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BACKGROUND: To effectively incorporate in vitro data into regulatory use, confidence must be established in the quantitative extrapolation of in vitro
activity to relevant end points in animals or humans.

OBJECTIVE: Our goal was to evaluate and optimize in vitro to in vivo extrapolation (IVIVE) approaches using in vitro estrogen receptor (ER) activity
to predict estrogenic effects measured in rodent uterotrophic studies.

METHODS:We evaluated three pharmacokinetic (PK) models with varying complexities to extrapolate in vitro to in vivo dosimetry for a group of 29
ER agonists, using data from validated in vitro [U.S. Environmental Protection Agency (U.S. EPA) ToxCast™ ER model] and in vivo (uterotrophic)
methods. In vitro activity values were adjusted using mass-balance equations to estimate intracellular exposure via an enrichment factor (EF), and
steady-state model calculations were adjusted using fraction of unbound chemical in the plasma (fu) to approximate bioavailability. Accuracy of each
model-adjustment combination was assessed by comparing model predictions with lowest effect levels (LELs) from guideline uterotrophic studies.

RESULTS: We found little difference in model predictive performance based on complexity or route-specific modifications. Simple adjustments,
applied to account for in vitro intracellular exposure (EF) or chemical bioavailability (fu), resulted in significant improvements in the predictive per-
formance of all models.
CONCLUSION: Computational IVIVE approaches accurately estimate chemical exposure levels that elicit positive responses in the rodent uterotrophic
bioassay. The simplest model had the best overall performance for predicting both oral (PPK_EF) and injection (PPK_fu) LELs from guideline utero-
trophic studies, is freely available, and can be parameterized entirely using freely available in silico tools. https://doi.org/10.1289/EHP1655

Introduction
In vitro assays are routinely used to provide mechanistic insight
on the bioactivity of xenobiotics and offer the potential for more
human-relevant, humane, and efficient alternatives to toxicity
testing in animals. Over the past decade, significant effort has
been devoted to overcoming the many challenges associated with
implementing high-throughput screening (HTS) programs for
environmental chemicals (e.g., establishing and managing chem-
ical libraries, chemical dispensing, analytical quality control
(QC), data processing and management, analytical precision,
etc.) (Filer et al. 2017; Kavlock et al. 2012; Tice et al. 2013).
These efforts have been successful to the point where screening
∼ 10,000 chemicals in a few weeks is now routine in some facili-
ties (Shukla et al. 2010). However, the utility of these approaches
to quantitatively inform biological responses in vivo needs to be
evaluated before the data can be effectively used for risk assess-
ment and regulatory decision-making.

In vitro to in vivo extrapolation (IVIVE) uses in silico and com-
putational approaches to translate bioactive chemical concentrations
obtained from in vitro assays to corresponding exposures likely
to induce bioactivity in vivo. Establishing confidence in IVIVE
methods requires comparison of computationally predicted
effects with those observed in humans or animal models. In pre-
vious work, we used a simple one-compartment population
model and data from a single in vitro assay, the BG1Luc trans-
activation assay [Organization for Economic Cooperation and
Development (OECD) TG455], for IVIVE analyses of two estro-
gen receptor (ER) reference chemicals, 17beta-estradiol (E2) and
bisphenol A (BPA), with mixed results (Chang et al. 2015). Other
efforts have used heterologous in vitro data from largely uncharac-
terized assays (i.e., activity values from any of ∼ 600 assays, with-
out consideration of mechanism) paired with any effect from any
in vivo end point reported in ToxRefDB (Martin et al. 2009;
Wetmore et al. 2013), a U.S. Environmental Protection Agency
(U.S. EPA) database that contains information on thousands of
studies on hundreds of chemicals (Martin and Judson 2010).
Although potentially useful in the context of prioritization, this
methodology does not assess the ability of IVIVE approaches to
inform mechanism-specific end points, nor does it expressly
account for data quality. Here, we used highly curated data
obtained from validated in vitro [U.S. EPA ToxCast™ ER model
(Judson et al. 2015)] and in vivo (OECD rodent uterotrophic)
methods that assess the same mechanism of action (ER agonist ac-
tivity) (Kleinstreuer et al. 2016). This approach allowed us to eval-
uate, compare, and optimize the quantitative performance of
IVIVE approaches used to predict exposures (mg/kg/day) likely to
result in ER agonist pathway activation in vivo, with potential
applicability to other mechanisms of action as well.

Several important factors need to be considered when con-
ducting IVIVE analyses: biological relevance of the in vitro sys-
tem, chemical-specific data to inform estimates of distribution
and metabolism (e.g., metabolic clearance capacity, plasma pro-
tein binding, physicochemical properties, etc.), variability of the
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in vivo data (e.g., due to study design, genetic heterogeneity), and
suitability of the computational model being used to make predic-
tions. Biological relevance refers to how well the in vitro system
represents the in vivo mechanism or pathway of interest. Our work
looks at the U.S. EPA ToxCast™ ER model, a well-characterized
signal transduction pathway of great relevance to human and eco-
logical health (U.S. EPA 1998). On the in vitro side of the equation,
the U.S. EPA ToxCast™ program screened 1,886 environmental
chemicals in 16 in vitro assays that measure discrete biological
processes along the ER agonist pathway: ligand binding, receptor
dimerization, transcription factor–chromatin binding, transcription,
protein production and cell proliferation. Data from these experi-
ments were used to develop an integrated pathway activity model
for predicting ER agonist activity (ER model) (Browne et al.
2015; Judson et al. 2015). ER model scores [the Area Under
Curve (AUC)] range from 0 (no activity) to 1 (bioactivity of
17beta-estradiol) and are used to parse chemicals into three cate-
gories: active, inactive, or inconclusive. A total of 266 chemicals
classified as either active or inconclusive (AUC>0:01) were used
in the present study. The ToxCast™ ER model, chemical classifi-
cations, and all supporting data underwent peer review sponsored
by U.S. EPA and were found to be relevant and reliable tools
for assessing the estrogenic potential of environmental chemi-
cals (U.S. EPA 2014). On the in vivo side, the uterotrophic
assay is a rodent test validated by the OECD and accepted by
the U.S. EPA for measuring uterine hypertrophy caused by acti-
vation of the ER agonist pathway (U.S. EPA 2009). We previ-
ously published a curated database of uterotrophic assay results
used to validate the ER model described above (Kleinstreuer
et al. 2016), demonstrating a qualitative predictive relationship
(active, inactive, inconclusive) between ER model activity and
bioactivity in the uterotrophic assay. Here we use results from
guideline uterotrophic studies to evaluate and optimize quanti-
tative IVIVE approaches that incorporate in vitro ER model
data to calculate chemical exposures predicted to cause estro-
genic responses in the rodent model.

The accuracy of IVIVE approaches relies extensively on the accu-
racy of in vitro potency measurements, which are typically propor-
tional to the in vivo exposures predicted to elicit the response of
interest (e.g., lowering the in vitro activity twofold will lower the esti-
mated in vivo exposure dose twofold). Traditionally, in vitro concen-
tration–activity relationships (e.g., EC10, AC50, etc.) are described
using the nominal concentration of the test article: the quantity of
chemical added divided by the volume of the exposure medium.
However, many experimental elements are known to affect chemical
partitioning in the medium: vessel plastic, media lipids, media pro-
teins, cell membranes, cell density, etc. These factors can alter the
true exposure concentration of active chemical, potentially by many
orders of magnitude, and thus introduce significant error into any
dose-based measure of chemical activity (Gülden and Seibert 2003;
Kramer et al. 2012; Teeguarden and Barton 2004; Truisi et al. 2015).
Armitage et al. published amass-balancemodel that considers critical
assay components (e.g., percent serum in media, media volume, cell
number, etc.) alongwith the physicochemical properties of the test ar-
ticle to calculate mass distribution of a chemical within the system
(Armitage et al. 2014). Other, more complex, approaches have been
published (Fischer et al. 2017), but require input parameters that are
more difficult to obtain and in our experience, do not offer a signifi-
cant improvement in performance (data not shown).

