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Abstract

Objective

Morphine is a commonly used drug in encephalopathic neonates treated with therapeutic

hypothermia after perinatal asphyxia. Pharmacokinetics and optimal dosing of morphine in

this population are largely unknown. The objective of this study was to describe pharmacoki-

netics of morphine and its metabolites morphine-3-glucuronide and morphine-6-glucuronide

in encephalopathic neonates treated with therapeutic hypothermia and to develop pharma-

cokinetics based dosing guidelines for this population.

Study design

Term and near-term encephalopathic neonates treated with therapeutic hypothermia and

receiving morphine were included in two multicenter cohort studies between 2008–2010

(SHIVER) and 2010–2014 (PharmaCool). Data were collected during hypothermia and
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rewarming, including blood samples for quantification of morphine and its metabolites.

Parental informed consent was obtained for all participants.

Results

244 patients (GA mean (sd) 39.8 (1.6) weeks, BW mean (sd) 3,428 (613) g, male 61.5%)

were included. Morphine clearance was reduced under hypothermia (33.5˚C) by 6.89%/˚C

(95% CI 5.37%/˚C– 8.41%/˚C, p<0.001) and metabolite clearance by 4.91%/˚C (95% CI

3.53%/˚C– 6.22%/˚C, p<0.001) compared to normothermia (36.5˚C). Simulations showed

that a loading dose of 50 μg/kg followed by continuous infusion of 5 μg/kg/h resulted in mor-

phine plasma concentrations in the desired range (between 10 and 40 μg/L) during

hypothermia.

Conclusions

Clearance of morphine and its metabolites in neonates is affected by therapeutic hypother-

mia. The regimen suggested by the simulations will be sufficient in the majority of patients.

However, due to the large interpatient variability a higher dose might be necessary in individ-

ual patients to achieve the desired effect.

Trial registration

www.trialregister.nl NTR2529.

Introduction

Hypoxic-ischemic encephalopathy (HIE) following perinatal asphyxia is one of the leading

causes of death and disability in term and near term neonates. Therapeutic hypothermia (TH,

lowering the core temperature to 33–34˚ C for 72h) is an established neuroprotective strategy

and has become standard of care for these patients in developed countries.[1,2] In the Nether-

lands, approximately 150–200 neonates receive this treatment annually using whole-body

cooling.[3]

Morphine is a commonly used drug in hypothermic neonates to provide analgesia and

sedation, and is considered an important drug since stress may reduce the neuroprotective

effects of TH.[4] Morphine undergoes extensive hepatic metabolism and its predominant

metabolite is morphine-3-glucuronide (M3G) which is non-sedative. The less abundant

metabolite morphine-6-glucuronide (M6G) is pharmacologically active with similar or greater

sedative and analgesic effects compared to the parent compound.[5,6] Both glucuronide

metabolites are formed by UDP glucuronosyltransferase 2B7 (UGT2B7).[5] The UGT2B7

enzyme activity in neonates is less than 10% of that in adults, but increases rapidly during the

first days after birth.[7,8] Both metabolites are eliminated through the kidneys.[5] At birth,

renal function is underdeveloped compared to older children and adults. In the first few weeks

of life, a steady increase in renal function can be seen.[8] Thus, maturation of kidney function

might influence metabolite elimination.[8,9]

Hypothermia might influence numerous physiological processes involved in drug metabo-

lism. Hypothermia reduces cardiac output and increases vascular resistance, which leads to

decreased liver perfusion. Decreased liver perfusion might result in decreased drug clearance,

especially in drugs with a high hepatic extraction ratio. Furthermore, the activity of liver
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enzymes such as cytochrome P450 and UGT27B can be declined during TH resulting in

impaired clearance. Likewise, TH can decrease renal drug clearance by reducing kidney perfu-

sion and subsequent glomerular filtration but also through changes in tubular secretion and

reabsorption.[10–12] Additionally, pharmacokinetics (PK) of drugs administered to these neo-

nates may be altered due to hypoxia-ischemia related multi-organ failure.[13,14] In recent

years, studies have been conducted that investigated the PK of frequently used drugs in neo-

nates undergoing TH. The findings of these studies have led to dose recommendations for sev-

eral antibiotics and anticonvulsive drugs.[15–21]

Morphine PK in normothermic neonates has been investigated in several studies, mostly

involving preterm and term neonates following major thoracic and abdominal surgery.[22]

Neonates with a postnatal age (PNA) below 10 days had a markedly reduced morphine clear-

ance compared to older children which has been attributed to impaired glucuronidation. This

effect was independent of birth weight (BW) or gestational age (GA). Maintenance dose in this

group was reduced by 50% compared to older children to achieve morphine plasma concen-

trations between 10 and 40 μg/L.[9] This dosing algorithm has been prospectively validated

and body weight has been shown to accurately predict morphine clearance across the entire

pediatric population.[23–25]

Morphine PK in neonates with HIE undergoing TH has only sparsely been investigated.

