 1.2E-03

Marvin, formatexigens 9.1E-06 ± 8.9E-05

Megamonas funiformis 9.2E-02 ± 7.3E-02

Mitsuokella multacida 1.3E-04 ± 6.6E-04

Parabacteroides distasonis 2.2E-02 ± 5.2E-03

Parabacteroides johnsonii 3.8E+00 ± 1.2E+00

Parabacteroides merdae 3.4E-01 ± 4.2E-01

Proteus penneri 2.7E-02 ± 4.9E-02

Providencia stuartii 1.9E-04 ± 4.3E-04

Ruminococcus gnavus 4.7E-01 ± 2.1E-01

Ruminococcus lactaris 7.5E-05 ± 2.4E-04

Ruminococcus torques 7.2E-01 ± 8.5E-01

Subdoligranulum variabile 4.0E-01 ± 1.2E-01
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Table 4.

Sequencing read information

Sequencing Run Samples Total Reads (2×150 nts) Ave. Reads/Sample

MiSeq Run1 HM-782D, 48G, 44 fecal samples from gnotobiotic mice 20,174,270 411,720

MiSeq Run2 48 fecal samples from gnotobiotic mice 16,415,978 342,000

HiSeq Run1 48 fecal samples from gnotobiotic mice (same samples characterized in 
MiSeq Run2) 200,411,162 4,175,233
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