PK models used for IVIVE approaches vary in structure and
complexity, from simple one-compartment models that rely on
assumptions of linear dose–response curves and steady-state
kinetics, to highly complex multicompartment (15+ ) models using
tissue-specific partition coefficients to calculate time-dependent
chemical concentrations (e.g., Cmax). Here, we evaluated the

performance of three PKmodels of different structure and complex-
ity in an attempt to identify the least complex (most accessible)
model with the best accuracy. We then improved the accuracy of
thesemodels with incorporation of adjustments to chemical potency
and bioavailability that are readily calculated using open-source in
silico tools. This work facilitates comparison of chemical potency
between in vitro and in vivo data mapped to a common biological
pathway, with the aim of providing sufficient confidence in these
approaches to warrant their routine use in chemical prioritization,
hazard assessment, and regulatory decision-making.

Methods

In Vitro ACCER

ER in vitro bioactivity of 1,886 chemicals was measured in 16 in
vitro assays run in U.S. EPA ToxCast™ and NIH National Center
for Advancing Translational Sciences (NCATS) high-throughput
screening programs (Browne et al. 2015; Judson et al. 2015). The
assays measure five discrete aspects of ER model activation: ER
binding, formation of ERa and ERb hetero- and homodimers, inter-
action of the mature transcription factor with DNA, transactivation,
and cell proliferation. Details of each assay have been previously
published (Dix et al. 2007; Judson et al. 2010) and are described on
U.S. EPA’s ToxCast™website (http://www.epa.gov/ncct/toxcast/).
Concentration–response curves for each chemical-assay pair were
used to develop a computational ER model for bioactivity (ER
model) (Browne et al. 2015; Judson et al. 2015). A detailed descrip-
tion of the model, including freely available source code, is pro-
vided in (Judson et al. 2015) and on the following EPA webpage
(ftp://newftp.epa.gov/COMPTOX/STAFF/rjudson/publications/
Judson%20ER%20Model%20ToxSci%202016/). Briefly, the ER
model integrates data from each of the 16 assays in an unweighted
manner, while subtracting background and other nonspecific assay
interference, including cytotoxicity. The model outputs AUC rang-
ing from 0 (no activity) to 1 (bioactivity of 17beta-estradiol) used to
classify chemicals as active, inactive, or inconclusive with regard to
ER agonist activity. We selected all chemicals with an AUC>0:01
(all active and inconclusive) for further analysis. For these 266
chemicals, we used the ER model’s quantitative chemical activity
output, the activity concentration at statistically significant cutoff
(ACCER), as a measure of chemical potency. The ACCER is the me-
dian ACC from the ERmodel based on the integrated synthetic con-
centration–response curve and represents the concentration (lM) at
which significant activity was observed against the ER model over-
all, providing an in vitro lowest effect level. ACCER values have
been published previously (Judson et al. 2015) and are available
through the U.S. EPA ToxCast™ webpage (U.S. EPA 2015). The
ACCER values used in our analyses can be found in Table 1.

ACCER values could not be calculated for three high-potency
steroid estrogens that achieved maximum responses at the low-
est tested concentration (∼ 1 nM) in the HTS assays: (17alpha-
ethinylestradiol, diethylstilbestrol, and 17beta-estradiol). For
these chemicals, the ACCER was replaced with EC10 values (con-
centration at which 10% of maximum activity is observed, lM)
from the manual luciferase-based assay in the VM7Luc4E2 cell
line (Ceger et al. 2015), which included testing concentrations
sufficiently low to produce a full dose–response curve (the HTS
version of this assay was used in the ToxCast™ ER model). The
EC10 values are also reported in Table 1.

In Vivo Uterotrophic Assay Data
The uterotrophic bioassay is a short-term in vivo test designed to
detect the estrogenic potential of chemicals by quantifying uterine
weight changes after administration of the test article via either
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injection or oral dosing. The assay was validated by the OECD,
incorporated into the OECD test guidelines program (OECD TG
440), and adopted by the U.S. EPA as an EDSP Tier 1 bioassay to
screen for chemicals with estrogenic properties (EPA OPPTS
890.1600). The National Toxicology Program Interagency
Center for the Evaluation of Alternative Toxicological Methods
(NICEATM) conducted a comprehensive literature search to
identify uterotrophic studies using ∼ 2000 environmental chemi-
cals identified by the U.S. EPA as relevant to EDSP efforts
(Kleinstreuer et al. 2016). For each uterotrophic study, the exper-
imental protocol was evaluated for fulfillment of a set of mini-
mum criteria to assess compliance with the uterotrophic study
protocol design requirements set forth in EPA OCSPP 890.1600
(U.S. EPA 2009) and OECD TG 440 (OECD 2007). The mini-
mum criteria were based on protocol elements specific to these
test guidelines, such as animal model, animal age, exposure/dos-
ing regimen, administration route, group size, and necropsy tim-
ing. To minimize the impact of in vivo variability, only studies
meeting all minimum criteria (guideline-like) were included in
the current analysis, and only chemicals with at least two inde-
pendent guideline studies were considered. The lowest effect
level (LEL) associated with uterine weight gain (i.e., estrogenic

effect) was recorded for each chemical–study combination and
served as the reference value for judging the performance of the
PK models evaluated herein. All uterotrophic data are available
via NICEATM’s website at https://ntp.niehs.nih.gov/go/40658
(Kleinstreuer et al. 2016).

Chemical Selection
Our initial analysis was limited to those chemicals with both
positive (active) ACCER values in the ToxCast™ ER model and
at least two positive (guideline-like) uterotrophic studies from
the NICEATM uterotrophic database (Kleinstreuer et al. 2016).
Of the 29 chemicals that fulfilled those criteria, all had uterotro-
phic LELs from studies using injection as the route of adminis-
tration, and 8 chemicals (inclusive) also had LELs available
from two or more oral uterotrophic studies (Table 2). The me-
dian potency of these chemicals in uterotrophic studies ranged
from 2:5× 10−4 mg=kg=day (diethylstilbestrol) to 300 mg=kg=day
(butylparaben) for injection dosing and 1× 10−3 mg=kg=day
(17alpha-ethinylestradiol) to 387 mg=kg=day (BPA) for oral stud-
ies. The list included three chemicals known to require metabolic
transformation for estrogenic activity, mestranol (Schmider et al.

Table 1. In vitro activity (ACCER) and model parameters with source: experimental or predicted (E/Q).

Chemical Name CASRN ACCER (uM)
ACCER EF

(uM) log10KOW

KOW

Source log10 KAW

KAW

Source
CLint

(L=h)
CLint

Source fu
fu

Source pKa# EF

4-Nonylphenol 104-40-5 7:65E+00 1:22E+03 5.76 Ea −5:06 Q 2.61 Q 0.005 Q 10.49 159
4-Dodecylphenol 104-43-8 6:20E− 01 1:30E+02 7.91 Ea −5:06 Q 1.15 Q 0.005 Q 10.6 210
Tamoxifen 10540-29-1 1:65E− 02 2:88E+00 6.24 Q −6:84 Q 0.57 Eb 0.005 Eb 8.48# 174
2,2',4,4'-Tetrahydroxybenzophenone 131-55-5 9:42E− 01 1:38E+01 2.58 Q −10:62 Q 2.64 Q 0.225 Q 11.26; 9.98;

7.88; 7.14
15

2,4-Dihydroxybenzophenone 131-56-6 1:91E+00 4:40E+01 2.85 Q −9:76 Q 3.33 Q 0.123 Q 11.68; 7.55 23
4-(1,1,3,3-Tetramethylbutyl)phenol 140-66-9 7:63E− 01 9:29E+01 4.83 Q −4:68 Q 1.80 Eb 0.019 Eb 10.42 122
Bisphenol AF 1478-61-1 3:02E− 02 1:81E+00 3.62 Q −8:14 Q 3.95 Q 0.037 Q 10.09; 9.39 60
Zearalenone 17924-92-4 3:71E− 02 1:95E+00 3.49 Q −13:39 Q 2.12 Q 0.489 Q 10.87; 7.78 53
Genistein 446-72-0 6:16E− 02 9:87E− 01 2.63 Q −12:93 Q 1.25 Eb 0.300 Ec 11.28; 9.30;

