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Abstract

Genome-wide association studies (GWAS) typically search for marginal associations between a 

single nucleotide polymorphism (SNP) and a disease trait while gene-environment (GxE) 

interactions remain generally unexplored. More powerful methods beyond the simple case-control 

approach leverage either marginal effects or case-control ascertainment to increase power. 

However, these potential gains depend on assumptions whose aptness is often unclear a priori. 

Here, we review GxE methods and use simulations to highlight performance as a function of main 

and interaction effects and the association of the two factors in the source population. Substantial 

variation in performance between methods leads to uncertainty as to which approach is most 

appropriate for any given analysis. We present a framework that: (1) balances the robustness of a 

case-control approach with the power of the case-only approach; (2) incorporates main SNP 

effects; (3) allows for incorporation of prior information; and (4) allows the data to determine the 

most appropriate model. Our framework is based on Bayes model averaging, which provides a 

principled statistical method for incorporating model uncertainty. We average over inclusion of 

parameters corresponding to the main and GxE interaction effects and the G-E association in 

controls. The resulting method exploits the joint evidence for main and interaction effects while 

gaining power from a case-only equivalent analysis. Through simulations we demonstrate that our 

approach detects SNPs within a wide range of scenarios with increased power over current 

methods. We illustrate the approach on a gene-environment scan in the USC Children’s Health 

Study.
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Introduction

Genome-Wide association studies (GWAS) have uncovered many trait-related SNPs to date, 

but many SNPs are likely yet undiscovered by GWAS due to insufficient power as a result of 

small effect sizes, low allele frequencies, or opposing effects in sample subgroups. 

Additionally, evidence suggests that marginal genetic effects alone may not explain all 
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disease susceptibility (Manolio et al., 2009). It is therefore worthwhile considering GxE 

interactions when scanning for novel loci associations and for identifying genotypes with 

elevated susceptibility to complex diseases based on exposure to an environmental 

contributor. A conventional case-control logistic analysis is broadly acknowledged to suffer 

from low power to detect GxE interactions. The case-only design (Piegorsch, Weinberg, & 

Taylor, 1994) is an alternative which provides a substantial increase in power. However, the 

case-only design is subject to significant bias under non-independence of G and E in the 

source population, resulting in a highly increased Type I error and a large number of false 

discoveries. Numerous approaches have been developed to improve power while mitigating 

potential increases in Type I error. These include empirical Bayes (EB) (Mukherjee & 

Chatterjee, 2008), Bayes model averaging (BMA) (Li & Conti, 2009), numerous two-step 

methods (Gauderman, Zhang, Morrison, & Lewinger, 2013; Kooperberg & Leblanc, 2008; 

Murcray, Lewinger, & Gauderman, 2009), and two-degree of freedom joint tests of main and 

GxE interaction effects (Dai et al., 2012; Kraft, Yen, Stram, Morrison, & Gauderman, 2007; 

Tchetgen Tchetgen, 2011). In this paper, we extend the BMA approach proposed by Li and 

Conti (2009) and propose a novel Bayes model averaging approach to weight the case-only 

and case-control interaction effects within a two-degree of freedom test. We use simulations 

to show that this approach improves power in many scenarios while controlling the false 

discovery rate – even in the presence of non-independence of G and E in the source 

population. Our comparison study uses GxE approaches which are currently widely used, 

particularly powerful, similar to our novel approach, or a combination of the three. We used 

our proposed Bayes model averaging approach to analyze the role of air pollutants, 

Hispanicity and genotype on childhood asthma in the CHS dataset.

Methods

We first introduce the basic setup and notation, and briefly review standard G and GxE 

approaches. For simplicity, we consider a total sample size of N with equal numbers of cases 

and controls. Y is a binary indicator for disease status with baseline population disease risk 

Pr(Y = 1) = pY. Categorical exposure status is denoted as E, where E is binary for simplicity 

with population prevalence Pr(E = 1) = pE. Genotype is denoted as G, where for simplicity 

we use dominant coding (G = 1 for AA and Aa genotypes and G = 0 for aa genotypes), with 

Pr(G = 1) = qA as the probability of having the AA or Aa genotype.

Marginal Association Test (MA)

The most widely used method for finding an association between a genetic marker and a 

disease outcome in a GWAS is the marginal test of association (MA) carried out in samples 

of cases and controls. The MA method is typically comprised of a regression of a particular 

phenotype on a genetic variant (G) with a test of the association. Using a case-control 

sample with disease outcome Y, the MA test is typically characterized using the logistic 

equation:

Logit Pr Y = 1|G = βMA0
+ βMAG

G (1)
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with adjustment variables included when necessary. Here, βMAG denotes the log-odds ratio 

of G on the disease outcome, and a Wald, score, or likelihood ratio test is carried out to test 

the null hypothesis, βMAG = 0 of no genetic association. Within a GWAS, the MA model is 

repeated for each of the markers considered and tested using a specified P-value threshold α 
which is adjusted to maintain the family-wise error rate (FWER).

