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Abstract

Many neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and 

amyotrophic lateral sclerosis are characterized by the progressive appearance of abnormal 

proteinaceous assemblies in the nervous system. Studies in experimental systems indicate that the 

assemblies originate from the prion-like seeded aggregation of specific misfolded proteins that 

proliferate and amass to form the intracellular and/or extracellular lesions that are typical of each 

disorder. The host in which the proteopathic seeds arise provides the biochemical and 

physiological environment that either supports or restricts their emergence, proliferation, self-

assembly and spread. Multiple mechanisms influence the spatiotemporal spread of seeds and the 

nature of the resulting lesions, one of which is the cellular uptake, release, and transport of seeds 

along neural pathways and networks. The characteristics of cells and regions in the affected 

network govern their vulnerability and thereby influence the neuropathological and clinical 

attributes of the disease. The propagation of pathogenic protein assemblies within the nervous 

system thus is determined by the interaction of the proteopathic agent and the host milieu.

In 1889, Stephen Paget coined the phrase ‘seed and soil’ to describe how the metastasis of 

cancer cells is governed by the nature of the cells (the seed) and the site of secondary growth 

(the soil) 1. The basic concept remains valid today, and furnishes useful insights into the 

selective spread of metastatic cancer to other organs. A wealth of research in recent years 

reveals that many of the most common age-associated neurodegenerative diseases – 

Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis 

(ALS) among them – result from the transformation and accumulation of specific proteins 

within the nervous system. Although mechanistically different, this disease process can be 

likened conceptually to metastatic cancer, except that the disease agents that proliferate in 

these degenerative brain disorders are transformed proteins rather than transformed cells. As 

in the case of cancer cells, the dissemination of abnormal proteins and the nature of the 

resulting disease depend on both the proteinaceous agent – the seed – and the host milieu – 

the soil. The archetypical proteopathic seed is the prion, which was first identified as an 
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unconventional infectious agent in a family of uniformly fatal brain diseases of humans and 

nonhuman species 2.

Prions: paradigmatic proteinaceous disease agents

Prions were initially defined as ‘proteinaceous infectious particles’ 2, though the definition 

has since broadened to ‘proteins that acquire alternative conformations that become self-

propagating’ 3. The prion diseases include Creutzfeldt-Jakob disease, Kuru, Gerstmann-

Sträussler-Scheinker syndrome, fatal insomnias, and variably protease-sensitive prionopathy 

in humans 4, 5, as well as scrapie in sheep and goats, bovine spongiform encephalopathy in 

cattle, chronic wasting disease in cervids, and several other nonhuman prionoses 6.

Prion diseases are unorthodox in that they can be infectious, genetic, or idiopathic (sporadic) 

in origin 7. They arise when normal cellular prion protein molecules (PrP-Cellular, or PrPC) 

misfold, self-assemble, and spread through the nervous system 3. Once established in the 

living organism, the aberrant proteins propagate by the corruptive templating of like 

molecules, which are continually produced in the natural course of cellular metabolism. The 

misfolded, pathogenic PrP molecules (conventionally referred to as PrP-Scrapie, or PrPSc) 

bind to one another and, in a crystallization-like process 8, the assemblies grow, fragment, 

and proliferate, eventually occupying many regions of the nervous system. In some (but not 

all) cases, PrPSc polymerizes into distinctive fibrils that amass to form amyloid (fibrillar, 

proteinaceous, congophilic deposits that birefringe in cross-polarized light), although small, 

oligomeric assemblies of PrPSc, which are not in the canonical (fibrillar) amyloid state, can 

be particularly pathogenic 3, 8–10. Importantly, characteristics of both the seeds and the host 

influence the infectivity of PrPSc as well as the nature of the ensuing disease 7, 10.

PrPSc in the broad sense thus comprises a range of pathogenic structures that are referred to 

simply as prions. However, with the expansion of the prion concept to include other self-

propagating protein assemblies 8, 11, 12, and to minimize concern that non-PrP cerebral 

proteopathies might be similarly infectious, we here refer to prototypical (PrP) prions as 

PrP-prions.