7.68
16

Equilin 474-86-2 1:62E− 03 6:95E− 02 3.30 Q −9:61 Q 3.47 Q 0.322 Q 10.03 43
17beta-Estradiold 50-28-2 1:08E− 06 8:75E− 05 4.01 Ea −8:99 Q 1.00 Ee 0.053 Ee 10.31 81
Clomiphene citrate 50-41-9 5:56E− 04 9:77E− 02 6.29 Q −6:39 Q 1.68 Q 0.005 Q 8.83# 176
2-Ethylhexylparaben 5153-25-3 1:02E+00 1:30E+02 4.94 Q −6:36 Q 2.98 Q 0.097 Q 9.09 127
5alpha-Dihydrotestosterone 521-18-6 1:90E+00 1:06E+02 3.55 Ea −8:86 Q 3.64 Q 0.354 Q Neutral 56
Estrone 53-16-7 3:61E− 03 1:25E− 01 3.13 Ea −9:49 Q 3.58 Q 0.037 Ef 10.21 35
Diethylstilbestrold 56-53-1 7:36E− 06 9:74E− 04 5.07 Ea −7:44 Q 2.75 Eb 0.005 Eb 10.38; 9.74 132
17alpha-Ethinylestradiold 57-63-6 1:39E− 06 8:68E− 05 3.67 Ea −8:83 Q 3.52 Q 0.470 Eg 10.32 62
17-Methyltestosterone 58-18-4 3:82E+00 1:75E+02 3.36 Ea −9:12 Q 3.68 Q 0.058 Q Neutral 46
4-Cumylphenol 599-64-4 7:02E− 01 5:38E+01 3.93 Q −6:17 Q 4.78 Q 0.005 Q 10.19 77
Norethindrone 68-22-4 7:46E− 01 2:06E+01 2.97 Ea −9:56 Q 3.50 Q 0.151 Q Neutral 28
Mestranol 72-33-3 2:65E− 02 2:67E+00 4.39 Q −8:48 Q 2.76 Q 0.137 Q Neutral 101
Methoxychlor 72-43-5 2:53E+00 3:35E+02 5.08 Ea −6:69 Ea 1.95 Eh 0.005 Eh Neutral 133
Bisphenol B 77-40-7 7:35E− 02 5:00E+00 3.77 Q −7:57 Q 2.38 Eb 0.018 Eb 10.50; 9.82 68
o,p'-DDT 789-02-6 1:29E+00 2:28E+02 6.31 Q −4:56 Q 1.01 Eb 0.005 Eb Neutral 176
Bisphenol A 80-05-7 2:28E− 01 1:00E+01 3.32 Ea −8:03 Q 0.16 Ei 0.060 Ej 10.47; 9.80 44
4,4'-Sulfonyldiphenol 80-09-1 1:16E+01 9:84E+00 1.21 Q −13:35 Q 0.44 Q 0.404 Q 9.18; 8.37 1
4-(2-Methylbutan-2-yl)phenol 80-46-6 1:82E+00 1:12E+02 3.66 Q −4:92 Q 1.40 Eb 0.005 Eb 10.26 62
Butylparaben 94-26-8 1:99E+00 1:13E+02 3.57 Ea −6:79 Q 2.62 Eb 0.042 Eb 8.78 57
4-tert-Butylphenol 98-54-4 9:66E+00 4:18E+02 3.31 Ea −5:92 Ea 1.29 Eb 0.105 Eb 10.25 43

Note: ACCER, median ACC based on the integrated synthetic concentration-response curve predicted from ER model in Judson et al. 2015; CASRN, chemical abstracts service registry
number; CLint, intrinsic clearance; E, experimental values; EF, intracellular enrichment factor; fu, fraction of chemical unbound to plasma protein; KAW, air-water partition coefficient;
KOW, octanol-water partition coefficient; Q refers to QSAR model for KAW, KOW or fu prediction, whereas Q refers to QPPR model when predicting CLint; pKa, multiprotic ionization
constants of mainly acidic nature except for those indicated by #, which is the ionization constant of basic function groups. Table is sorted by CASRN.
aData from EPA Chemistry Dashboard (https://comptox.epa.gov/dashboard/, accessed 12 June 2018).
bData from Wetmore et al. 2015.
cData from Schlosser et al. 2006.
dEC10 from the manual luciferase-based assay in the VM7Luc4E2 cell line (Ceger et al. 2015) was used in IVIVE analysis.
eData from Plowchalk and Teeguarden 2002.
fData from Speight et al. 1979.
gData from Grabowski and Park 1984.
hData from Wetmore et al. 2012.
iData from Wetmore et al. 2013.
jData from Teeguarden et al. 2005.
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1997), 17-methyltestosterone (Hornung et al. 2004; Pawlowski et al.
2004), and methoxychlor (Hu and Kupfer 2002), as well as two
chemicals known to be ER agonists rendered largely inert or
unavailable bymetabolic processes in vivo, BPA (Kuester and Sipes
2007; Partosch et al. 2013) and genistein (Pritchett et al. 2008;
Shelnutt et al. 2002). Subsequent analysis was performed using all
266 chemicals with significant activity in the ToxCast™ ER model
(AUC-agonist score >0:01).

PKModeling
Three PK modeling approaches of differing complexity were used
to estimate the daily equivalent administered dose (EAD; mg/kg
BW/day) from a given route or exposure (oral or injection) that
would result in a plasma concentration corresponding to the in vitro
ACCER, the “lowest effect level” for ER-mediated bioactivity.
First, we evaluated the standard one-compartment population-
basedPK (PPK)model described byWetmore et al. (Wetmore et al.
2012, 2013), implemented using a publicly available R script
(version 3.1.2) (Chang et al. 2015; R Core Team) (Figure 1A).
This model combines physiologic and metabolic differences to
quantitate subpopulation pharmacokinetic variability and pro-
duce chemical-specific steady-state plasma concentration (Css, in
units of lM) equivalent to the in vitro ACCER. The PPK model
does not account for tissue-partitioning of chemicals nor does it
differentiate route of exposure but assumes a fixed dose rate and
100% absorption. Chemical elimination is calculated by the sum-
mation of liver metabolism, represented by hepatic intrinsic
clearance (CLint, L=h), and renal clearance by passive glomerular
filtration (L=h). These values are determined using Equations 1
and 2 (Wetmore et al. 2012), where QH is hepatic blood flow rate,

fu is the fraction of unbound chemical in plasma, CLint is hepatic
intrinsic clearance, and GFR is glomerular filtration rate.

Hepatic Clearance L=hð Þ=QH L=hð Þ× fu ×CLint

QH + fu ×CLint
(1)

Renal Clearance ðL=hÞ=GFRðL=hÞ× fu (2)

The second approach implemented the use of a three-
compartment model available in “httk,” a published R package for
high-throughput toxicokinetics (Pearce et al. 2017; Wambaugh et al.
2016). The httk “3compartment” model (HT3C), includes gut and
liver compartments consisting of separate blood and tissue sections
with constant partitioning along with a “rest-of-body+body blood”
compartment without partitioning (Figure 1B). Like the PPK model,
elimination of chemicals is by hepatic metabolism and passive glo-
merular filtration. Values for CLint and fu were the same as those used
for the PPK model and determined as described below. Chemical-
specific physicochemical data and species-specific in vitro and physi-
ological data were used in calculating the partition coefficients, clear-
ance, tissue volumes, and blood flows. Absorption from the gut
lumen into gut tissue was modeled for determining oral EADs, using
default setting of the physiological parameters, partition coefficients,
and gut absorption kinetics. We used the HT3C model to calculate
chemical-specific EADs that result in a maximum plasma concentra-
tion (Cmax, in units of lM) corresponding to the in vitro ACCER fol-
lowing once-daily oral or injection administration of chemical for
three consecutive days (the protocol used in guideline uterotrophic
studies).

In the third approach, PBPK models for oral and injection
dosing were built using GastroPlus™ (GP) software (Simulations

Table 2. Uterotrophic data for 29 ER reference chemicals.