Case-Control Test of G × E Interaction (CC)

Using a sample of cases and controls, a test of GxE interaction with a binary disease 

outcome is often performed as a case-control (CC) model characterized by

logit Pr Y = 1 G, E = βcc0
+ βccE

E + βccG
G + βccG × E

EG (2)

Here, βccE and βccG represent the main effects of E and G respectively, while βccG×E is the 

log-odds ratio of the interaction of GxE. The null hypothesis of no interaction, H0: βccGxE = 

0, is tested using either a Wald, score or likelihood ratio test. Though straightforward to 

implement and widely used, the CC test of interaction is also known to suffer from low 

power.

Case-Only Test of G × E Interaction (CO)

Using no information from controls, a case-only (CO) approach, where the association 

between the genetic variant and exposure is tested in affected individuals only, is often used 

as an alternative method to boost the power of detecting a GxE interaction over a CC 

approach. A CO logistic model is given by

logit[Pr(G = 1 ∣ E, Y = 1)] = βco0
+ βcoG × E

E (3)

Here, the term βcoG×E parameterizes the GxE interaction log odds ratio on disease status (Y) 

and in the presence of a rare disease and independence of G and E in the population, 

exp(βcoG×E) is a consistent estimator of the GxE interaction relative risk ratio (RR) 

(Piegorsch et al., 1994). The CO model yields biased estimates of effect and incorrect Type I 

error under violations of this independence assumption.

Weighted GxE Tests

To increase power while also mitigating bias under independence assumption violations, two 

methods have been introduced that combine CC and CO models as weighted averages. Li 

and Conti (2009) introduced a Bayes Model Averaging (BMA) approach which combines 

the GxE effect estimates from the two models via a weighted average determined by the 

posterior probabilities of each of the models. Using loglinear equivalent forms of Equation 2 

(Bishop, Fienberg, & Holland, 1975) and Equation 3 (Umbach & Weinberg, 1997), βccG×E 
and βcoG×E are averaged using the posterior probabilities of their respective models given 

the data, D, hence incorporating model uncertainty within the resulting estimate. An overall 

interaction effect estimate is obtained by averaging the expectation of the interaction effect 
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from each model and tested using a Wald statistic. A similar approach introduced by 

Mukherjee and Chatterjee (2008) is the Empirical Bayes approach, which also takes an 

average of GxE interaction effects from the CC and CO models. Rather than using posterior 

model probabilities as weights, the empirical Bayes approach uses the CC estimate, βccG×E, 

its variance, and the uncertainty about the independence assumption between G and E 

estimated by the G-E association in controls (Mukherjee & Chatterjee, 2008). Both methods 

consider the uncertainty of which model (CC vs. CO) is most appropriate while aiming to 

balance efficiency and bias when estimating the GxE interaction effect.

Two-step approaches

In a genome-wide setting, there are a variety of two-step GxE interaction methods based on 

an initial ‘screening’ followed by a ‘testing’ step. The screening step of a two-step procedure 

tests a given association and filters results based on a defined first-step P-value threshold, 

α1. Markers with P-values lower than α1 in the first step association test are then tested in 

the second step for a GxE interaction with appropriate control of the family-wise error rate, 

αFWER. To guarantee that Type I error is preserved at the nominal level, the test statistics 

used at each of the two steps must be independent. Several approaches exist for two-step 

methods that alter the first-step test of association (Gauderman et al., 2013; Kooperberg & 

Leblanc, 2008; Murcray et al., 2009). Gauderman et al. (2013) introduced the EDGE 

procedure, which combines the association between the disease and the genetic marker (Y-

G) with the association between the environmental factor and the genetic marker (E-G) in 

the first step by summing the two independent test statistics, and testing the GxE interaction 

in step two using Equation 2. The test statistic for the Y-G association is calculated using 

Equation 1, while the statistic for the E-G association is calculated using a chi-square test of 

association between E and G in a combined case-control sample. Each test statistic has a χ2 

distribution with one degree of freedom, and since the statistics are independent, their sum 

for the screening step has a χ2 distribution with two degrees of freedom. Step 1 P-values are 

ranked and the correction for multiple testing in step two of the process can occur in one of 

two ways. Using the subset testing approach, within the original group of W SNPs tested in 

step 1, a subset, w, of SNPs with P-value ≤ α1 are then included for the second step GxE test 

using a second threshold, αFWER/w, a Bonferroni correction for multiple testing. 

Alternatively, rather than a subset of SNPs, all W SNPs are tested in the second step 

according to a weighted significance threshold, whereby SNPs are tested against a threshold 

which increases in stringency with increasing screening step P-values (Ionita-Laza, 

McQueen, Laird, & Lange, 2007).

The EDGE approach is structurally very different from previous classes of models we have 

discussed and has been shown to be more powerful than many two-step methods in many of 

the scenarios that we use for comparing the GxE approaches (Gauderman et al., 2013). 

Thus, we include the EDGE approach as an important comparison to other GxE methods 

within our simulation study.