Róka et al. (2008) found elevated morphine plasma concentrations in neonates treated with

TH (N = 10) compared to non-asphyxiated normothermic controls (N = 6) with similar infu-

sion rates and cumulative doses.[26] Frymoyer et al. (2016) developed a population PK model

for morphine, M3G and M6G during TH using data from 20 neonates. They concluded that

morphine clearance during TH was lower compared to previous studies in normothermic

asphyxiated neonates and advised a loading dose of 50 μg/kg followed by 5 μg/kg continuous

infusion.[27] Both studies did not include data during and after rewarming. Additional char-

acterization of morphine PK using a larger dataset is imperative to guide clinicians in the

application of this widely used and important drug in this critically ill population.

The objective of the present study was to describe the PK of morphine and its metabolites

in neonates with HIE both during and after TH using nonlinear mixed effect modelling and to

develop pharmacokinetics based dosing guidelines based on a large dataset obtained from two

multicenter studies conducted in the Netherlands and Belgium.

Patients and methods

Setting, study design and study population

The open label prospective SHIVER study was performed in the tertiary neonatal intensive

care units (NICU) of the University Medical Center Utrecht, Utrecht and Isala Clinics, Zwolle.

The open label prospective PharmaCool study was conducted in twelve tertiary NICUs in the

Netherlands and Belgium.[28] In both studies, term neonates undergoing TH for HIE were eli-

gible for inclusion. According to national treatment protocol, neonates with a GA between

36.0 and 42.0 weeks were cooled within 6 hours after birth to a core temperature of 33.5˚C

(accepted range 33.0–34.0˚C) for 72 hours. Thereafter, patients were slowly (0.4˚C/hour)

rewarmed to normothermia (36.5˚C). After rewarming, body temperature was stabilized at

36.5˚C for 24 hours.[3] Exclusion criteria were severe congenital malformations, encephalopa-

thy due to other causes than perinatal asphyxia and the absence of central venous or arterial

access for non-invasive blood sampling. From each included patient, written parental

informed consent was obtained. Inclusion took place between 2008–2010 (SHIVER) and

2010–2014 (PharmaCool). In total, 339 patients were screened and 277 included. For the pres-

ent study, neonates participating in either study and receiving intravenous morphine were
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selected. Data analysis was completed in 2018. The SHIVER study was approved by the Institu-

tional Review Board (IRB) of the University Medical Center Utrecht (no. 08/404) and subse-

quently approved by the IRB of the Isala Clinics, Zwolle. The PharmaCool study was approved

by the IRB of the Academic Medical Center Amsterdam (no. 10/255) and subsequently

approved by the IRBs of the VU Medical Center Amsterdam, University Medical Center

Utrecht, Leiden University Medical Center, Erasmus Medical Center Rotterdam, Maxima

Medical Center Veldhoven, Maastricht University Medical Center, Radboud University Medi-

cal Center Nijmegen, Isala Clincs Zwolle, University Medical Center Groningen, University

Hospital Gent and University Hospital Brussels.

Morphine dosing and administration

In both studies, morphine was administrated as morphine hydrochloride according to local

protocols and/or the attending physician’s discretion as an intravenous continuous infusion,

often preceded by a loading dose. Morphine was generally started at the onset of TH or shortly

before. Dose adjustments, including administration of any additional loading dose, were based

on each patient’s clinical condition and were not influenced by the study protocol.

Pharmacokinetic sampling and bioanalysis

From all patients, 1 ml blood samples were obtained from an indwelling catheter on four con-

secutive days, both during hypothermia and rewarming/normothermia. Sampling was sched-

uled at designated time points at 24 hours intervals. This limited sampling strategy was

designed to minimize patient risk while still obtaining sufficient information to achieve the

study objective. In the SHIVER study, residual material from blood samples taken for clinical

care were available for some patients. Plasma concentrations of morphine, M3G and M6G

were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The

lower limit of quantification (LLQ) was 10 μg/L for morphine and M3G and 5 μg/L for M6G.

The calibration curves were linear from 10 to 1000 μg/L for morphine, 10 to 600 μg/L for M3G

and 5 to 200 μg/L for M6G. Between-run and within-run coefficients of variation were<5%

for morphine and M3G and<8% for M6G. Samples were stored at -80˚C until analyses at the

Clinical Pharmaceutical and Toxicological Laboratory of the Department of Clinical Pharmacy

of the University Medical Center Utrecht, the Netherlands.