Progression of neurodegenerative diseases and the prion paradigm

Experimental evidence now supports the concept that certain proteins involved in multiple 

neurodegenerative diseases acquire their pathogenicity by a prion-like mechanism (Figure 

1). Some of these proteins (and the lesions they form) include amyloid-β (Aβ) (amyloid 

plaques and cerebral amyloid angiopathy [CAA] in AD), tau (neuronal and/or glial 

tauopathies in AD, chronic traumatic encephalopathy and other neurodegenerative 

disorders), and α-synuclein (Lewy bodies and Lewy neurites in PD, Lewy body dementia, 

and glial cytoplasmic inclusions in multiple system atrophy) 3, 8, 11, 12. In addition, evidence 

is growing that huntingtin (inclusion bodies in Huntington’s disease) and several proteins 

associated with ALS-frontotemporal dementia spectrum disorders, including superoxide 

dismutase 1 (SOD1) and TAR DNA-binding protein-43 (TDP-43) also acquire pathogenicity 

by a prion-like molecular process.
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Although the formation and amplification of proteopathic seeds is fundamental to these 

disorders, the disease agents must also translocate among cells and to different regions 

(Figure 1). To this end, cross-sectional histopathologic analyses have consistently indicated 

that proteinaceous lesions do not appear and spread randomly; rather, they develop in 

disease-specific spatiotemporal patterns 13–16. More recently, in vivo imaging investigations 

have begun to confirm postmortem histopathological findings implicating the neural 

connectome as an important mediator of the region-to-region progression of proteopathic 

lesions 17,18. Ultimately, the development of pathology in recipient compartments is 

governed by host factors that render the local environment receptive or resistant to the 

propagation of the abnormal proteins (Figure 1).

Postmortem histopathologic analyses and in vivo imaging modalities rely on the presence of 

distinctive deposits such as extracellular amyloid or intracellular inclusions to map the 

lesions in the human brain, but such studies only indirectly disclose the dynamic process by 

which the lesions spread. Moreover, it is important to recognize that these obvious lesions 

may not fully represent the distribution of the proteopathic seeds and their associated 

pathologic sequelae 10. Like PrPSc, many disease-related proteins have an enhanced 

tendency to form amyloid, but they may also comprise small, self-propagating oligomeric 

assemblies that can disrupt the function of cells and tissues, but which can be difficult to 

analyze unambiguously in biological samples. Hence, the amyloid state is indicative of a 

proteopathic process, but it is not always required for the manifestation of disease.

Experimental models have allowed researchers to methodically investigate the trafficking of 

seeds and the spatiotemporal emergence of anomalous proteinaceous lesions along neural 

pathways. In an in vivo exogenous seeding paradigm, both the characteristics of seeds and 

the site at which seeding originates can be carefully defined.

Propagation of proteopathic lesions

The prion-like propagation of proteopathic assemblies in neurodegenerative diseases other 

than PrP-prion disease was first established by the demonstration that Aβ seeds in brain 

extracts are necessary and sufficient to induce the aggregation of Aβ in transgenic mouse 

models (reviewed in 11). The prion concept has since expanded to include many of the 

aberrant proteins that characterize human neurodegenerative diseases (Figure 2; Table 1).

Propagation of Aβ-proteopathy

As in the case of PrP-prionopathies, Aβ deposition can be instigated in the brain by the 

introduction of minute amounts of brain-derived Aβ seeds into suitable hosts 19–26. Aβ seeds 

delivered to one brain area induce protein aggregation that spreads to interconnected regions, 

reminiscent of the neuronal transport and trans-synaptic spread of PrP-prions 27. For 

example, injection of Aβ-rich brain extract into the hippocampus induces local Aβ 
deposition, as expected. Once initiated, Aβ deposition then propagates non-randomly to 

axonally linked parts of the brain 28, 29. The involvement of neurons in the systematic 

emergence of lesions is supported by in vitro studies showing that Aβ aggregates are 

conveyed by axonal transport 30, 31, and by the occurrence of seeding-active intracellular Aβ 
assemblies 32. These studies do not rule out spread by passive diffusion (via the 
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cerebrospinal fluid or interstitial fluid), but the early appearance of deposits at non-

contiguous sites, their anatomically orderly proliferation, and the ability of neurons to 

transport Aβ in vitro argue for an important role of neurons themselves in the spread of 

disease within the brain.