2 Degree of Freedom Tests

Unlike most single-degree-of-freedom test statistics of interaction, multiple-degree-of-

freedom test statistics jointly test multiple parameters. The first of these tests was introduced 
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by Kraft, et al. (2007) as a joint test of a main genetic effect and a GxE interaction effect 

using the CC model from Equation 2. This approach, denoted as DF2, tests the hypothesis of 

no main genetic effect and no GxE interaction effect (i.e., H0: βccG = βccG×E = 0) using a 

likelihood ratio test with two degrees of freedom. A similar test, denoted here as CO 2DF 

(Dai et al., 2012; Tchetgen Tchetgen, 2011), fits the MA model from Equation 1 and the CO 

model from Equation 3 and sums up the corresponding Wald test statistics from each of the 

models. The resulting test statistic has an (asymptotic) Chi-square distribution with two 

degrees of freedom. Because they are both constructed as omnibus tests, rejection of the null 

with the DF2 and CO 2DF indicates that at least one of the component parameters is equal to 

zero, revealing an association between a particular locus and a disease outcome but without 

pinpointing the driver of the association (i.e. marginal/main vs. interaction vs. both).

Novel Bayes Model Averaging Two Degree-of-Freedom Test (BMA 2DF)

We propose a Bayes model averaging (Hoeting, Madigan, Raftery, & Volinsky, 1999; A. E. 

Raftery, 1996; Adrian E. Raftery, Madigan, & Hoeting, 1997) two-degree-of-freedom test 

(BMA 2DF), that expands the BMA (Li & Conti, 2009) method. Our approach weights 

between the CC and CO models to test for both GxE interaction and G main effects using a 

multivariate Wald test with two-degrees of freedom. The approach is based on analogous 

loglinear models for CC and CO logistic models (Umbach & Weinberg, 1997) given 

respectively by:

CC:log(negy |G, E, Y) = αcc0
+ αccG

G + αccE
E + αccGE

GE + βcc0
Y + βccG

GY + βccE
EY

+ βccG × E
EGY

(4)

CO:log(negy |G, E, Y) = αco0
+ αcoG

G + αcoE
E + βco0

Y + βcoG
GY + βcoE

EY
+ βcoG × E

EGY
(5)

Here, negy is the expected number of individuals per cell of the 2×2×2 contingency table of 

E, G, and Y, where e, g, and y denote the levels of E, G, and Y respectively. The estimators 

αcc0, αccG, αccE, and αccGE in Equation 4 parameterize the joint distribution of G and E in 

controls with αccGE denoting the association between G and E in controls. The parameters 

βcc0, βccG, βccE, and βccG×E in Equation 4 maintain the same interpretation they have in the 

logistic CC model in Equation 2, notably that βccG×E captures the CC interaction effect. 

Umbach & Weinberg (1997) showed that constraining αccGE = 0 (i.e. assuming 

independence of G-E in controls), produces a GxE interaction estimate, βcoG×E in Equation 

5, that is approximately equivalent to the CO logistic estimate of βcoG×E in Equation 3 

without reliance on controls and a smaller variance than βCCG×E.

We note that αco0, αcoG, and αcoE in Equation 5 parameterize the independent distribution 

of G and E in controls and that the CO model in Equation 5 still uses information from both 

cases and controls with estimates αcoG and αcoE based on marginal totals (Umbach & 
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Weinberg, 1997). Similarly, main effects for E and G in Equation 5, βcoG and βcoE, are 

distinguished from βccG and βccE in Equation 4 because they are dependent on controls 

through marginal totals only and thus yield smaller variances. The smaller CO estimator 

variances results in expected improvement in power. The BMA 2DF approach takes a 

weighted average over the two disparate estimators, βccG and βcoG of a main G effect, as 

well as estimators, βccG×E and βcoG×E, for a GxE interaction from Equations 4 and 5, 

respectively. We then test the resulting averaged estimators, βBMAG
 and βBMAG × E

simultaneously by using two degrees of freedom.

Letting ℳcc and ℳco denote models represented in Equations 4 and 5 respectively, the BMA 

2DF approach uses prior probabilities of the models, Pr ℳcc  and Pr ℳco , to be chosen by 

the investigator and to sum to one. Letting β = βBMAG
, βBMAG × E

T
 denote the BMA 

parameters of main and interaction effects and β = βBMAG
, βBMAG × E

T
 denote the BMA 

estimates of main and interaction effects, we define the posterior distribution of βBMAG and 

βBMAG×E given the observed data as:

Pr(β ∣ D) = Pr(ℳcc ∣ D)
Pr(βccG

∣ D, ℳcc)

Pr(βccG × E
∣ D, ℳcc)

+ Pr(ℳco ∣ D)
Pr(βcoG

∣ D, ℳco)

Pr(βcoG × E
∣ D, ℳco) (6)

For simplicity of notation, we let i ∈ {cc, co} and define the posterior model probability for 

each of the models given the observed data as Pr ℳi D ∝ Pr D ℳi Pr ℳi . Here 

Pr D ℳi = ∫ Pr D ℳi, θi Pr θi ℳi dθi is the integrated likelihood of model ℳi over its 

parameters θi (Hoeting et al., 1999; Viallefont, Raftery, & Richardson, 2001), where 

Pr θi ℳi  is the prior distribution of parameters under model ℳi .  Pr D ℳi  is estimated 

using a Laplace approximation as implemented in the R package GLIB (A. E. Raftery, 1996; 