Chemical Name

Injection Uterotrophic Studies Oral Uterotrophic Studies

CASRN

Log10
(Median
LELinj)

Log10
(Lowest
LELinj)

Log10
(Highest
LELinj)

# Inj.
studies

Log10
(Median
LELoral)

Log10
(Lowest
LELoral)

Log10
(Highest
LELoral)

# Oral
Studies

17alpha-Ethinylestradiol 57-63-6 −3:52 −4:00 −2:70 35 −3:00 −3:70 −2:20 21
17beta-Estradiol 50-28-2 −3:00 −4:00 0.30 19 −1:78 −2:30 −0:40 5
Tamoxifen 10540-29-1 −1:70 −2:00 0.00 8 −1:63 −2:30 −0:49 4
Methoxychlor 72-43-5 2.00 1.70 2.00 12 1.33 1.30 1.70 6
o,p'-DDT 789-02-6 2.00 0.00 2.30 9 1.70 1.00 1.70 6
Genistein 446-72-0 1.18 0.00 1.54 19 1.78 1.30 2.30 8
4-Nonylphenol 104-40-5 2.30 2.00 2.30 3 1.92 1.88 1.95 2
Bisphenol A 80-05-7 2.00 0.30 2.90 29 2.59 2.30 3.00 8
4-Dodecylphenol 104-43-8 1.60 1.60 1.60 3
2,2',4,4'-Tetrahydroxybenzophenone 131-55-5 2.30 2.30 2.48 5
2,4-Dihydroxybenzophenone 131-56-6 2.30 2.00 2.48 2
4-(1,1,3,3-Tetramethylbutyl)phenol 140-66-9 2.30 2.30 2.30 2
Bisphenol AF 1478-61-1 0.78 0.60 0.90 4
Zearalenone 17924-92-4 0.30 0.30 1.30 3
Equilin 474-86-2 0.30 0.30 0.30 2
Clomiphene citrate (1:1) 50-41-9 0.30 0.30 0.30 2
2-Ethylhexylparaben 5153-25-3 2.30 2.30 2.30 2
5alpha-Dihydrotestosterone 521-18-6 1.30 0.60 2.30 3
Estrone 53-16-7 −0:99 −2:74 0.30 6
Diethylstilbestrol 56-53-1 −3:60 −4:30 −2:70 5
17-Methyltestosterone 58-18-4 1.00 1.00 1.00 3
4-Cumylphenol 599-64-4 2.04 1.30 2.30 2
Norethindrone 68-22-4 1.04 0.30 1.30 2
Mestranol 72-33-3 −2:42 −2:80 −2:22 2
Bisphenol B 77-40-7 2.04 1.30 2.30 2
4,4'-Sulfonyldiphenol 80-09-1 1.30 1.30 1.30 2
4-(2-Methylbutan-2-yl)phenol 80-46-6 2.30 2.30 2.31 4
Butylparaben 94-26-8 2.48 1.70 3.00 8
4-tert-Butylphenol 98-54-4 2.00 2.00 2.00 2

Note: CASRN, chemical abstracts service registry number; LELinj, lowest effect level in injection uterotrophic assay; LELoral, lowest effect level in oral uterotrophic assay; Inj., injec-
tion; #, number.
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Plus, Inc.), which has compartments representing lung, liver, gas-
trointestinal tract, spleen, heart, brain, kidney, skin, bone marrow,
muscle, adipose tissue, and reproductive tissues. Specifically, to
simulate chemical absorption through the gastrointestinal tract,
the GP PBPK model includes an advanced compartmental
absorption and transit (ACAT) module consisting of nine com-
partments (stomach, duodenum, jejunum 1, jejunum 2, ileum 1,
ileum 2, ileum 3, caecum, and ascending colon) (Figure 1C). The
chemical-specific partition coefficients for each tissue were pre-
dicted using ADMET Predictor (Simulations Plus, Inc.). The GP
injection model simulated subcutaneous injection exposure by
modeling the Cmax following a daily 3-h intravenous infusion,
which was based on a literature report stating that the Cmax for a
well-dissolved drug is achieved 3 h after subcutaneous injection
exposure (Hirano and Yamada 1983). The GP oral model simu-
lated the Cmax following a daily oral dosing in solution form for 3
days. We used the default settings for physiological parameters,
partition coefficients, and gut absorption kinetics. Values for
CLint and fu were the same as used for all the other models and

determined as described below. The PBPK models were used to
calculate chemical-specific EADs that result in a maximum
plasma concentration (Cmax, in units of lM) corresponding to the
in vitro ACCER following once-daily oral or injection administra-
tion of chemical for three consecutive days (the protocol used in
guideline uterotrophic studies).

Source of PK Model Parameters CLint and fu
Rat CLint values were obtained either directly from the literature
(Plowchalk and Teeguarden 2002) or calculated by scaling in vitro
metabolic clearance measurements from primary hepatocyte sus-
pensions. Data from experiments using primary rat hepatocytes
(Wetmore et al. 2013, 2015) were used if available; otherwise, we
used data from experiments using human primary hepatocytes
(Wetmore et al. 2012). If no experimental data were available from
either species, we used values predicted from a published quantita-
tive property–property relationship (QPPR) model (Kirman et al.
2015). The QPPR model predicts CLint for each chemical using

Figure 1. Structures of models used for analyses. (A) The PPK model is a one-compartment model assuming 100% absorption and total clearance as the sum
of hepatic and renal clearance. (B) The httk.3comp model (HT3C) includes compartments for gut lumen, gut, liver, and one compartment including all remain-
ing tissues (figure adapted from Pearce et al. 2017). (C) The GP PBPK model consists of 14 tissue compartments as shown in the figure [figure adapted from
the PBPK Model Editor window in the GastroPlus™ software (Simulations Plus, Inc.)]. To simulate absorption through the gastrointestinal tract, the model
incorporates the ACAT model consisting of nine compartments (stomach, duodenum, jejunum 1, jejunum 2, ileum 1, ileum 2, ileum 3, caecum, and ascending
colon). ACAT, advanced compartmental absorption and transit; CLHepatic, hepatic clearance (L=h); CLint, intrinsic clearance (L=h); CLRenal, renal clearance
(L=h); Css, steady state plasma concentration; fu, fraction of chemical unbound to plasma protein; GFR, glomerular filtration rate (L=h); PBPK, physiologically
based pharmacokinetic; PPK, one-compartment population-based pharmacokinetic model; Qliver, liver blood flow (L=h); Q, Tissue blood flow (mL/s); V,
Tissue Volume (mL).
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octanol-water (KOW) and air-water (KAW) partition coefficients.
KOW values were obtained from the EPA Chemistry Dashboard
(https://comptox.epa.gov/dashboard/), which provided experimen-
tally determined (mean) values for 13 chemicals and consensus
model predictions for the remaining 16 chemicals. All KAW values
were determined using a quantitative structure–activity relation-
ship (QSAR) model developed in house using published data
(http://esc.syrres.com/interkow/EPiSuiteData.htm). The same
approach was applied to fu, where all available experimental
data were used, and predicted values were obtained via a QSAR
model developed in house using published data (Ingle et al.,
2016). Both KAW and fu models were developed using multiple lin-
ear regression approach and are accessible through github (https://
github.com/zang1123/PBPK-Parameter-Prediction).Of the 29 chem-
icals evaluated, 12 have experimental values for both fu and CLint
reported in the literature (Wetmore et al. 2012, 2013, 2015), and in sil-
ico predictions (QSAR/QPPR) were used to estimate both values for
15 chemicals (two chemicals had an experimental fu and QPPR-
predictedCLint) (Table 1).

ACC Adjustment Using a Mass-Balance Derived
Enrichment Factor (EF)
The ACCER represents the nominal concentration at which signifi-
cant in vitro activity was observed in the ER model. To estimate in
vitro partitioning of test chemicals and adjust ACCER values used
in the PKmodels, we applied themass-balancemodel described by
Armitage et al. (Armitage et al. 2014). The mass-balance model
was applied using the macro-enabled Excel workbook provided as
supplementalmaterial byArmitage et al. Themodel applies to neu-
tral organic chemicals and ionogenic organic chemicals that are
predominantly neutral at the test system pH (pH=7:4), which was
the case for 23 of the chemicals evaluated (Table 1). The remaining
four chemicals (genistein, 2,2',4,4'-tetrahydroxybenzophenone,
2,4-dihydroxybenzophenone, and zearalenone) have one or two
functional groups with acidic pKa of 7.14–7.88, and the other two
chemicals (tamoxifen and clomiphere citrate) have basic pKa of
8.48 and 8.83. For chemical characterization, two physicochemical
properties for each chemical are required: the octanol-water parti-
tion coefficient (KOW) and air-water partition coefficient (KAW)
(Table 1). To characterize the assay system, the model requires
user input for key in vitro assay parameters, such as cell number,
system temperature, percentage fetal bovine serum (% FBS),
well-volume, and head space. For the work described here, we
used values that represented a consensus from across the 16
assays in the ERmodel, where most assays were conducted under
similar conditions. Themost critical parameter, % FBS, was iden-
tical in all assays (10%) with the exception of the Tox21
ER_BLA, which had 2% FBS (Gülden and Seibert 1997). The
most relevant output parameter to estimate in vitro “exposure” is
the cell enrichment factor (EF), which scales the nominal concen-
tration to reflect the intracellular concentration at equilibrium
(Armitage et al. 2014; Fischer et al. 2017). We applied chemical-
specific EF adjustments to the ACCER values used in all threemodels
(Equation 3), thereby converting nominal ACCER concentrations to
“internal” cellular concentrations.