Aβ seeds also have been shown to traffic from the periphery to the brain 33–35. Aβ deposits 

seeded from the periphery (by delivery of seeds into the peritoneal cavity or directly into the 

circulatory system) are predominantly associated with cerebral blood vessels (Aβ-CAA), 

suggesting a vascular route of transport and the possible participation of innate immune cells 

that endocytose and translocate Aβ seeds, although the mode of neuroinvasion remains 

uncertain 33–35.

The trafficking of Aβ seeds from periphery to brain has been proposed to underlie the 

intracerebral deposition of Aβ in people many years after having been treated as children 

with human-derived growth hormone 36. Some of the recipients later succumbed to CJD, 

apparently because the growth hormone was extracted from large batches of cadaveric 

pituitary glands that included glands from donors who had died while incubating PrP-prion 

disease 37–39. In a post-mortem analysis of 8 of these iatrogenic CJD cases (ranging from 

36–51 years of age), four of the subjects also had extensive Aβ plaques and Aβ-CAA in the 

brain, and two others had sparse Aβ deposits 36. Aβ deposition also has been reported in the 

brains of cadaveric growth hormone recipients who died of causes other than CJD 38, 40, and 

in CJD patients who had received dura mater transplants contaminated with PrP-prions 
38, 41–43.

Evidence of tauopathy was minimal 36, 38, 40, 44 or absent 45 in these iatrogenic cases. 

Abnormal tau is present in pituitaries from Alzheimer patients 46, and tau was detected in 

some batches of cadaver-derived human growth hormone 44 (abnormal tau has not been 

reported in dura mater). Why tauopathy is sparse in the growth hormone recipients is 

uncertain, considering that tau can seed tauopathy directly in animal models (below).

Although other interpretations cannot be ruled out, the most likely explanation for Aβ-

proteopathy in these subjects is that some lots of growth hormone and dura mater were 

contaminated with Aβ seeds from AD (or incipient AD) donors. In support of this 

possibility, aggregated Aβ was detected in batches of cadaver-derived growth hormone 44, in 

pituitary glands from AD patients 46, and in samples of the dura mater implicated in 

transmitting CJD 45. In addition, Aβ-CAA was abundant in many of these human cases, 

similar to the increased vascular Aβ deposition in APP-transgenic mice following peripheral 

administration of Aβ seeds 33–35 (above). The possibility that Aβ deposition is somehow 

actuated by prion disease is unlikely in light of the findings that some non-CJD patients 

developed Aβ-proteopathy 40 and that PrP-prions do not induce Aβ deposition in mouse 

models 47. Whether the surviving recipients of tainted biologics are at a higher risk of 

developing the full clinicopathologic phenotype of AD is not known. Given the long, 

clinically silent incubation period for AD 48, signs of dementia would not be expected for 

years or even decades following the initiation of Aβ-proteopathy.

Jucker and Walker Page 4

Nat Neurosci. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Propagation of tauopathy

Tauopathy is associated with over 20 different disorders 49, and thus is one of the most 

common proteopathies of the nervous system. Similar to PrP-prionopathies and Aβ-

proteopathy, there is clear evidence that tau can self-assemble and propagate in vivo by a 

prion-like molecular process. The aggregation of hyperphosphorylated tau is inducible by 

the intracerebral infusion of small amounts of tau seeds into transgenic mice expressing 

human tau 50, 51, and, to a lesser degree, into wild-type mice 52–54 (Figure 2). This 

exogenously induced form of tauopathy then spreads systematically from the site of 

injection to axonally linked brain regions 55–57, indicative of the neuronal endocytosis, 

templated amplification, transport, and release of tau seeds 58–60. In addition, like PrP-

prionopathies, Aβ-proteopathy, and α-synucleinopathy (below), tauopathy can be induced in 

the brain by delivery of tau seeds into the peritoneal cavity 61.

To model the endogenous emergence and spread of cerebral tauopathy, expression of a 

human tau transgene was restricted principally to projection neurons of the entorhinal cortex 

in genetically modified mice 62, 63. The mice developed tauopathy first in the entorhinal 

cortex, and subsequently in axonally-coupled areas 62, 63. Later studies found that the tau 

transgene is weakly expressed in other brain regions, which could influence the 

spatiotemporal pattern of lesion progression 64. However, in light of the stereotypical 

localization of tauopathy in interconnected brain regions in AD, chronic traumatic 

encephalopathy, and FTLD-tau 13, 16, 65, 66, the experiments in mouse models support the 

view that neuronal trafficking mechanisms contribute to the connectomic distribution of tau 

seeds within the nervous system.