A.E. Raftery & Richardson, 1996). Pr βiG D, ℳi  and Pr βiG × E D, ℳi  in Equation 6 denote 

the posterior probability distributions of βiG and βiG×E specific to model ℳi, and we 

estimate these model-specific effects using the expectations βiG
= E βiG D, ℳi  and 

βiG × E  = E βiG × E D, ℳi  from these distributions respectively. Model-specific multivariate 

vectors containing main and interaction effect estimates from each of the CC and CO models 

are denoted βcc = βccG , βccG × E 
T
 and βco = βcoG , βcoG × E 

T
 respectively. The posterior 

mean and variance of the main and interaction effects are multivariate extensions to mean 

and variance presented by Hoeting et al. (1999) and are given by:

E β|D = Pr ℳcc|D βcc + Pr ℳco|D βco (7)
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and

Var β|D = Pr ℳcc|D Γcc + βccβcc
T + Pr ℳco|D Γco + βcoβco

T    − E β D E β D T, (8)

where

Γi =
Var(βiG

∣ D, ℳi) Cov(βiG,βiG × E
∣ D, ℳi)

Cov(βiG
, βiG × E

∣ D, ℳi) Var(βiG × E
∣ D, ℳi)

is the model-specific covariance matrix for ℳi. Letting Γ = Var(β|D), we can calculate the 

statistic 𝒲 = βT Γ −1β ∼ χ 2
2  to perform a multivariate Wald test (White, 1982). See the 

supplementary materials section I for more details.

Simulations

Evaluation of single-marker approaches.

We conducted single-marker simulations of a range of scenarios to compare empirical 

power. 1,000 replicate datasets were generated with 500 cases and 500 controls for a disease 

outcome (Y), a binary environmental exposure (E) with a marginal OR(E) = 1.2, and a 

binary genotype (G) assuming a dominant model. We used a population disease prevalence 

pY = 0.01, population exposure prevalence pE = 0.4, and genotype frequency of qA = 0.225. 

We simulated datasets across a range of log odds ratios [−1.0, +1.0] for main and interaction 

effects (i.e., βccG, βccG×E) as well as for G-E association, αccGE. Analyses and 

corresponding tests of association were performed for each scenario using α = 0.05 as the 

significance threshold. For scenarios simulated to have a non-zero GxE effect, empirical 

power was calculated testing GxE interaction as the proportion of replicates for which the 

given method detected a significant interaction at a given α-level. Power for the MA model 

was calculated as the proportion of simulated causal SNPs found to have a significant 

marginal effect on Y at threshold α.

Genome-wide.

Genome-wide simulations were done by generating W SNPs, d of which were designated as 

the disease-causing (DSL) SNPs and W – d of which were assumed to be independent of Y 

with neither main nor GxE interaction effect. The d ‘causal’ SNPs were simulated based on 

their specified associations with E and Y as in the single-marker simulation. Two sets of 

simulations were performed to assess power, sensitivity and specificity for discovery. The 

first set of simulations consisted of 1,000 replicates of N = 10,000 samples with equal 

numbers of cases and controls. We specified W = 1 million, d = 1, pE = 0.4, qA = 0.1, and pY 

= 0.05. The second set of genome-wide simulations consisted of 1,000 replicates of N = 

3,750 samples with equal numbers of cases and controls, W = 10,000, d = 20, pE = 0.4, qA = 

0.225 for all d SNPs, and pY = 0.01. We note that a smaller sample size was applied in the 

simulations used to create Receiver operating characteristic (ROC) curves in order to reduce 
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sensitivity across all approaches and yield informative differentiation in results between 

methods. Such an approach was used because all methods in our comparison showed very 

high sensitivity, making it impossible to show differences between them. Unless otherwise 

specified, we simulated independent E and G, and ‘non-causal’ genetic variants with Pr(G = 

1) sampled from a uniform distribution within the range [0.10, 0.40]. We set a null marginal 

environmental effect of OR(E) = 1.0 for both sets of simulations except for one instance in 

which we calculated power using induced main G effects. For induced main effects, we 

increased the effects of E and G with increasing interaction effect (See supplementary 

materials section II for more details). To measure empirical power in simulations with one 

designated ‘causal’ marker, we took the proportion of replicates in which the ‘causal’ 

marker was identified to be genome-wide significant (P-value ≤ 5 × 10−8). To create ROC 

plots, we repeatedly simulated sets of markers with d = 20 designated causal markers. The 

resulting P-values in each iteration were ordered from least to greatest, and the number of 

‘causal’ markers ranked within the set of k smallest P-values, Pk were averaged across 1,000 

repetitions. We then calculated sensitivity and specificity of discovery as follows:

Sensitivity =
True Positives in Pk

k

And

Specificity =  1 −
False Positives in Pk
All True Negatives

Two-step approaches.

For two-step methods, we utilized the weighted hypothesis approach to test for interaction 

with bin size b = 5 and family-wise error rate of αFWER = 0.05, as it is generally more 

powerful than subset testing (Gauderman et al., 2013). For all one-step methods we used a 

αFWER = 0.05 with a correction for testing W SNPs, αFWER/W. Of the available two-step 

approaches, we include only the EDGE approach in our comparison study since Gauderman 

et al. showed that this approach has the best performance across a variety of scenarios. For 

performance comparisons among one-step approaches and the EDGE approach, empirical 

power was calculated as the proportion of replicates in which the designated ‘causal’ SNP 

was found to be significant, while Type I error was calculated as the proportion of replicates 

in which at least 1 of the W – d null SNPs was found to be significant.