ACCER EFðlMÞ=ACCERðlMÞ×EF (3)

Steady-State EAD Adjustment Using Fraction of Unbound
Chemical (fu)
The standard one-compartment PPKmodel described byWetmore
et al. (Wetmore et al. 2012, 2013) uses the fraction of unbound
chemical (fu) to calculate both renal and hepatic clearance, as only

the free chemical fraction is assumed available for glomerular fil-
tration or uptake by hepatocytes. However, the model does not
incorporate the fraction of unbound (freely available) chemical
into calculations involving chemical potency. That is, the determi-
nation of chemical activity (i.e., EAD) is based on 100% chemical
bioavailability for uptake into tissues and subsequent interactions
with molecular targets. We assessed the impact of applying a sim-
ple correction to the estimated in vivo dose (EAD) to account for
only freely available chemical being bioactive (Equation 4). This
approach assumes a linear relationship between free and bound
chemical and external-dose and steady-state concentration (Css).
The value for fu is unitless (%) and is therefore assumed to be appli-
cable to any concentration of chemical distributed in whole serum,
an appropriate assumption given the context of our model.
Likewise, the assumption of a linear relationship between dose and
Css serves as the basis for much previously published work in the
field, including the standard one-compartment model used here
(Wetmore et al. 2012, 2013). We therefore used fu as a multiplica-
tive factor to derive the unbound concentration at steady state from
the total concentration at steady state. Accordingly, the relation-
ship between the EAD adjusted using fu (EADfu) and total EAD
was represented as:

PPKEADfu = PPKEAD×1= fu (4)

We did not apply the free fraction correction to the other
more complex models (HT3C, GP), as the assumption of line-
arity may not hold for models that do not yield steady-state
predictions.

EADs (mg/kg/day) were calculated from the chemical-specific
ACCER (Table 1) values using the three PK models described
above: standard one-compartment (PPK), HTTK 3 Compartment
(HT3C), and GastroPlus™ PBPK (GP). Both the HT3C and GP
apply route-specific dosing models, which were used to estimate
uterotrophic LELs from oral or injection exposure studies, respec-
tively. The PPK model does not differentiate dosing routes but
assumes instantaneous and uniform distribution of chemical in the
serum. All models were also run using in vitro potency values
derived from the mass-balance enrichment factor (EF), which con-
verts the nominal active concentration (ACCER) to an intracellular
concentration at equilibrium (ACCER EF) by multiplying ACCER
by EF (Table 1) (Armitage et al. 2014). EADs from the PPKmodel
were additionally adjusted using fu to represent the predicted con-
centration of free chemical available to act on the molecular target.
An overview of each of the eight model-adjustment combinations
is provided in Table 3, with corresponding EADs for injection and
oral dosing given in Excel Table S1.

Analysis of Model Performance
Overall performance of the eight model-adjustment combinations
was assessed across all chemicals using the root mean squared
error (RMSE), a standard statistical metric used to measure error
between actual and predicted values. We used the mean residual
values (MRV; Equation 5) to inform directional bias of error
(over or under prediction).

MRV =
1
n

Xn

i=1

xi − xtrueð Þ (5)

For each PK model, we also evaluated whether the source of
PK parameters fu and CLint (experimental or predicted) affected
predictive accuracy by assessing chemicals where both fu and
CLint were either determined experimentally or predicted using
QSAR (fu) and QPPR (CLint) models. RMSE and MRV were
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calculated for each PK model using three groupings: all 29 chemi-
cals (All), 12 chemicals with experimental values for fu and CLint
(EE), and 15 chemicals where QPPR and QSARmodels were used
to predict both CLint and fu (QQ), respectively. The RMSE and
MRV values are presented in Table S2. Two chemicals (estrone
and 17alpha-ethinylestradiol) had experimentally determined fu
andQPPR-derivedCLint (Table 1) andwere not used in this portion
of the analysis.

Based on the overall performance of the model-adjustment
combinations, averaged across all chemicals, we evaluated the
highest performing IVIVE approaches in a chemical-specific
manner. The EADs were compared with the uterotrophic LELs
for each chemical, and potential sources of under/over prediction

were analyzed. The top performing approaches were then used to
apply IVIVE to all 266 chemicals with significant activity in the
ToxCast™ ER model (AUC-agonist score >0:01).

Results

Model Performance
Plotting RMSE values for the injection models (including PPK,
which is route-agnostic) revealed a clear separation of the eight
model-adjustment combinations into two groups (low/high RMSE),
“All” group, Figure 2A. All models using a single-adjustment
(PPK fu, PPK_EF, HT3Cinj EF, GPinj EF) had RMSE values
between 1.00 and 1.15 log units, whereas all unadjustedmodels plus
the PPK model with two adjustments (PPK fu EF) had RMSE val-
ues between 1.89 and 2.13 log units. Similar groupings were evident
in the MRV analysis, which evaluates directional bias (Figure 2B).
All three unadjustedmodels (PPK,HT3Cinj, GPinj) hadMRVvalues
between −1:5 and −2:0 log units, indicating a strong bias toward
underprediction (producing injection EADs well below the observed
LEL). Simultaneously adjusting both EF and fu in the PPK model
resulted in a strong bias towards overpredicting uterotrophic LELs
(MRV=1:56 log units), whereas all single-adjustment models were
comparatively balanced with MRVs between −0:20 and 0.18 log
units, “All” group, Figure 2B. As noted in the Methods section, the
PPKmodel does not differentiate dosing routes, and the same (route-
agnostic) EAD values are therefore used for comparison with route-
specific EADs produced in the HT3C and GP models (injection and
oral).

Results from the oral exposure models mirrored those from
the injection models; RMSE values of the four single-adjustment
models (PPK fu, PPK_EF, HT3Coral EF, GPoral EF) were uni-
formly lower (1.23 to 1.62 log units) than the unadjusted or
double-adjusted oral models (2.13 to 2.57 log units, “All” group,
Figure 3A). Similarly, all three unadjusted models (PPK, HT3Coral,
GPoral) had MRV values indicating a strong bias towards under pre-
diction (−2:12 to −2:25 log units). Adjusting both EF and fu in the

Figure 2. Comparison of PK model-adjustment performance: injection dosing. The performance of 8 PK model-adjustment combinations (detailed in Methods
and below) was compared using root mean squared error (RMSE) (A) and mean residual values (MRV) (B) between log10 values of EAD and median LELs
from uterotrophic injection studies, calculated for three groups of chemicals: all 29 chemicals (asterisk), 13 chemicals with experimental values for fu and
CLint (EE, triangle symbol), and 14 chemicals where QPPR and QSAR models were used to predict both CLint and fu, respectively (QQ, circle symbol). PPK,
one-compartment population-based pharmacokinetic model; HT3Cinj, the httk “3compartment” model simulating injection exposure route; GPinj, PBPK model
built using GastroPlus™ software simulating injection exposure route. PPK_EF, HT3Cinj EF, GPinj EF are corresponding PPK, HT3Cinj and GPinj models with
EF adjustment applied for ACCER. PPK fu is PPK model with fu adjustment applied for in vivo Css in EAD calculation. PPK fu EF is PPK model with EF
applied for ACCER and fu adjustment applied for in vivo Css in EAD calculation. ACCER, pseudo median activity concentration at cutoff from estrogen receptor
pathway model; CLint, intrinsic clearance (L=h); EAD, equivalent administered dose; EF, enrichment factor; fu, fraction of chemical unbound to plasma pro-
tein; LEL, lowest effect level; QPPR, quantitative property-property relationship; QSAR, quantitative structure-activity relationship; PK, pharmacokinetic.