Population pharmacokinetic analysis

A population pharmacokinetic model was developed from morphine, M3G, and M6G concen-

tration–time data using the nonlinear mixed effect modelling program NONMEM (version

7.3, Icon Development Solutions) with R (version 3.4.1), Xpose (version 4) for data visualiza-

tion and Piraña for run management.[29] Morphine hydrochloride (molecular weight (MW)

321.8 g/mol) doses were converted to morphine base (MW 285.3 g/mol) and consecutively, all

units of dose and concentration for morphine, M3G and M6G (MW 461.5 g/mol) were con-

verted to μmol and μmol/L, respectively for the purpose of the pharmacokinetic analysis. BW

was used as a descriptor for body size in our population and was related to pharmacokinetic

parameters using allometric relationships. The exponent defining the relationship of BW and

clearance (Cl) was fixed to 0.75 and the exponent defining the relationship of BW and volume

of distribution (V) was fixed to 1. The fractions of morphine converted to the metabolite M3G

and M6G in neonates under hypothermia were unknown (FM3G and FM6G, respectively);

therefore, parameters relative to F were estimated (e.g. ClM3G/FM3G and VM3G/FM3G). Based

on previously published pharmacokinetic models of morphine in neonates[27,30], one- and

two-compartment models for morphine and subsequent one-compartment models for both
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metabolites were tested as a structural model. Morphine and metabolite data were fitted

simultaneously.

To study the effect of hypothermia on pharmacokinetics, a dynamic model of temperature

over time was included, which allowed prediction of the actual body temperature at each

moment of sampling. For all patients, the reported start and end times of TH were used to

determine the period of TH treatment. Body temperature during hypothermia was set at

33.5˚C, with consecutive rewarming at 0.4˚C/hour (i.e. rewarming time 7.5h) until 36.5˚C

after which body temperature was set to 36.5˚C for the remainder of the study time. Calculated

body temperature for each plasma sample was subsequently included in the PK model.

As renal function may be an important determinant for metabolite clearance and given that

renal function cannot be estimated from a single serum creatinine (SCr) measurement in neo-

nates, a model for SCr was developed using daily SCr values taken for clinical care from all

patients. In this model, the elimination rate of SCr was used as a surrogate marker for renal

function. PNA and GA were tested as covariates on both morphine and metabolite clearance.

Inclusion of covariates was guided by effect size, biological plausibility and statistical signifi-

cance (using the likelihood ratio test which assesses the difference in the NONMEM objective

function value (OFV), which is equal to minus twice the log likelihood, with a p-value of

<0.05 as cut-off for significance).

Interindividual variability (IIV) was modelled using a proportional model and tested on all

parameters. Covariance between IIV components was included based on physiological plausi-

bility and graphical exploration. A proportional error model was used to model residual unex-

plained variability. For each compound, separate error models were used. Parameter precision

was assessed with sampling importance resampling (SIR).[31] Internal validation of the final

model was evaluated by computing the normalized prediction distribution errors (NPDE,

1000 simulations).[32] Both graphical (e.g. goodness-of-fit plots, visual predictive check) and

statistical model evaluation procedures were used to assess model adequacy.

Dosing regimen development

Simulations were conducted to test four different dosing regimens using the parameter esti-

mates from the final pharmacokinetic model. To create the simulation dataset, the patient

characteristics of each neonate included in this study were replicated five times. Morphine

loading dose was simulated at PNA 4 hours, immediately followed by continuous infusion.

The following dosing regimens were evaluated, based on the current clinical practice: 1. load-

ing dose of 50 μg/kg followed by continuous infusion of 5 μg/kg/h; 2. loading dose of 50 μg/kg,

continuous infusion of 10 μg/kg/h; 3. loading dose of 100 μg/kg, continuous infusion of 5 μg/

kg/h; 4. loading dose of 100 μg/kg, continuous infusion of 10 μg/kg/h. The dynamic tempera-

ture model was used to introduce TH. For each neonate in the simulation dataset, TH (body

temperature of 33.5˚C for 72 hours) was simulated to start at PNA 5 hours, after which

rewarming commenced at 0.4˚C/hour. After rewarming, body temperature was fixed to

36.5˚C for the remainder of the simulations. Hourly plasma concentrations were predicted

until PNA 120 hours. Morphine plasma concentrations between 10 and 40 μg/L were consid-

ered effective and safe.

Results

Patient characteristics

For 244 neonates morphine dosing information and at least one morphine plasma concentra-

tion was available for analysis (Table 1). In general, loading doses between 50 and 100 μg/kg

were given, followed by continuous infusion with doses varying between 5 and 25 μg/kg/h.

Morphine pharmacokinetics in hypothermic neonates
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A total of 853 blood samples were analyzed (median 4 samples per patient, range 1–11).

Samples with measurements below LLQ for all compounds (n = 23) were excluded from fur-

ther analyses, leaving 830 viable samples. Of these, 550 (66.3%) were drawn during the hypo-

thermic phase. For 18 patients (7.4%), only one sample was available. Plasma concentrations

for morphine varied between 10.0 and 371.2 μg/L (Fig 1); for M3G between 11.0 and 930.6 μg/

L and for M6G between 5.1 and 211.2 μg/L (S1 Fig). In one patient (0.41%), morphine plasma

concentrations exceeding 300 μg/L were reached.