Application to Asthma

We applied the novel BMA 2DF, MA, CC, CO and DF2 methods to the Children’s Health 

Study (CHS), an ongoing cohort study spanning 16 southern California communities 

investigating genetic and environmental factors leading to childhood respiratory outcomes. 

Using GWAS data on a nested case-control sample of 3,000 subjects, including 1,398 

parent-identified Hispanic whites (HW) and 1,602 non-Hispanic whites (NHW) from the 

CHS, we analyzed GxE effects on childhood asthma. Childhood asthma status was based on 

questionnaire responses from parents affirming doctor-diagnosed asthma. We used a sample 
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of 1,249 cases, of which 606 individuals were identified as Hispanic whites, and 1,751 

controls, of which 792 individuals were identified as Hispanic whites. We analyzed two 

separate interactions: gene by self-reported Hispanicity (G x Hisp), and gene by ambient air 

pollution (G x PM2.5). We used microgram per cubic meter of PM2.5, particulate matter in 

the air smaller than 2.5 micrometers, as our measure of air pollution exposure. PM2.5 

exposure was categorized into ‘low’ (≤ 15.12 μg/m3) and ‘high’ (> 15.12 μg/m3) exposure 

levels, classifying 58.6% of our sample as exposed to low levels and 41.4% to high levels of 

PM2.5. Measured genotype data consisted of 630,600 SNPs. These SNPs were phased using 

SHAPEIT and additional SNPs were imputed using IMPUTE2 separately for Hispanic and 

non-Hispanic whites against 1,000 Genomes Phase 1 integrated variant v3 phased reference. 

Imputed SNPs were filtered using the IMPUTE2 information metric removing SNPs with an 

information score < 0.7. SNPs with a combined minor allele frequency for both non-

Hispanic whites and Hispanic whites less than 5% were removed from the analysis. After 

this QC, a total of 6,216,909 SNPs were available for analysis. In all analyses, we adjusted 

for sex, and Native American ancestry (<5%, 5–50%, and >50%). We further adjusted for 

self-reported Hispanicity in all analyses of G x PM2.5 interaction as well as for the analysis 

of marginal genetic effects on asthma status. Base on prior knowledge, prior weighting in 

the G x PM2.5 analysis was set to equally favor the CC and CO models (i.e. 1:1) while the 

prior weighting for the G x Hispanicity analysis was set at 100:1 odds that a CC model is 

more appropriate. These prior weights are supported empirically as the overdispersion 

parameter for the logistic CC and CO for the G x Hispanicity analyses are λ=1.0 and λ=1.8, 

respectively. Because we are using Laplace estimation to obtain marginal likelihoods, the 

computation time for the BMA 2DF model is relatively nominal. In a comparison of CPU 

run times, we found that the loglinear CC model in Equation 4 without specified prior 

distributions for parameters required 40% of the CPU run time of the CC logistic model in 

Equation 2. With specified priors, the CC loglinear model required 70% the run time 

necessary for a logistic CC model, and the BMA 2DF approach, estimating two nested 

loglinear models (See Equations 4 and 5), had the same run time requirements as the CC 

logistic approach outlined in Equation 2.

Results

Simulation

Single-marker.—Single marker simulations, depicted by heatmaps in Figure 1 show 

empirical power across a range of simulated main G and GxE interaction effects with each 

row indicating results for each approach and red indicating higher power. For the MA 

approach, power increases as the horizontal distance from 0 increases both to the left and the 

right, indicating an increase in power with larger main effects along the x-axis. Likewise for 

the CC, CO, and BMA approaches there is increasing power with distance in either direction 

along the y-axis away from a null GxE effect. Power for CC, CO, and BMA approaches 

increases mostly independent of changes in the main G effect. The 2-degree-of-freedom tests 

in Figure 1 show increasing power in both directions: increasing main effect size and GxE 

interaction effect size, since these approaches are testing both effects. As a result, the 2-

degree-of-freedom approaches show a circular pattern around the null values of both 

parameters while the single-degree-of-freedom tests show a rectangular pattern surrounding 
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null values of GxE interaction log odds. Visually, performance can be gauged by tightness of 

either the rectangle or the circle around the null parameter values. More frequently occuring 

warm colored areas, such as red and orange regions, indicate higher power for a larger 

proportion of the main and interaction effect pairwise combinations. For instance, the CO 

2DF approach in Figure 1 has a much tighter circle surrounding the locus of null main and 

interaction effects, indicating higher power across more combinations of the two effects than 

other 2-degree-of-freedom approaches. However, Figure 1 shows the circle in the CO 2DF 

approach move across the three G-E association value columns, OR(G-E) = {0.8, 1.0, 1.2}, 

indicating a bias and an increase in Type I error with violations to the G-E independence 

assumption. Thus, Figure 1 shows CO 2DF to also be the most susceptible to violations to 

this assumption. Figure 1 also highlights the sensitivity of all models incorporating a CO 

design to G-E associations within the sample. While no method shows pronounced bias 

under the no G-E association (center) column in Figure 1, inflated Type I error rates for 