Table 3. Comparison of models and adjustment factors.

PK Model Name

Plasma
Conc.

Modeled Adjustment Applied
Css Cmax None EF fu

Standard One-compartment
PPKa X X
PPK fu

a X X
PPK_EFa X X
PPK fu EFa X X X
HTTK 3 Compartment
HT3Cb X X
HT3C_EFb X X
GastroPlus™ Multi-compartment
GPb X X
GP_EFb X X

Note: Model types are the standard one-compartment population-based pharmacokinetic
model (PPK), the three-compartment model from the HTTK R package (HT3C), and the
multicompartment model from the commercial GastroPlus™ software (GP). Models
provide steady state (Css) or maximum (Cmax) plasma concentrations as indicated by X.
Adjustments for intracellular concentrations based on an in vitro mass-balance derived
enrichment factor (EF) or a correction for unbound chemical (fu) available to interact
with the biological target were applied as indicated by X.
aThe PPK model is exposure route-agnostic.
bThe HT3C and GP models explicitly include oral or injection dosing considerations.
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PPK model again resulted in a strong bias toward overpredicting
uterotrophic LELs (MRV=1:24 log units), whereas all single-
adjustment models had MRV values between −0:21 and −0:68
log units, “All” group, Figure 3B.

We used RMSE to evaluate the impact on model performance
when using chemicals with experimentally determined values for fu
and CLint (EE) in comparison with chemicals where in silico (i.e.,
QSARorQPPR) approacheswere used to estimate both values (QQ),
Figures 2 and 3. The source of fu and CLint values (experimental or in
silico) had no impact on RMSE for three of the four top-performing
injection models (PPK fu, HT3Cinj EF, GPinj EF), whereas predic-
tions made in the PPK_EF model using the in silico values had
slightly higher errors in comparison with predictions made using ex-
perimental values: RMSE of 1.36 log units (QQ) vs. 0.87 log units
(EE) (Figure 2). For chemicals with oral uterotrophic data, there is
only one chemical (4-nonylphenol) where in silico (QSAR/QPPR)
approaches were used to estimate both fu and CLint values (QQ), in
comparison with six chemicals with experimentally determined val-
ues for both parameters (EE). The prediction error using the in silico
values (QQ) is lower than those predictions made using experimental
values EE for seven of eight models (Excel Table S2). However,
because it is unreasonable to calculate RMSE andMRVwith sample
size equal to one, values for QQ were not shown in Figure 3 for the
oral data set. There was little difference across both RMSE andMRV
values between “All” and “EE” sets (Figure 3).

Chemical-Specific EADs from Single-Adjustment Models
Our initial assessment of model performance, described above,
was based on the mean of the EAD values from all 29 chemicals
evaluated (i.e., RMSE and MRV). Based on these results, we
chose to further evaluate chemical-specific EADs in the four
best-performing models for each dosing route (oral and injec-
tion), which were the single-adjustment models in both cases:
PPK fu, PPK_EF, HT3C_EF, and GP_EF. EADs for each of the
29 chemicals from each model were plotted against the median,
highest, and lowest LELs from uterotrophic studies using either

injection (Figure 4) or oral (Figure 5) dosing. As noted previ-
ously, the GP and HT3C models produce route-specific EADs
that were used for comparison with oral or injection LELs from
uterotrophic, as appropriate. However, the PPK model is route-
agnostic, and we therefore used the same EAD values for com-
parison with both oral and injection LELs.

All EADs from the four models were within 1 log of the lowest
or highest LELs reported for 27 of the 29 chemicals tested in utero-
trophic injection studies (Figure 4). For the remaining two chemi-
cals, mestranol and 17-methyltesterone, all models produced EADs
that were >1 log higher than any reported injection LEL. Similar
performance across all models was not entirely unexpected, as
HT3C and GP both have injection-specific modules, and the PPK
model assumes 100% delivery of chemical into blood as with injec-
tion dosing. However, there was no clear correlation betweenmodel
structure or complexity and predictive performance.

All four oral models produced EADs that were within 1 log of
the lowest or highest LELs reported for six of the eight chemicals
tested in uterotrophic oral studies (Figure 5). For 17beta-estradiol
and BPA, all models produced EADs that were >1 log lower than
any reported oral LEL. Unlike the case of injection dosing, similar
performance between the models was not anticipated in light of the
complex model structures built specifically to address oral dosing
(i.e., gut absorption), which are absent from the PPKmodel.

Estimating EADs for the Extended ERModel Chemical Set
EADs from all PK models using single adjustments (EF or fu) had
significantly better performance than the unadjusted models when
evaluated across all 29 chemicals from the validation set. Of these,
the PPK fu model had the lowest RMSE (1.02 log units) when pre-
dicting LELs from uterotrophic injection studies, whereas the
PPK_EF model had the lowest RMSE (1.23 log units) when pre-
dicting uterotrophic LELs from oral studies. Because neither
single-adjustment PPK model had a clear advantage in perform-
ance over the other, we chose to use both models (PPK fu and
PPK_EF), in addition to the standard unadjusted PPK model, to

Figure 3. Comparison of PK model-adjustment performance: oral dosing. The performance of 8 PK model-adjustment combinations (detailed in Methods and
below) was compared using root mean squared error (RMSE) (A) and mean residual values (MRV) (B) between log10 values of EAD and median LELs from
uterotrophic oral studies, calculated for three group of chemicals: all 8 chemicals (All, asterisk symbol), 6 chemicals with experimental values for fu and CLint
(EE, triangle symbol). PPK, one-compartment population-based pharmacokinetic model; HT3Coral, the httk “3compartment” model simulating oral route of ex-
posure; GPoral, PBPK model built using GastroPlus™ software simulating oral exposure route. PPK_EF, HT3Coral EF, GPoral EF are corresponding PPK,
HT3Coral and GPoral models with EF adjustment applied for ACCER. PPK fu is PPK model with fu adjustment applied for EAD calculation. PPK fu EF is PPK
model with EF adjustment applied for ACCER and fu adjustment applied for in vivo Css in EAD calculation. ACCER, pseudo median activity concentration at
cutoff from estrogen receptor pathway model; CLint, intrinsic clearance (L=h); Css, steady state plasma concentration; EAD, equivalent administered dose; EF,
enrichment factor; fu, fraction of chemical unbound to plasma protein; LEL, lowest effect level; QPPR, quantitative property-property relationship; QSAR,
quantitative structure-activity relationship; PK, pharmacokinetic.
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calculate EADs for all 266 chemicals with activity in the ERmodel
(AUC>0:01) (Figure 6, Excel Table S3).

Discussion
We sought to evaluate and improve the predictive accuracy of
IVIVE approaches for potential application to chemical prioritiza-
tion, risk assessment, and regulatory decision-making. We chose
estrogen receptor signaling as a case study because of its relevance
to human and environmental health and availability of well-
curated data obtained from validated in vitro (ToxCast™ ER path-
way) and in vivo (uterotrophic) systems. In addition, the acute and
specific nature of the uterotrophic response (ER agonist/uterine
weight gain) provides an excellent corollary to the acute response
measured in the in vitro assays, allowing a more direct comparison
than would be afforded with a less specific mechanism of action
(e.g., oxidative stress) or end point more distal from the molecular
initiating event (e.g., tumorigenesis).

Three PK models (PPK, HT3C, GP) were used to estimate
the daily EAD that would result in a plasma concentration corre-
sponding to the in vitro ACCER, thereby approximating the LEL

obtained from a uterotrophic bioassay conducted with the same
chemical. We ran the models with user-provided values for in
vitro activity (ACCER), intrinsic clearance (CLint), and fraction of
chemical unbound to protein (fu). We then applied adjustments to
the model input parameters in an effort to improve the predictive
performance. For all models, we applied a mass-balance derived
EF, which adjusts the nominal concentration of test chemical
(ACCER) to reflect intracellular exposure. EAD calculations from
the steady-state (Css) model were adjusted using fraction of
unbound chemical in the plasma (fu) to approximate bioavailabil-
ity. The accuracy of each model-adjustment combination was
assessed by comparing model EADs for the 29 chemicals with
corresponding uterotrophic LELs. Although it is certainly true that
the in vivo data are less than a gold standard, these are the data cur-
rently used in regulatory screening and decision-making, and the
uterotrophic dataset went through an extremely rigorous curation
process (Kleinstreuer et al. 2016). Here, we used only uterotrophic
studies that met all the criteria to be considered guideline-like, and
only included chemicals that had multiple such studies in the evalu-
ation set, to limit the impact of in vivo variability to the extent
possible.