Population pharmacokinetic analysis

A one-compartment model for morphine and subsequent one-compartment models for both

metabolites provided the best fit for the data. Pharmacokinetic parameter estimates of the final

model are shown in Table 2.

Introduction of a peripheral compartment for morphine resulted in an unstable model with

unrealistic intercompartmental clearance. GA and PNA were identified as covariates on mor-

phine clearance (GA: p<0.001, PNA: p<0.001), but not on metabolite clearance. Morphine

clearance was increased by 50.4% at PNA 5 days, compared to birth (increase of 0.42%/h, 95%

CI 0.297%/h– 0.582%/h); at birth, morphine clearance in a neonate with GA 36 weeks was

46% lower compared to GA 40 weeks, while clearance in a neonate with GA 42 weeks is 23%

higher (difference of 1.66%/d, 95%CI 1.30%– 1.94%). The elimination rate of SCr was intro-

duced as a covariate on the clearance of the metabolites as a measure of renal function. The

influence of this covariate was non-significant and therefore excluded from the final model.

Subsequently, the dynamic model of temperature over time was included as covariate on

Cl. The influence of body temperature on clearance was separated into an effect on ClMOR-

PHINE (a combination of hepatic and renal clearance) and CLMETABOLITES (renal clearance). As

Table 1. Patient characteristics.

Parameter Patients (N = 244)

Gestational age; wk, mean ± sd 39.8 ± 1.6

Birth weight; g, mean ± sd 3,428 ± 613

Birth weight� 2500 g; n (%) 16 (6.6%)

Male; n (%) 150 (61.5%)

pH�; median (IQR) 6.96 (6.80–7.09)

Base Excess�; mmol/L, median (IQR) -17 (-12.0 –-21.9)

Lactate�; mmol/L, median (IQR) 13.6 (9.0–18.2)

Thompson score#; median (IQR) 9.5 (8.0–12.0)

aEEG on admission#

Continuous normal voltage; n (%) 30 (12.3%)

Discontinuous normal voltage; n (%)
of whom< 5 μV; n (%)

102 (41.8%)

35 (14.3%)

Burst suppression; n (%) 58 (23.8%)

Continuous low voltage; n (%) 10 (4.1%)

Flat trace; n (%) 27 (11.1%)

Unknown; n (%) 17 (7.0%)

Mortality; n (%) 58 (23.8%)

sd = standard deviation, IQR = interquartile range

�Value measured in umbilical cord blood or, if unavailable, from arterial or venous blood within 1h after birth
#Encephalopathy was characterized by a Thompson score of >7 1h after birth or an abnormal aEEG on admission to

a level III NICU

https://doi.org/10.1371/journal.pone.0211910.t001
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Fig 1. Observed morphine plasma concentrations (μg/L). Dotted lines indicate the proposed therapeutic window of

10–40 μg/L; solid line indicates the potentially toxic limit of 300 μg/L.

https://doi.org/10.1371/journal.pone.0211910.g001

Table 2. Final model pharmacokinetic parameter estimates and SIR results.

Morphine M3G§ M6G§

Parameter Estimate SIR� 95% CI Estimate SIR� 95% CI Estimate SIR� 95% CI

Cl, l/h# 0.899 0.797–0.985 0.456 0.424–0.492 1.73 1.61–1.87

V, l# 8.88 7.87–9.92 0.264 0.089–0.384 4.53 3.64–5.39

PNA on Cl; %/h 0.420 0.297–0.582 NA NA NA NA

GA on Cl; %/d 1.66 1.30–1.94 NA NA NA NA

TEMP on Cl; %/˚C 6.89 5.37–8.41 4.91$ 3.53–6.22$ 4.91$ 3.53–6.22$

Interindividual variability
Cl, variance (rsd) 0.224 (47.3%) 0.185–0.276 0.291$ (53.9%) 0.240–0.356$ 0.291$ (53.9%) 0.240–0.356$

V, variance (rsd) 0.464 (68.1%) 0.364–0.602 NA NA NA NA

Covariance interindividual variability Clmorphine/Clmetabolites
Covariance (correlation coefficient) 0.117 (46.0%) 0.0799–0.161

Residual variability
Proportional, variance (rsd) 0.0498 (22.3%) 0.0437–0.0574 0.0914 (30.2%) 0.0798–0.105 0.101 (31.8%) 0.0888–0.115

Final model

ClMORPHINE = 0.899 x (BW/3.5)0.75 x (1 + 0.0042 x PNA) x (1 + 0.0166 x (GA-280)) x (1 + 0.0689 x (TEMP-36.5))

VMORPHINE = 8.88 x (BW/3.5)1

ClM3G/FM3G = 0.456 x (BW/3.5)0.75 x (1 + 0.0491 x (TEMP-36.5)

VM3G/FM3G = 0.264 x (BW/3.5)1

ClM6G/FM6G = 1.73 x (BW/3.5)0.75 x (1 + 0.0491 x (TEMP-36.5)

VM6G/FM6G = 4.53 x (BW/3.5)1

§All metabolite estimates are relative to formation fraction FM3G and FM6G, resp.