OR(G-E) = 0.8 and OR(G-E) = 1.2 are shown for CO, BMA, CO 2DF, and the BMA 2DF 

models. While these models have compromised robustness under independence violations, 

inflation of Type I error as the G-E association increases is largely mitigated for BMA and 

BMA 2DF by the models’ inherent averaging process. Figure 2 shows empirical power as a 

function of the G-E (αccGE) association for the CO 2DF model and the BMA 2DF approach 

in four scenarios. Figure 2 depicts two cases of empirical power for the CO 2DF model and 

the BMA 2DF test under no genetic effect with GxE interaction (A) and without GxE 

interaction (B). While the curves are close for very small values of αccGE, there is dramatic 

reduction in empirical power for the BMA 2DF test with increasing G-E association due to 

weighting the average more heavily toward a CC model via model posteriors. In the absence 

of genetic and interaction effects, empirical power effectively becomes the Type I error rate 

for a 2-DF test of both βG and βGxE. For scenarios in which a main effect exists (OR(G) = 

1.2), the comparison in Figure 2.C and 2.D show a similar pattern with a shift upward to 

account for detection of a main genetic effect. More detailed Type I error across methods is 

displayed in Table I based on simulations of independent SNPs which do not interact with E 

in their effect on disease status. Table I shows Type I error across 1-step methods as 

measured by the proportion of SNPs identified to be statistically significant which do not 

have any main or interaction effects on disease status. The Type I error rate is inflated for the 

CO, BMA, and BMA 2DF in the presence of a G-E association, albeit less inflated for those 

BMA approaches weighted towards the CC model. Table I also shows Type I error (or 

empirical power) as measured by the proportion of SNPs identified to be statistically 

significant which do have a main effect on disease statust (OR(G) = 1.2) but which do not 

interact with E. Methods that include the CO model demonstrate an inflation with non-zero 

G-E association; however the BMA 2DF model has mitigated inflation compared with the 

CO and CO 2DF approaches which can be interpreted as power to detect the non-zero main 

G effect.

Genome-wide.—For our genome-wide simulation of 1 million SNPs with one designated 

causal SNP, we investigated empirical power under no violations of the G-E independence 

assumption. We investigated three scenarios (see Figure 3 (A-C)): A) a constant OR(G) = 

1.0; B) a constant OR(G) = 1.2; and C) a main effect that increases due to induced effects 

from the increasing OR(GxE). These scenarios are indicated with red lines in the 
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corresponding sub-graph to orient the figures presented within the heat maps in Figure 1. As 

expected, genome-wide simulations in Figure 3 show the BMA 2DF approach empirical 

power to consistently lie between that of the DF2 and CO 2DF models. When there is no 

main effect, Figure 3.A shows that a CC to CO weighting scheme of 1:100 towards a CO 

model coincides with the CO 2DF model, while using a 1:1 prior weighting scheme has 

power which lies between that of the CO 2DF and DF2 models and is nearly identical to the 

EDGE 2-step method. Figure 3.C shows empirical power when the main effect of G is 

induced by the interaction effect, rather than being held constant. In this scenario, 

approaches which incorporate a test of the SNP association are most sensitive and reflect the 

increase in the induced SNP effect with increasing power. In our second genome-wide 

simulation of 10,000 SNPs, we investigated the trade-off between increases in sensitivity 

and false discovery rates. ROC curves based on rankings in Figure 4 (A-C) show that the 

performance of the BMA 2DF approach again lies between the DF2 and CO DF2 models in 

the absence of SNPs, independent of the outcome, which are associated with E. Results in 

Figure 4 indicate that approaches which include a test of main effect gain sensitivity when 

there is a small genetic effect and lose sensitivity when there is no genetic effect. When 

SNPs which are associated with E but which are independent of the disease trait, are 

introduced into the same simulation, the CO model FDR (1-specificity) is notably higher 

(Figure 4.B). In this scenario, the BMA 2DF test offers improvement in sensitivity over the 

DF2 model while also showing an improvement in robustness over CO 2DF under violations 

of the independence assumption. Based on the sensitivity and specificity plots in Figure 4, it 

is evident that the set of top SNPs based on P-value rankings contains a large number of 

false-positives identified by the CO 2DF approach in the scenario where we have null SNPs 

associated with E. We exclude the two-step EDGE approach in Figure 4 in order to portray 

all SNPs tested rather than a subset resulting from a step 1 screen.