In AD, genetic and biomarker analyses indicate that tauopathy is downstream of Aβ 
aggregation 48, 67. Experimentally, aggregated forms of Aβ have been shown to induce tau 

lesions and to promote the spread of tauopathy in mice 68–72. How the two proteins interact 

is incompletely understood, but it may involve the formation of tau seeds within Aβ-induced 

dystrophic neurites 71, 72, heterotypic tau seeding by Aβ 73, or the stimulation of tau release 

from neurons by Aβ-mediated neuronal hyperexcitability 74, 75. Whether the presence of Aβ 
seeds is necessary to continually drive the spread of tau, or whether Aβ assemblies simply 

trigger the self-sustaining propagation of tauopathy, is an open question with implications 

for therapeutic strategies targeting AD.

Propagation of α-synucleinopathy

α-Synuclein misfolds and self-aggregates into characteristic inclusions known as Lewy 

bodies and Lewy neurites in α-synucleinopathies such as PD and dementia with Lewy 

bodies, and into glial cytoplasmic inclusions in multiple system atrophy 76. Interest in the 

seeding capacity of abnormal α-synuclein was piqued with reports that Lewy bodies 

materialize in fetal brain cells that had been transplanted intracerebrally into PD patients in 

an attempt to alleviate the behavioral manifestations of the disease 77, 78. Examination of the 

brains of subjects who died years later disclosed that some of the transplanted cells had 

developed Lewy-pathology, suggesting (but not proving) that α-synuclein seeds in the host 

brain induced the misfolding and aggregation of the protein in the transplanted cells.
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Experimental studies in animals subsequently provided further support for the self-

propagation of α-synuclein seeds (Figure 2; Table 1). Exogenous introduction of brain-

derived or synthetic α-synuclein seeds instigates progressive neurodegenerative disorders in 

animals that recapitulate some characteristics of human PD 79–83 or multiple system atrophy 
84, 85. In addition, α-synuclein pathology seeded in one region of the brain propagates along 

anatomically connected structures 80, 81, 86, 87, suggestive of selective neuronal transport of 

the seeding agent.

Similar to other cerebral proteopathies, α-synucleinopathy is inducible in the brains of 

experimental animals by the peripheral infusion of α-synuclein seeds 88–91. This finding has 

re-invigorated consideration of the mechanisms underlying one of James Parkinson’s (1817) 

seminal observations of the “shaking palsy” 92 (now known as PD). Parkinson noted that 

constipation is a frequent symptom of the disease, and he even considered how a 

gastrointestinal disorder and a brain disorder could be related 92. Since then, immunoreactive 

α-synuclein inclusions in the autonomic nervous system have been described, whence α-

synuclein seeds are hypothesized to travel to the brain via neuronal connections 93.

Propagation of other neurodegeneration-associated protein assemblies

In addition to PrP, Aβ, tau, and α-synuclein, some proteins associated the ALS-

frontotemporal dementia spectrum exhibit self-propagating properties and spread in mouse 

models, including SOD1 94 and TDP-43 95 (Figure 2; Table 1). Although in vitro studies 

indicate molecular prion-like processes for disease-associated proteins such as FUS and 

polyglutamine-containing proteins (above), as well as dipeptide repeat proteins 96, definitive 

evidence for a bona fide prion-like mechanism in vivo remains to be demonstrated in these 

instances.

Heterogeneity of proteopathic seeds

Strains and clouds

In PrP-prion diseases, conformation-sensitive assays and molecular probes indicate the 

existence of structurally heterogeneous assemblies of PrPSc within the brain. Such variants 

are referred to as PrP-prion strains, and their heterogeneity constitutes what are known as 

conformational clouds 10, 25, i.e., a group or ‘cloud’ of related conformations within the 

same brain. PrP-prion strains can change and undergo differential amplification under 

selection pressure 10, 97, 98. Strains and clouds have been linked to the species (transmission) 

barrier and to the variable phenotypic expression of PrP-prion disease 99. The occurrence of 

strains and clouds of distinct conformations is a predicted feature of all amyloidogenic 

proteins 9. Indeed, misfolded Aβ, tau, and α-synuclein share with PrPSc the properties of 

conformational strains and clouds, a phenomenon that can influence both the propagation 

and characteristics of the respective proteinaceous lesions (Figure 2, 3).