�Ten iterations; no. of samples 1000,1000,1000,1000,1000,1000,2000,2000,2000,2000; no. of resamples 200,200,400,400,500,500,1000,1000,1000,1000
#Estimates for neonate with BW 3.5 kg, GA 280 days, PNA 0h and TEMP 36.5˚C
$Single estimate for both metabolites

V = volume of distribution, Cl = clearance, PNA = postnatal age, GA = gestational age, TEMP = body temperature, M3G = morphine-3-glucuronide, M6G = morphine-

6-glucuronide, SIR = sampling importance resampling, BW = birth weight, NA = not applicable, rsd = relative standard deviation

https://doi.org/10.1371/journal.pone.0211910.t002
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the effect of body temperature on M3G and M6G clearance were similar and separate effects

for both metabolites did not improve model performance, this was estimated as a single effect

in the final model. Morphine clearance during hypothermia was decreased by 20.7%

(p<0.001, 6.89%/˚C, 95% CI 5.37%/˚C– 8.41%/˚C) compared to normothermia. Metabolite

clearance during hypothermia was decreased by 14.7% (p<0.001, 4.91%/˚C, 95% CI 3.53%/

˚C– 6.22%/˚C).

The influence of BW, GA, PNA and temperature on the average morphine clearance is pre-

dicted by the final model are depicted in Fig 2.

Model evaluation demonstrated that the final model was adequate in describing the data.

Goodness-of-fit plots of observed versus population and individual predicted concentrations

showed no systematic deviation and the weighted residuals were homogeneously scattered for

both parent and metabolites (S2–S4 Figs). NPDE plots for morphine, M3G and M6G indicate

that the NPDE follows the normal distribution and that the model does not contain major bias

(S5–S7 Figs).

Dosing regimen

Morphine plasma concentrations after various dosing regimens were predicted using a simula-

tion dataset of 1220 patients and the final PK parameter estimates. In all simulations, mor-

phine clearance was markedly influenced by PNA and TH. Immediately after rewarming,

average morphine clearance was increased by 63.4% compared to clearance at the start of TH.

Of this increase, 29.6% could be attributed to an effect of PNA. A maintenance dose of 5 μg/

kg/h preceded by a loading dose of 50 μg/kg resulted in plasma concentrations between 10 and

40 μg/L at PNA 12h in 88.2% of patients, while 7.8% of patients were below 10 μg/L and 4.0%

above 40 μg/L. At PNA 48h, morphine plasma concentration exceeded 40 μg/L in 6.8% of

patients. As clearance is not constant but increased over time, no steady state in morphine

plasma concentration was reached in the first five days of life. At PNA 77 hours, TH was

stopped resulting in an additional increase in clearance and drop in plasma concentration (Fig

3). Plasma concentrations for both metabolites accumulated during TH but reached steady

state once clearance increased under normothermic conditions (S8 Fig). Morphine plasma

concentrations for the other simulated dosing regimens are included as a supplement (S9 Fig).

Fig 2. Average predicted morphine clearance over time before, during and after TH for neonates with BW 3.5 and GA 36, 38, 40 and 42 weeks,

respectively (left) and for neonates with GA 40 weeks and BW 2.5, 3.0, 3.5 and 4.0 kg, respectively (right). Solid vertical lines represent the start and end of

TH (33.5˚C) simulated between 5h and 77h after birth; dashed vertical line indicates the return to normothermia (36.5˚C) with rewarming simulated at. 0.4˚C/

h; TH = therapeutic hypothermia, BW = birth weight GA = gestational age.

https://doi.org/10.1371/journal.pone.0211910.g002
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Discussion

This study combining data from two large multicenter studies shows that clearance of both

morphine and its metabolites is reduced during hypothermia in neonates with HIE compared

to normothermia. Furthermore, the impact of BW, GA and PNA on the PK of morphine and

its metabolites has been quantified. Reduction in clearance during TH is most likely caused by

a decrease in perfusion of the liver and kidneys. Additionally, an effect of TH on activity of

UGT2B7, the enzyme responsible for metabolizing morphine into M3G and M6G, might

explain why morphine clearance is more strongly affected than metabolite clearance.