Figure 4. Chemical-specific EAD predictions compared with injection LELs. EAD values (mg/kg/day) were predicted from ACCER using GPinj (square), HT3Cinj
(triangle) and PPK models (circle) with EF or fu; adjustments were plotted against the median or mean (if only two studies), highest, and lowest LELs (mg/kg/d)
of uterotrophic injection studies for 29 chemicals. The gray line highlights the range from lowest (“+ ”) to highest (“x”) LELs of all guideline-like uterotrophic
injection studies. The chemicals are ordered from left to right based on their median or mean (if only two studies) LEL values, from low to high. Data for this fig-
ure are provided in Excel Table S1. ACCER, pseudo median activity concentration at cutoff from estrogen receptor pathway model; CLint, intrinsic clearance
(L=h); Css, steady-state plasma concentration; EAD, equivalent administered dose; EF, enrichment factor; fu, fraction of chemical unbound to plasma protein;
LEL, lowest effect level; GPinj, PBPK model built using GastroPlus™ software simulating injection exposure route; HT3Cinj, the httk “3compartment” model sim-
ulating injection exposure route; PPK, one-compartment population-based pharmacokinetic model.
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The three PK models used in this analysis had vastly differ-
ent structures and complexity (Figure 1), and concomitant dif-
ferences in predictive performance may therefore be expected
among the models. However, our results show that the one-
compartment steady-state PPK model had the best overall per-
formance (lowest RMSE) in predicting uterotrophic LELs from
both oral and injection dosing studies, and that model parame-
ters for in vitro activity (ACCER) and chemical bioavailability
(fu) have a more significant impact on predictive performance
than model complexity or structure (Figures 2 and 3).

Use of CLint and f u Values from in Silico Models
Chemical-specific values for CLint and fu are requisite parameters
for all the PK models evaluated here, and for PK models in gen-
eral. The lack of experimental values for these key parameters is
often the limiting factor in developing IVIVE approaches for
large chemical sets (e.g., HTS), as the assays used to determine
CLint and fu are typically far costlier and more time-consuming
than the in vitro assays used to assess chemical activity. Using in
silico models to adequately estimate these values would therefore
offer a path to greatly expand use and utility of IVIVE for risk

assessment. We compared the accuracy of EADs generated from
the same PK model, but for different chemicals having either
experimentally determined or in silico predicted fu and CLint
values (Table 1). In our study, a QSAR model developed in-
house using published data (Ingle et al. 2016) was used to pre-
dict fu for 15 of 29 chemicals values and a published QPPR
model (Kirman et al. 2015) was used to predict CLint for 17 of
29 chemicals. Octanol-water and air-water partition coefficients
(KOW and KAW, respectively) are the two key parameters used
in the QPPR models to predict CLint. Values for KOW and KAW
can, themselves, be predicted using in silico models. In our
study, QSAR was used to estimate KAW for 27 of 29 chemicals
and for 16 of 29 KOW values (the remainder having published
experimental values). The source of these key parameters did
not appear to affect the predictive performance of the top four
(single-adjustment) models (Figures 2 and 3). Consequently,
values for CLint and fu, which are typically the most challeng-
ing experimental data to obtain, can be determined entirely
through the use of in silico approaches without any apparent
detrimental impact on PK model performance. This observa-
tion is addressed in additional detail in the Supplemental
Material (Excel Table S2). Also, during the course of our in

Figure 5. Chemical-specific EAD predictions compared with oral LELs. EAD values (mg/kg/d) were predicted from ACCER using GPoral (square), HT3Coral
(triangle) and PPK models (circle) with EF or fu adjustments were plotted against the median or mean (if only two studies), highest, and lowest LELs (mg/kg/
d) from uterotrophic oral studies for 8 chemicals. The dashed line highlights the range from lowest ( “+ ”) to highest (“x”) LELs of all guideline-like uterotro-
phic oral studies. The chemicals are ordered from left to right based on their median or mean (if only two studies) LEL values, from low to high. Data for this
figure are provided in Excel Table S1. ACCER, pseudo median activity concentration at cutoff from estrogen receptor pathway model; CLint, intrinsic clearance
(L=h); EAD, equivalent administered dose; EF, enrichment factor; fu, fraction of chemical unbound to plasma protein; LEL, lowest effect level; GPoral, PBPK
model built using GastroPlus™ software simulating oral exposure; HT3Coral, the httk “3compartment” model simulating oral route of exposure; PPK, one-
compartment population-based pharmacokinetic model.
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silico modeling efforts, we noted discrepancies in SMILES
strings used to convey chemical structure information for the
same chemicals from varying public resources. After investi-
gating these inconsistencies, we decided to use the SMILES
from the U.S. EPA Chemistry Dashboard (https://comptox.epa.
gov/dashboard/) based on the high degree of manual and auto-
mated chemistry curation and the transparent, comprehensive
nature of the resource (Williams et al. 2017).

Adjusting for in Vitro Nominal Concentration
IVIVE relies on measurements of chemical-specific activity from
in vitro assays (e.g., EC10, AC50, ACCER) to estimate the daily
exposure level yielding the corresponding plasma concentration
in the exposed subject (human or animal). In our study, we used
ACCER as measurement of in vitro ER activity. ACCER is one of
the three critical chemical-specific values used in all three PK
models, along with fu and CLint. Of these, ACCER values spanned
the greatest numeric range in our study by ∼ 6 orders of magni-
tude (ACCER, ∼ 1E–06 to 10 lM; fu 0.005 to 1.000; CLint, 0.16
to 4:78 L=h) and is the source of greatest potential variability in the
PK models, as EAD varies proportionally with ACCER (e.g., a two-
fold increase in ACCER will result in a doubling of the EAD). This
evidence suggests that of all variables influencing the PK models, in
vitro potency values likely serve as the source of greatest potential
uncertainty due to the wide range of possible numeric values and
their proportional scaling with EADs. Model performance is there-
fore highly dependent on accurate measurements of chemical po-
tency in vitro.

In vitro activity is typically reported with respect to the nomi-
nal concentration of chemical in the test medium, e.g., ACCER.
However, chemical partitioning to various components of the
assay systems (plastic, media proteins/lipids, head space, cells)
can significantly affect the concentration of chemical acting on
the (cellular) target of interest, thereby altering any measurement
of chemical potency based on nominal concentration (Armitage
et al. 2014; Fischer et al. 2017; Gülden et al. 2006). Partitioning
is driven by the chemical’s physicochemical properties (e.g.,
KOW and KAW) in combination with characteristics of the assay
system (Armitage et al. 2014; Fischer et al. 2017; Kirman et al.
2015). Consequently, the nominal concentration in the medium
does not always provide an adequate estimate of chemical po-
tency when using in vitro activity to inform in vivo toxicity.
Armitage et al. described a mass-balance model to calculate the
mass distribution of a chemical in a user-defined in vitro test sys-
tem at equilibrium (Armitage et al. 2014). This model relies on
the assumption of instantaneous equilibrium and chemical parti-
tioning in the in vitro test system after a single exposure and pro-
vides the cell/tissue enrichment factor (EF) metric that indicates
the extent to which the nominal concentration reflects the
exposure-relevant concentration in the cells at equilibrium
(Armitage et al. 2014; Fischer et al. 2017). Applying the EF met-
ric to adjust nominal ACCER concentrations to reflect intracellu-
lar exposure resulted in a significant improvement in the
predictive performance of all models, averaged across all chemi-
cals in the validation set, which far exceeded any difference in
performance attributable to model structure (Figures 2 and 3).
Analysis of mean residual error (using MRV) demonstrated a
strong bias toward underprediction in the unadjusted models

Figure 6. Estrogenic Dose Predictions for 266 Chemicals. EAD values (log10 scale) were predicted from ACCER for all 266 potential ER agonists from the
ToxCast™ ER pathway model, using the PPK model (* symbol) and PPK model with EF (triangle) or fu (circle) adjustments. PPK, one-compartment popula-
tion-based PK pharmacokinetic model; PPK_EF, PPK model with EF adjustment applied for ACCER in EAD calculation. PPK fu, PPK model with fu adjust-
ment applied for in vivo Css in EAD calculation. Data for this figure are provided in Excel Table S3. ACCER, pseudo median activity concentration at cutoff
from estrogen receptor pathway model; CLint, intrinsic clearance (L=h); Css, steady-state plasma concentration; EAD, equivalent administered dose; EF, enrich-
ment factor; ER, estrogen receptor; fu, fraction of chemical unbound to plasma protein.
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(EADs well below observed uterotrophic LELs), which was
negated in predictions from models using EF adjustment.