Multiple experimental approaches reveal a diversity of Aβ aggregates, 24, 25, 100–103 and tau 

aggregates 51, 104 in the human brain. Using solid-state nuclear magnetic resonance on AD-

seeded, synthetic Aβ fibrils 100, or conformation-sensitive assays of brain samples 103, 

variant molecular structures have been detected that correspond to either typical AD or a 
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rapidly progressing form of the disorder. In addition, conformation-sensitive amyloid-

binding dyes confirm the variability of Aβ aggregates both within (clouds) and among AD 

brains 25, 101. These studies further show that the molecular attributes of aggregated Aβ 
deposits differ among familial and idiopathic AD patients 25, 101. High-resolution cryo-

electron microscopy is becoming an important tool for defining the molecular architecture of 

aberrant Aβ 105 and other proteins within the brain. Recently, the variant structures of two 

different types of tau filament (paired helical and straight filaments) in an AD case were 

revealed by cryo-electron microscopy 106, and tau strains have been isolated from AD brains 

and propagated in clonal cells 51, although it remains to be determined whether the 

structures of the propagated strains have the same conformations as the those in the brain.

Several experiments indicate that it may be possible to replicate in animal models the strain-

like features of aggregated proteins from human diseased brains. The intracerebral injection 

of brain extracts containing aggregated Aβ from different mice 107 or etiologically-different 

AD cases 24, 25 into susceptible host mice induces cerebral Aβ deposits with molecular traits 

that partially recapitulate those in the donor brains. Similarly, tau seeds extracted from the 

brains of humans who died of different tauopathies (AD, progressive supranuclear palsy 

(PSP), frontotemporal lobar degeneration-tau (FTLD-tau), or corticobasal degeneration 

(CBD)) induce tau inclusions in mice that are remarkably similar to the corresponding 

human lesions (including astroglial and oligodendroglial inclusions for PSP-tau and CBD-

tau seeds, and neuronal inclusions for AD-tau seeds 52, 104, 108).

Aggregates of α-synuclein from PD brains exhibit differential proteinase-K cleavage 

patterns, indicative of variant molecular conformations of α-synuclein 109. Furthermore, 

brain extracts from patients with multiple system atrophy (MSA) or PD have been found to 

induce different phenotypes upon seeded transmission of α-synucleinopathy to mice 85. 

Indeed, oligodendrocytes are specifically able to convert α-synuclein into the MSA strain, 

which shows a much higher seeding capacity compared to neuronal α-synuclein seeds 84. 

Finally, recombinant α-synuclein fibrils can cross-seed tau fibrillization, and the efficacy of 

this cross-seeding is governed by strain-like variations in the α-synuclein seeds 109, although 

the in vivo relevance of synthetic α-synuclein strains remains uncertain (e.g. 110; see also 

below).

Durability and activity

Although the detailed molecular conformation of PrPSc and its variants is still tentative 111, 

certain structural and functional properties common to PrPSc and other proteopathic seeds 

contribute to their shared pathobiology. The enhanced ability to form amyloid renders some 

proteopathic seeds resistant to physicochemical degradation by harsh treatments such as 

heat, formaldehyde, or exposure to proteases. Similar to PrPSc, resistance to inactivation by 

formaldehyde has been shown for Aβ seeds 112 tau seeds 113 and α-synuclein seeds 114, 115. 

In addition, a subset of Aβ seeds, like PrPSc, are resistant to degradation by heat 20, 116 and 

proteinase-K 21. Notably, some Aβ seeds 117 and PrP-prions 118 can persist in the living 

brain for months following exogenous infusion.

Given the conformational variability of proteopathic seeds, it is not surprising that seed 

durability and bioactivity also vary, with some seeds being relatively fragile but 
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exceptionally seeding-active. Oligomeric forms of PrPSc have a higher specific seeding 

activity than do larger multimers 119, 120. Similarly, potent seeding activity has been found 

for smaller aggregates of Aβ 21, 23, and tau 121. The smallest unit of infectivity/seeding 

capacity is not known, although estimates for PrP-prions are approximately 6 – 20 PrP 

molecules per particle 119, 120, and for tau, 3 - >10 molecules per particle 122, 123.