Although a therapeutic window for morphine plasma concentrations has not been firmly

established, especially in neonates undergoing TH, the best available evidence suggests a pre-

ferred range between 10 and 40 μg/L, while levels above 300 μg/L have been associated with

respiratory depression and prolonged mechanical ventilation.[25,33–38] Based on the simula-

tions performed in this study, a starting dose of 50 μg/kg followed by 5 μg/kg/h is recom-

mended to achieve morphine plasma concentrations between 10 and 40 μg/L, although the

large interpatient variability (47.3% for Cl and 68.1% for V, Table 2) might lead to higher

(>40 μg/l) plasma concentrations in individual patients. Contrarily, a higher morphine dose

may be needed in some patients to ensure effective treatment. Clinicians should not be

Fig 3. Simulated morphine plasma concentrations of the proposed dosing regimen of 5 μg/kg/h after loading dose

of 50 μg/kg. Solid line indicates the mean morphine plasma concentration; gray area represents the 95% prediction

interval. Dotted horizontal lines indicate the proposed therapeutic window of 10–40 μg/L. Solid vertical lines indicate

the start and end of TH (33.5˚C) simulated between 5h and 77h after birth; dashed vertical line indicates the return to

normothermia (36.5˚C) with rewarming simulated at 0.4˚C/h; TH = therapeutic hypothermia.

https://doi.org/10.1371/journal.pone.0211910.g003
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reluctant to increase the maintenance dose if the starting dose proves inadequate for a patient’s

clinical condition both during and, if morphine is not stopped simultaneously with TH, after

hypothermia.

The current practice rarely leads to plasma concentrations exceeding the potentially toxic

upper limit of 300 μg/L, but may lead to unnecessary high morphine exposure. Neonatal opi-

oid use has been associated with impaired cognitive and behavioral development in animal

studies.[39] Long term follow-up studies in humans suggest a possible negative effect in early

childhood that does not persist later in life.[40–43] Conversely, adequate management of pain

and discomfort is needed to improve recovery, to ensure the effectiveness of TH and to prevent

adverse physiological responses such as changes in intrathoracic or arterial pressure and vaso-

constriction of vital organs.[4,38,39]

Morphine PK was best described using a one-compartment model for morphine and subse-

quent one-compartment models for each of the glucuronide metabolites. Previously, PK of the

parent compound has been adequately described using both one-compartment[44,45] and

two-compartment models.[9,23,27] A recently published meta-model combining data

obtained in neonates and older children from five separate studies proposed a one-compart-

ment model for morphine PK.[30] Metabolite PK was adequately described using one-com-

partment models for each metabolite in all studies.[9,23,27,44] Parameter estimates from this

model extrapolated to a neonate with GA 40 weeks and BW 3.5 kg result in a higher morphine

clearance (1.54 l/h) and a lower volume of distribution (5.25 l) compared to our findings.[30]

This might be explained by the fact that our patient population consisted of critically ill term

neonates admitted to a NICU. The meta-model incorporated data form both term and preterm

neonates and from older children and adults as well. In all included studies, morphine was

administered for post-operative pain. Morphine parameter estimates reported in a small data-

set by Frymoyer et al. in the same population are in accordance with our findings, despite the

differences in the underlying PK model (Cl 0.765 l/h, V 8.02 l).[27] Also, the impact of TH on

morphine clearance in our study is similar to the effect found by Róka et al., who compared

hypothermic neonates to non-asphyxiated normothermic controls using a non-parametric

approach (Cl 0.69 l/h vs 0.89 l/h, decrease of 22.5%).[26]

GA was identified as a significant covariate on morphine clearance despite the relatively

narrow range of GA (36–42 weeks) in this population. Previous reports investigating the PK of

other drugs in the PharmaCool study population have reported similar effects.[18–20] In the

present study, this might be explained by a lower baseline UGT2B7 activity in neonates with a

lower GA. However, due to the large interpatient variability, this finding did not translate into

a dosing advise differentiated by GA. For each of the situations presented in Fig 2, the simu-

lated dosing regimen yields average morphine plasma concentrations between 10 and 40 μg/L.

The majority of patients included in this study had a GA between 38 and 41 weeks (202/244,

82.8%); a lower mg/kg dose for neonates with a GA of 36 and 37 weeks only marginally

improved the fraction of patients within the therapeutic window at PNA 12 hours. Further-

more, a differentiated dosing regimen based on GA within this relatively small subpopulation

of NICU patients is deemed undesirable as this will be error-prone. Therefore, the proposed

dosing regimen is advised for all neonates treated with TH after HIE. Currently, TH is

explored in preterm neonates (GA 34–35 weeks) as well.[46] Extrapolation of our results to

these neonates should be done with caution due to the absence of this patient population in

the current dataset.