Application to Asthma—In our analysis of G x PM2.5 interaction on asthma, the BMA 

2DF approach identified a genome-wide significant region on chromosome 22, with the 

most significant SNP in the region having a P-value of 5.81 × 10−9 (Table II). Table II also 

shows the same region identified by the CC and DF2 models as having a significant 

interaction with PM2.5 on asthma. The MA model shows no main effect of the region on 

asthma while the CO model produces P-values which are low in the region, but do not reach 

genome-wide significance. Thus, the finding of rs62227671 by the BMA 2DF approach is 

largely driven by its adherence to the CC model with a posterior probability for the CC 

model of 0.993. A second region identified as marginally genome-wide significant by the 

BMA DF2 model on chromosome 20, rs6122625 (BMA 2DF P-value 5.97 × 10−8), was not 

identified by any of the other approaches as being genome-wide significant or marginally 

significant. While rs6122625 has no marginal effect on asthma (MA P-value 3.77 × 10−1), 

both CC and CO models yield relatively small P-values, implying that the finding is driven 

by the interaction alone, which is also true of the subsequent marginally significant BMA 

2DF findings on chromosomes 2 and 8 for the G x PM2.5 analysis. The BMA 2DF test 

identifies rs6866110 on chromosome 5 as marginally significant (P-value 3.24 × 10−7) as 

well while the MA, CC and CO methods show relatively weaker signals. To investigate the 

weak signals from other approaches, we examine the marginal effect of rs6866110 by PM2.5 
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exposure group in Table IV. Table IV shows the marginal effects of rs6866110 in opposite 

directions according to the low/high exposure group.

In the analysis of G x Hispanicity, the BMA 2DF approach identified a genome-wide 

significant SNP, rs4672623 (P-value 9.48 × 10−9) on chromosome 2 in Table III. Results for 

rs4672623 from the CC analysis show a marginally significant interaction, while the 

marginal test for association between rs4672623 and asthma shows a much weaker signal in 

the opposite direction from that of the GxE interaction. Due to effects of rs4672623 in 

opposite directions per Hispanicity group (OR[G|E = NHW] = 1.73 and OR[G|E = HW] = 

0.71) as shown in Table IV, the marginal effect of G in the combined sample is weakened. 

However, testing both G and the interaction together in a 2-degree-of-freedom setting as 

both the BMA 2DF and DF2 methods do, yields a signal which reaches genome-wide 

significance. Additionally, the BMA 2DF test identified 3 marginally significant regions on 

chromosomes 8, 1, and 6. Each of these regions exhibit protective effects according to 

marginal tests of association between G and asthma, and interact with Hispanicity with 

effects in the same direction within a CC analysis. Table III shows rs10955770 on 

chromosome 8 has opposite CC and CO effects. Assuming this is a result of a G-E 

association in controls, the 1:100 prior weighting scheme makes the BMA 2DF P-value 

more plausible since it results in posteriors heavily in favor of a CC model.

Discussion

Within a genome-wide interaction scan, the BMA 2DF approach can provide a robust and 

powerful tool for identifying genetic loci with small effect sizes on disease outcomes, while 

also providing the flexibility of incorporating prior knowledge regarding the associations of 

G and E in the population. By producing a test which combines CC and CO methods and 

using two degrees of freedom to incorporate a test of main genetic effects along with 

interaction effects, the BMA 2DF method can provide increased power over many existing 

methods. BMA 2DF results are also more reliable than the most powerful CO and CO 2DF 

tests because we have shown that Type I error and bias are minimized by the BMA 2DF 

approach compared to these methods in Table I and Figure 2. Single-SNP and genome-wide 

simulation results presented have shown that the BMA 2DF approach is an appropriate 

method to use in situations where there may be G-E association present, particularly where 

there may be numerous genomic regions correlated with the environmental factor. Genome-

wide simulations in Figure 3.B have shown the BMA 2DF method is also an appropriate 

approach in the situation where there are numerous SNPs which have null interaction and 

main effects on the outcome but are nevertheless associated with the environmental factor. In 

this specific situation, the BMA 2DF method parses out spurious associations by weighting 

more heavily to a CC analysis and gains robustness. In contrast, the CO 2DF method 

becomes subject to identifying spurious associations.

In our analysis of G × PM2.5 exposure using the Children’s Health Study, we identified a 

novel region on chromosome 22 which has a genome-wide significant interaction with 

PM2.5 (P-value = 5.8 × 10−9) on childhood asthma. The SNP with the greatest effect size in 

this locus, rs62227671, is in the PARVB gene region, a gene involved in cytoskeleton 

organization and cell adhesion, and with no previous record of association with either 
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childhood asthma, or as an effect modifier of PM2.5 on childhood asthma. From Table II we 

can see that the association is largely driven by the interaction effect from a CC model where 

the interaction effect, OR(GxE) = 2.57 is highly significant (P-value = 7.6 × 1010). Since this 

SNP has no significant effect on childhood asthma marginally, the SNP would have likely 

been overlooked by a standard GWAS using an MA approach. Additional examination of the 

relationship of rs62227671 and PM2.5 to childhood asthma is necessary to determine the true 

effects and mechanisms of action of this genetic region on childhood asthma.

Due to the likely correlation expected between genetic markers and self-reported 

Hispanicity, we used a prior weighting scheme based on a CC to CO model odds of 100:1, 

favoring more weight toward a CC model. Using this weighting scheme, the BMA 2DF 

method identified rs4672623 on chromosome 2 as having a genome-wide significant 

interaction with self-identified Hispanicity (P-value = 9.48 × 10−9) as shown in Table III. 