Assemblies of synthetic or recombinant Aβ, tau, and α-synuclein have been consistently 

shown to have comparatively weak seeding capacity compared to seeds derived from brain 
20, 54, 81, 83, 124–126. For example, sub-attomolar amounts of brain-derived Aβ can induce Aβ 
deposition following intracerebral infusion into APP-transgenic mice 23, whereas aggregates 

of synthetic Aβ require 100 to 1000 times more Aβ and longer incubation times to induce 

histologically detectable seeded deposition 20, 126. Analysis of molecular structure could 

yield clues to the differential functionality of proteinaceous seeds.

Generating in vivo-active recombinant PrP seeds in vitro had been a longstanding challenge 

for the PrP-prion field, but infectivity of recombinant PrP can be capacitated by aggregation 

in the presence of particular cofactors 127. Whether other synthetic seeds might be similarly 

enabled by cofactors is not yet certain, but the in vivo seeding efficacy of synthetic Aβ seeds 

is enhanced if the Aβ is aggregated on living tissue slices in culture 128. The host milieu thus 

is a key element in the development of proteopathic seeds; host factors also control the 

susceptibility to disease as well as the resulting phenotype.

Host factors

As in PrP-prion diseases, the host plays a critical role in determining the formation and 

pathogenicity of other proteopathic seeds. Whether disease-specific seeds are produced 

throughout life and usually are actively removed, or whether the generation of seeds is a rare 

event that inevitably marks the beginning of the disease, remains to be determined. In both 

scenarios, however, the emergence and persistence of seeds is thought to be promoted by the 

age-related deterioration of the host proteostasis network 129. The host also provides the 

active and passive mechanisms by which seeds spread through the nervous system. 

Furthermore, as the source of auxiliary molecules such as chaperones along with the naïve 

protein molecules that serve as the substrate for templated conversion, the host regulates the 

self-propagation of seeds. Finally, a salient characteristic of neurodegenerative disorders is 

the selective vulnerability of different cell types and regions of the nervous system to 

disease. In virtually all neurodegenerative proteopathies, some cells are highly vulnerable 

whereas others are not, sometimes within the same local environment 130, 131. The 

topography of disease reflects in part the extended connectome of the afflicted areas, but 

also the temporal development of lesions and the intrinsic features of cells and tissues that 

render them selectively susceptible to disease.

Compatibility of host proteins and seeds

The transmission of PrP-prions and other seeds to new hosts follows a fundamentally similar 

molecular process. In exogenous seeding models, both the concentration of seeds and the 

structural compatibility with their proteinaceous substrate govern the subsequent self-

propagation of aggregates 11. Thus, experimental transmission of human protein assemblies 
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to mice is facilitated when the murine host overexpresses the corresponding human-

sequence protein (Figure 2). An important determinant of seed-host compatibility thus is the 

amino acid sequence of the protein, which constrains the protein’s folding options, although 

post-translational modifications and other cellular factors also contribute. These, in turn, 

influence the complementarity of the molecular surfaces that interact to actuate the seeding 

cascade 9.

In addition, expression levels and isoforms of a protein may differ among cells and 

compartments, and thus the host can differentially select certain conformations for 

amplification in specific locations (Figure 3). For instance, the conformational features and 

cellular location of seeded α-synuclein lesions are dependent on the expression level and 

type of host α-synuclein 91, 132, and the same is true for the seeded induction of tau 52, 104 

and Aβ lesions 34, 107, 133. Thus, the compatibility of host proteins and seeds is an important 

factor that regulates the selective propagation of proteinaceous assemblies in different cell 

types and brain regions 84, 130, 133, 134, 135. Another way in which the host mediates the non-

random spread of proteopathic lesions is by the selective translocation of seeds from cell-to-

cell or compartment-to-compartment.

Host mechanisms of seed spread

Several active and passive mechanisms may promote the dissemination of seeds (Figure 1). 

Of these, active axonal transport along defined neural pathways appears to play a major role. 