Adjusting for in Vivo Bioavailability
The one-compartment steady-state model (PPK) calculates chem-
ical clearance via two routes: intrinsic (metabolic) clearance
(CLint) and renal clearance by passive glomerular filtration. Both
mechanisms are assumed to act only on unbound (freely avail-
able) chemical, (fu). However, the model does not incorporate
the fraction of freely available chemical into calculations involv-
ing chemical potency, and the determination of chemical activity
(i.e., EAD) is based on 100% bioavailability of chemical at a tis-
sue level and molecular level. We therefore assessed the impact
of applying a simple correction, using fu as a multiplicative factor
to derive the unbound concentration at steady state. Adjusting
EADs using fu improved the overall performance of the PPK
model across all chemicals, resulting in RMSE values equivalent
or better than those obtained using the EF (in vitro potency
adjustment), and similarly reduced model bias (Figure 2A and
Figure 3A). Theoretically, applying corrections to both in vitro
(EF) and in vivo (fu) components of the model should result in
the most accurate predictions. However, we found that applying
both EF and fu adjustments simultaneously resulted in less-
accurate predictions (higher RMSE) and a strong bias toward
overprediction (EADs well above uterotrophic LELs). The cause
of this overprediction is not entirely clear but is likely related to
the error propagated with assumptions used in each approach
(e.g., instantaneous equilibrium for EF, lack of on/off rate for fu)
when combined with the inherent error of the simple modeling
approaches employed. We did not apply the free fraction correc-
tion to the other more complex models (HT3C, GP), as the linear
relationships between dose and Css used for the PPK model may
not be appropriate for models that do not yield steady-state pre-
dictions. Wetmore et al. (2015) also recommended adjusting for
nonspecific binding in pharmacokinetic assays, including adjust-
ing for fraction unbound in hepatocyte incubations (Wetmore
et al. 2015) used to determine the intrinsic clearance rate in
IVIVE models. However, as the chemicals included in this analy-
sis were outside the domain of applicability (log P> 3) (Kilford
et al. 2008), the adjustment was not used in the present work.

Chemical-Specific Comparisons
Based on the above results, we limited our chemical-specific
analyses to PK models with single adjustments applied (EF or
fu). For the majority of tested chemicals, all four models provided
EAD values within ∼ 1 log of the reported range of LELs (mini-
mum or maximum) from guideline uterotrophic studies (Figures
4 and 5). The RMSEs (vs. median LEL) for all single-adjustment
models ranged from 1.02 (PPK fu) to 1.14 (PPK_EF) for injec-
tion EADs and 1.23 (PPK_EF) to 1.62 (PPK fu) for oral predic-
tions (Figures 2A, 3A, and Excel Table S2). However,
insufficient metabolic and clearance processes in the in vitro
assays and failure to adequately account for these processes in
the PK models resulted in EAD values that differed significantly
from the uterotrophic LELs for a few chemicals. Proestrogens,
such as mestranol, are known to require metabolic transformation
to exert estrogenic effects (Schmider et al. 1997). Such requisite
metabolism occurs in the rodent uterotrophic assay but not to an
appreciable extent in the cell lines used for the ER model due to
the poor metabolic capacity of the cell lines being used (relative to
an in vivo rat liver), resulting in relatively high ACCER values, and
subsequent EAD calculations that overpredict the LELs observed
in injection uterotrophic studies by 1–2 orders of magnitude
(Figure 4). Likewise, 17-methyltesterone is readily aromatized in

the liver to the potent estrogen, 17alpha-methylestradiol (Hornung
et al. 2004; Pawlowski et al. 2004), and therefore exhibits greatly
reduced estrogenic activity in systems that are metabolically inert.
It is worth noting that all single-adjustment model EADs for the
known proestrogen, methoxychlor (Hu and Kupfer 2002), were
within 1 log of the observed LEL values for both oral and injection
studies, indicating that the in vitro assays were able to sufficiently
characterize this chemical’s estrogenic properties.

Conversely, chemicals that are rapidly cleared or inactivated
when administered orally, such as BPA or 17-beta-estradiol, are
highly potent in the ER model but show significantly less activity
in oral uterotrophic studies, resulting in EADs that are substan-
tially (>1 log ) below the observed oral LEL (Figure 5). Such
underpredictions are consistent with the poor oral bioavailability
of both chemicals (O’Connell 1995; Thayer et al. 2015), which
would account for high potency activity only in the in vitro sys-
tem that provides direct exposure to cells. Such underprediction
could be addressed by inclusion or improved parameterization of
processes, such as glucuronidation, that are important in gastroin-
testinal metabolism of many xenobiotics in rodent models
(Kuester and Sipes 2007; Partosch et al. 2013). However, all
models did produce EADs within the observed oral and injection
uterotrophic LELs for genistein, which is metabolically cleared
in a manner similar to that of BPA (Pritchett et al. 2008; Shelnutt
et al. 2002). Surprisingly, route-agnostic EADs from the simple
PPK model had an overall lower RMSE than the GP and HT3C
models with oral dosing modules (i.e., simulating gut absorption)
(Figure 3A). The route-specific predictions in this analysis should
be viewed with caution given the small number of chemicals
involved (n=8), but the results do call into question the advant-
age of (generalized) complex model structures and underscore
the need for model validation using route-appropriate in vivo ex-
posure and response data.

EADs for All ER Pathway-Active Chemicals
The PPK_EF and PPK fu models were used to calculate EADs for
all 266 chemicals with activity in the ER model (AUC>0:01),
using in silico approaches to estimate key model parameters (fu and
CLint) for the majority of chemicals (Excel Table S3). The two
models produce EADs that were consistently ∼ 1:4 log higher than
the unadjusted PPK model (Figure 6), and were correlated with an
r2 = 0:64 (PPK_EF vs. PPK fu). There were insufficient in vivo
data to adequately assess the difference in predictive performance
between the two models, but the dynamic range of the PPK fu
model may be limited by the analytical limits of the fu assay (typi-
cally truncated at 0.5%), as seen in the flattening of EADs values
around ∼ 1000 mg=kg=day in Figure 6. However, there are at
least two advantages to using the PPK fu model. First, this model
requires no additional information apart from the two values used
to parameterize the model, fu and CLint, which can both be esti-
mated with QSAR/QPPR models. Calculation of EF requires the
use of an additional (mass-balance) model, which itself requires
the user to input values describing the specific in vitro assay sys-
tem, and therefore adds a layer of complexity. The other advantage
of the PPK fu model is the ability to apply it to data from cell-free
assays (e.g., receptor–ligand binding). The use of both models to
develop a consensus prediction or range is likely the best option, if
available.

Conclusions
We applied three PK models with varying complexities to extrapo-
late in vitro to in vivo dosimetry for a group of 29 ER agonists,
using data from validated in vitro (ToxCast™ ER model) and
in vivo (uterotrophic) methods. We found little difference in model
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performance based on complexity or route-specific modifications.
Simple adjustments, applied to account for in vitro intracellular ex-
posure (EF) across all models or chemical bioavailability (fu) in
the steady-state model, resulted in significant improvements in the
predictive performance of all models. The simplest model (PPK),
with application of either EF or fu adjustments, had the best over-
all performance for predicting both oral (EF) and injection (fu)
LELs from guideline uterotrophic studies. Furthermore, this
open-source model can be parameterized entirely with the use
of open-source in silico tools to estimate fu and EF, thereby
greatly expanding the accessibility and potential utility of IVIVE
approaches for use in chemical risk assessment.
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