Our data show an increase in morphine clearance during the first five days after birth. This

effect could be identified independently of the effect of body temperature. The increase of

clearance over time can be attributed to maturation of UGT2B7. Maturation of this enzyme in

normothermic neonates has been described for morphine but also for other drugs
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predominantly glucuronidated by UGT2B7.[9,47–50] Recovery of organ function after perina-

tal asphyxia might also play a role in this observed increase in clearance during the first days of

life. During asphyxia, the liver is deprived of oxygen, resulting in hepatocyte damage. Alanine

aminotransferase (ALAT) and aspartate aminotransferase (ASAT) levels are commonly used

to indicate hepatocyte damage and both are frequently elevated in neonates with HIE. Peak

levels are reached within 72 hours and normalize within the first two weeks of life, indicating

recovery of liver function in this timeframe.[51–53] Unfortunately, ALAT and ASAT are poor

predictors for hepatic drug metabolism and cannot be reliably used to predict hepatic clear-

ance. Therefore, it was not possible to distinguish between enzyme maturation and recovery of

liver damage.

Introducing temperature as a continuous covariate allowed for a more precise estimate of

the effect of body temperature on the pharmacokinetics of morphine and its metabolites since

also samples during rewarming were available. Additionally, including temperature as a

dichotomous covariate proved to be a less adequate fit for the data. Some assumptions had to

be made for this dynamic model. Firstly, we assumed that the average body temperature of

each neonate during TH was 33.5˚C and that possible fluctuations between 33.0 and 34.0˚C

would have a negligible effect. Body temperature during TH was therefore fixed to 33.5˚C. Sec-

ondly, we assumed that rewarming for each neonate occurred according to national protocol

at 0.4˚C/hour. In clinical practice, rewarming is sometimes slowed or halted if seizures occur

during rewarming. As this information was not available in our dataset, rewarming for each

neonate was set at 0.4˚C/hour. Thirdly, as body temperature after TH is stabilized at 36.5˚C

for 24 hours, we opted for a fixed body temperature of 36.5˚C for each neonate after rewarm-

ing. As morphine is primarily administrated to prevent stress during hypothermia and is often

stopped with or shortly after TH, we believe that this assumption is an accurate representation

of clinical practice. Lastly, we assume a linear effect between body temperature and clearance

and therefore report and effect per˚C. Although we have no evidence for non-linearity, the

limited sampling strategy was insufficient to exclude this. However, in event of non-linearity,

the reported effect is an average effect per˚C between 33.5 and 36.5˚C and does not alter the

overall effect of TH on clearance.

SCr is a specific marker for renal function and is widely used in adults to predict reduced

clearance of renally excreted drugs. In neonates, SCr levels in the first few days of life are con-

founded by maternal SCr levels due to maternal transfer. We considered a dynamic model of

SCr over time a better predictor of changes in renal function. No relationship between serum

creatinine and renal clearance of the metabolites could be identified. Additionally, increased

metabolite clearance over time in the first five days of life could not be observed. This effect

was found in the same population for amoxicillin and benzylpenicillin, drugs that are predom-

inantly excreted renally in unmetabolized form.[18,20] Data collection up to five days after

birth might have been too short to detect maturation of renal function since steady state M3G

and M6G plasma concentrations are not reached during hypothermia (S8 Fig). Also, as matu-

ration of renal function in the first few days after birth occurs simultaneously with TH, the

effect of maturation on metabolite clearance might not be distinguishable from the effect of

hypothermia.

Pharmacodynamics (PD) end points of morphine were not incorporated in the final model.

Although the COMFORT-B score, as indicator for pain and stress, was routinely recorded in

this population, the timing of this score in relation to morphine dosing was often unclear. Pain

expression in hypothermic neonates differs from normothermic neonates, making it uncertain

whether the COMFORT-B score is suitable for treatment evaluation in this population.

[38,54,55] Additionally, this scale has not been developed to distinguish between adequate

treatment effect (eg. adequate sedation) and supratherapeutic effects (eg. oversedation).
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Strengths of this study are the large number of included patients recruited from twelve ter-

tiary NICUs in two countries, making this study population representative for all neonates

treated with TH after HIE. The dosing regimen advised in this study corresponds with the dos-

ing advise postulated by Frymoyer et al.[27] Reconstructing the full profile of hypothermia

and rewarming enabled us to accurately assess the influence of body temperature on clearance.

In all participating centers, TH is applied using a uniform cooling device and with a joint treat-

ment protocol, thereby decreasing the chance of treatment variation.[3]

Limitations are the lack of PD end points associated with morphine. Clinicians are insuffi-

ciently supported by robust tools to facilitate morphine dose adjustments. Development and

validation of such an instrument should be the focus of future research. Subsequently, this tool

could be used to prospectively validate our dosing regimen. Ideally, future PD studies will also

incorporate M6G plasma concentrations for determining exposure-response as the contribu-

tion of this active metabolite to the effects attributed to morphine in neonates are largely

unknown.

For ethical reasons, it was not possible to answer this research question using a prospective

randomized controlled trial comparing hypothermic with non-hypothermic patients. Also,

comparison to an adequate historical control group is not feasible as morphine nor metabolite

plasma concentrations are available from before 2008.

Conclusion

Clearance of morphine and its metabolites is reduced in neonates treated with TH for HIE.