Axonal transport mechanisms enable the general translocation of diverse materials such as 

macromolecules, organelles and viruses to and from neuronal somata. Although fibrillar 

forms of Aβ, huntingtin and α-synuclein have been demonstrated to travel in both an 

anterograde and retrograde direction along axons, the rate of transport (at least in vitro) 

differs for the three proteins 31. Variant states of a protein also may influence how they move 

from place to place, as shown for PrP-prions; in mice expressing PrP with an intact 

glycosylphosphatidylinositol (GPI) anchor, infectivity traffics mainly along neuronal 

pathways, whereas in mice expressing PrP lacking the GPI anchor, infectivity is more likely 

to diffuse through the interstitial fluid 136.

Some means of translocation appear to be selective for certain proteopathic assemblies. The 

protein product of lymphocyte-activation gene 3 (LAG3) has been suggested to be a receptor 

for the endocytosis and spread of α-synuclein seeds (pre-formed fibrils) in neurons, but the 

same mechanism appears not to accommodate tau or Aβ seeds 137. Unconventional secretion 

pathways for the cellular release of both tau and α-synuclein have been described 138, 139, 

which, in one case (mediated by the ubiquitin-specific protease 19), appears to be specific 

for misfolded α-synuclein but not tau 138, although such specificity may vary among cell-

types. These findings indicate that differential trafficking of seeds by the host may contribute 

to the selective vulnerability of different cells and brain areas in neurodegenerative diseases 

(Figure 3). However, it is also important to note that both the host milieu and the 

proteopathic seeds are likely to change throughout the long course of neurodegenerative 

diseases.
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Host-seed interactions as disease progresses

The conditions that govern the interaction of host and seeds may evolve with advancing age 

and disease progression. Studies in transgenic mice show that the specific seeding activity of 

Aβ changes as Aβ deposition amplifies in the brain, and is highest in the earliest stages of 

Aβ-amyloidogenesis 140. The cellular release of Aβ, tau, and α-synuclein, and the spread of 

the resulting lesions, are promoted by neural activity 141–143. Neuronal connectivity 

contributes to the anatomic distribution of proteopathic lesions; as the disease process 

advances, however, the developing lesions can disrupt the connectome in ways that interfere 

with normal function and complicate the pathways by which the proteinaceous seeds spread 

further 18, 144. Finally, a role of microglia in the transport and processing of seeds has been 

described; hence, the activation and disease state of microglia influence the disease 

phenotype, probably in complex ways 145–147. Most importantly, similar to the prionoses, 

other neurodegenerative proteopathies have a long, quiet phase during which the abnormal 

proteins proliferate in the nervous system, even before the characteristic lesions can be 

detected with histological or imaging tools 140, 148, 149. This critical early phase of seed 

propagation is an important topic for future research.

Perspective: The seed and soil concept in neurodegenerative diseases

Compelling genetic, pathologic and experimental evidence now implicates the prion-like 

misfolding and corruptive templating of proteins in the pathogenesis of neurodegenerative 

diseases. In each disorder, specific proteins selectively aggregate in certain parts of the 

nervous system. The pattern of accumulation reflects the nature of the proteopathic seeds, 

the various pathways through which they can translocate, and the idiosyncratic features of 

the affected structures. Conceptually, the proliferation and selective spread of proteopathic 

seeds is reminiscent of the tissue tropism of malignant cells in metastatic cancer 150. 

Another similarity is the heterogeneity of the disease agents, which provides a varied 

substrate for the Darwinian selection of proteopathic strains or subclonal cancer cells in 

response to therapy 98, 150. A deeper understanding of the emergence, spread, and selective 

impact of pathogenic protein assemblies, particularly at early stages of disease, will yield 

useful insights into the pathobiology of a variety of human afflictions. Just as malignant cells 

and host factors interact to define the pathogenesis of cancer, the ‘seed and soil’ concept first 

proposed by Paget 1 could inform the coherent development of disease-modifying therapies 

for neurodegenerative disorders involving the seeded aggregation of proteins.
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Figure 1. 
Factors governing the genesis, replication, and spread of proteopathic seeds. Disease-

specific seeds (orange) are generated when certain normally produced proteins (green) 

misfold, in which state they structurally corrupt like proteins and self-assemble into 

multimers. Whether seeds are produced throughout life and usually are actively removed or 

whether this is a rare event that inevitably marks the beginning of disease remains to be 

determined. The seeds move from one location to another by any of several potential 

mechanisms; in some instances, the affected site can be extracellular. All of these 

phenomena may contribute to selective local vulnerability; they can vary in different cell 

types and regions of the nervous system, where such factors as the presence of auxiliary 

agents for replication, transport and uptake mechanisms differ (dark blue, a cell in which 

different agents restrict further propagation). In addition, the expression level or isoform of 

the cognate proteins may differ among cells and compartments, thereby further supporting 

or restricting the spread of the seeds and/or defining the strain of seed that is propagated (see 