Even though the current clinical practice only very rarely leads to morphine plasma concentra-

tions exceeding 300 μg/L, a relatively low starting dose of 50 μg/kg followed by continuous

infusion of 5 μg/kg/h is recommended in critically ill neonates treated with TH for HIE. How-

ever, due to the large interpatient variability, the uncertainty regarding the supposed therapeu-

tic window and the undesirable effect of discomfort in this population, a higher maintenance

dose may be required if the starting dose proves inadequate for the clinical condition of the

individual patient.

Supporting information

S1 Fig. observed plasma concentrations for M3G (left) and M3G (right).

M3G = morphine-3-glucuronde, M6G = morphine-6-glucuronide.

(TIF)

S2 Fig. Morphine goodness-of-fit plots. A = observed vs population predicted plasma con-

centrations; B = observed vs individual predicted plasma concentrations; C = population con-

ditional weighted residuals vs population predicted plasma concentrations; D = population

conditional weighted residuals vs time after birth; solid line indicates the linear regression line.

(TIF)

S3 Fig. M3G goodness-of-fit plots. A = observed vs population predicted plasma concentra-

tions; B = observed vs individual predicted plasma concentrations; C = population conditional

weighted residuals vs population predicted plasma concentrations; D = population conditional

weighted residuals vs time after birth; M3G = morphine-3-glucuronide; solid line indicates the

linear regression line.

(TIF)

S4 Fig. M6G goodness-of-fit plots. A = observed vs population predicted plasma concentra-

tions; B = observed vs individual predicted plasma concentrations; C = population conditional

weighted residuals vs population predicted plasma concentrations; D = population conditional
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weighted residuals vs time after birth; M6G = morphine-6-glucuronide; solid line indicates the

linear regression line.

(TIF)

S5 Fig. Normalized prediction distribution errors (NPDEs) of the final pharmacokinetic

model for morphine. A = kernel density plot of NPDE with a normal, Gaussian distribution

overlaid for comparative purposes; B = Q-Q plot of theoretical quantiles vs sample quantiles;

C = NPDE vs Time; D = NPDE vs predicted plasma concentrations; solid lines in figures C

and D represent the observed median, 5th and 95th percentiles, red box represent the predicted

90% confidence interval around the median, blue boxes represent the predicted 90% confi-

dence intervals around the 5th and 95th percentiles.

(TIF)

S6 Fig. Normalized prediction distribution errors (NPDEs) of the final pharmacokinetic

model for M3G. A = kernel density plot of NPDE with a normal, Gaussian distribution over-

laid for comparative purposes; B = Q-Q plot of theoretical quantiles vs sample quantiles;

C = NPDE vs Time; D = NPDE vs predicted plasma concentrations; M3G = morphine-3-glu-

curonide; solid lines in figures C and D represent the observed median, 5th and 95th percen-

tiles, red box represent the predicted 90% confidence interval around the median, blue boxes

represent the predicted 90% confidence intervals around the 5th and 95th percentiles.

(TIF)

S7 Fig. Normalized prediction distribution errors (NPDEs) of the final pharmacokinetic

model for M6G. A = kernel density plot of NPDE with a normal, Gaussian distribution over-

laid for comparative purposes; B = Q-Q plot of theoretical quantiles vs sample quantiles;

C = NPDE vs Time; D = NPDE vs predicted plasma concentrations; M6G = morphine-6-glu-

curonide; solid lines in figures C and D represent the observed median, 5th and 95th percen-

tiles, red box represent the predicted 90% confidence interval around the median, blue boxes

represent the predicted 90% confidence intervals around the 5th and 95th percentiles.

(TIF)

S8 Fig. simulated plasma concentration time profiles for M3G (left) and M6G (right) of

the proposed morphine dosing regimen of 5 μg/kg/h after loading dose of 50 μg/kg. Solid

line indicates the mean plasma concentration; gray area represents the 95% prediction interval.

M3G = morphine-3-glucuronde, M6G = morphine-6-glucuronide.

(TIF)

S9 Fig. Simulated morphine plasma concentrations of the dosing regimens of 10 μg/kg/h

after loading dose of 50 μg/kg (left), 5 μg/kg/h after loading dose of 100 μg/kg (center) and

10 μg/kg/h after loading dose of 100 μg/kg (right). Solid line indicates the mean morphine

plasma concentration; gray area represents the 95% prediction interval. Dotted horizontal

lines indicate the proposed therapeutic window of 10–40 μg/L. Solid vertical lines indicate the

start and end of TH (33.5˚C) simulated between 5h and 77h after birth; dashed vertical line

indicates the return to normothermia (36.5˚C) with rewarming simulated at 0.4˚C/h;

TH = therapeutic hypothermia.

(TIF)
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Data curation: Laurent M. A. Favié, Floris Groenendaal, Alwin D. R. Huitema.
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