Figs. 2 and 3).
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Figure 2. 
Compatibility of seed and cognate host protein regulates the propagation of proteopathic 

seeds at the organismic level. A,B, Proteopathic seeds isolated from a human brain are 

conformationally heterogeneous (colored dots). In a murine host brain milieu that is 

permissive for amplification of the dominant conformation (orange), lesions with a 

molecular structure similar to that in the donor brain will be preferentially propagated 

following introduction of the exogenous seeds. A, To facilitate seeding, the host mice are 

often transgenic (Tg), and are engineered to express the human protein that forms specific 

lesions in the human brain. Seeding efficiency is augmented by high (transgenic) expression 

of the cognate protein in the host (orange mouse). B, Wild-type (WT) mice usually are more 

restrictive in propagating the human conformation (for instance, owing to different amino 

acid sequences in the proteins), but in some cases they may permit the propagation of a 

subconformation (gray dots). The more abundant the exogenous seeds and the closer their 

structural characteristics to the host protein, the more likely and efficient their propagation in 

the host. Hence, transmission of proteopathic lesions from a human donor to a WT mouse 

(gray) typically requires longer incubation times and sometimes may never occur during the 

lifetime of the mouse (see also Table 1).
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Figure 3. 
Compatibility of seed and cognate cellular protein governs propagation at the cellular or 

compartmental level. For seeded propagation and spread, proteopathic seeds must 

translocate from cell-to-cell or compartment-to-compartment, and they must be replicated at 

each successive location (see also Fig. 1). Both steps are dependent on the host, and can vary 

in different cell types such as neurons and glia (upper and lower cells, respectively, in panels 

A–C), in which such factors as protein expression, isoforms, and auxiliary molecules 

influence cell tropism. As a result, some cells resist seeding, and others may select for 

particular proteopathic conformations (different colored dots). A, Neurons and glia both 

select for the same strains. B, Neurons and glia select for different strains; here the glia 

generate secondary seeds that differ from the initial seed. C, The glia are incapable of 

replicating any pathogenic form of the protein.
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Table 1.

Framework for the transmission of proteopathic seeds to mice or humans either by intracerebral (i.c.) or 

peripheral (i.p.) inoculation. The year when the first transmission of brain- derived, synthetic, or recombinant 

seeds was reported is indicated; darker colors denote earlier proof of transmission. Brain symbols, brain-

derived seeds; fibril schematic (brown), synthetic fibrils. *Conclusive evidence that synucleinopathy in human 

tissue grafts is induced by α -Syn seeds from the host is lacking, hence, supporting evidence comes from 

animal studies. +Huntingtin inclusions have been shown in WT grafts of Huntington’s disease patients151 or in 

mutant grafts in wild-type mice152. However, a prion-like proteopathic process in vivo, i.e., the sustained, 

seeded misfolding and accumulation of huntingtin initiated by minute quantities of inanimate seeds, has not 

yet been shown.

Nat Neurosci. Author manuscript; available in PMC 2019 April 01.


	Abstract
	Prions: paradigmatic proteinaceous disease agents
	Progression of neurodegenerative diseases and the prion paradigm
	Propagation of proteopathic lesions
	Propagation of Aβ-proteopathy
	Propagation of tauopathy
	Propagation of α-synucleinopathy
	Propagation of other neurodegeneration-associated protein assemblies

	Heterogeneity of proteopathic seeds
	Strains and clouds
	Durability and activity

	Host factors
	Compatibility of host proteins and seeds
	Host mechanisms of seed spread
	Host-seed interactions as disease progresses

	Perspective: The seed and soil concept in neurodegenerative diseases
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.