This association is largely driven by the CC model, however it is not driven by the CC result 

alone. The MA and CO associations, though modest, appear also to be contributing to the 

BMA 2DF signal in this region. We note that like the BMA 2DF approach, the DF2 model 

also captures the association as genome-wide significant by its incorporation of the SNP 

effect in its 2-degree-of-freedom testing scheme. SNP rs4672623 is in the ErbB4 gene 

region on chromosome 2, which has been shown to regulate late fetal lung development (Liu 

et al., 2010; Zscheppang, Giese, Hoenzke, Wiegel, & Dammann, 2013), suggesting that the 

association is plausible. Further investigation is necessary to determine the true role of 

rs4672623 on childhood asthma in Hispanic white and non-Hispanic white children.

In practice, the BMA 2DF model is recommended for identifying genomic regions which 

interact with an environmental agent on a disease outcome in the context of a genome-wide 

study. By design, the approach is not meant to make inferences on genomic regions already 

known or suspected to be associated with an outcome as in candidate gene studies. 

Consideration should be given to the possible associations between the environmental factor 

E and genetic markers G when implementing the BMA 2DF approach. If association is 

suspected in the population studied, measures should be taken to account for likely bias 

which may result under violations of the G-E independence assumption. As in our G x 

Hispanicity analysis, directly assigning prior model weights to favor a CC model is an 

effective way to ensure that bias and spurious associations are kept to a minimum when a G-

E association is suspected prior to analysis. We recommend setting prior model weights 

according to a 1:1 odds favoring both models equally in all scenarios where G-E correlation 

is not known or suspected. Consideration should also be given to setting prior effect 

hyperparameters as it is possible to influence the BMA 2DF approach’s inclination toward 

either the CC or CO approach by altering the precision around the prior mean of the αccGE 
model parameter. Given that the CC model (see Equation 4) is distinguished from the CO 

model (see Equation 5) by the assumption of a non-zero G-E association, decreasing the 

precision around the G-E association parameter αccGE allows for greater acceptance of G-E 

association in controls while still identifying αccG as zero and weighting toward a CO 

model. Some user-specified hyperparameters (Kass & Raftery, 1995; A. E. a. R. Raftery, S., 

1996), can influence the posterior weight distribution between CC and CO models; however, 

we recommend using prior model weights exclusively to inform model posteriors. We have 

used values as recommended by A. E. Raftery, Madigan, D.M. and Hoeting, J. (1993) to 
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obtain all results presented in this paper. See supplementary materials for details of 

hyperparameter values.

Due to the parameterization of the BMA 2DF model as a loglinear model, it is necessary to 

implement the approach using categorical variables in order to maintain equivalence of 

parameters between the logistic and loglinear models (Umbach & Weinberg, 1997). We have 

presented results and simulations using dichotomous environmental and confounding 

variables, but variables with three or more categories are also appropriate. We have used a 

dominant genetic model by analyzing genotypes as G = 0 or G = 1; however additive, 

dominant, recessive, or codominant analyses are also possible using the BMA 2DF 

approach, though additional levels of G will result in larger contingency tables (e.g., Trinary 

coding for G creates a 2×2×3 table whereas binary coding creates a 2×2×2 table) (Umbach 

& Weinberg, 1997). The parameterization of the BMA 2DF approach as a loglinear model 

poses additional considerations pertaining to confounding covariates. Such variables should 

be categorical and their inclusion must be carefully designed to retain equivalency of terms 

in loglinear equations to their counterparts in models using the logistic link (Agresti, 2002). 

While continuous variables can be used for adjustment in the BMA 2DF approach, the 

resulting estimates may no longer have the direct interpretation as when categorical variables 

are used. Equating models with logistic and loglinear links is beyond the scope of this paper, 

and we recommend that investigators maintain parsimonious models whenever possible. We 

have presented simulations with a case:control ratio of 1:1; however, we expect both power 

and Type I error of the BMA 2DF approach to increase as the number of cases increase and 

decrease with increasing controls (Li & Conti, 2009). Software to conduct our novel BMA 

2DF approach is available as an R package with details provided within the supplementary 

materials section IV.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Heatmaps depicting power patterns for detection of GxE interaction across a marginal G and 

GxE interaction effect range r = [−1.0, +1.0] for one-step methods on 1,000 simulations of 

500 cases and 500 controls. Within each heatmap plot in the grid, the x-axis shows the 

simulated marginal G effect with the null indicated by a vertical line. The y-axis is the 

simulated GxE effect with the null indicated by a horizontal line. The grid columns of Figure 

1 represent the simulated G-E association in the population.
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Figure 2. 
Empirical Power measured across a range r = [−1.0, +1.0] of G-E association with and 

without a GxE interaction and marginal effect for CO DF2 and BMA DF2 approaches. 

BMA(100:1) and BMA (1:100) represent an analysis of BMA DF2 with prior weighting 

based on a 100:1 and 1:100 odds of a CC model being more appropriate than a CO model 

respectively. A) OR(GxE)=1.0 & OR(G)=1.0, B) OR(GxE)=1.5 & OR(G)=1.0, C) 
OR(GxE)=1.0 & OR(G)=1.2, D) OR(GxE)=1.5 & OR(G)=1.2.
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Figure 3. 
Empirical power vs. OR(GxE) with independence between G and E (plots A-C). Based on 

genome-wide simulations of 1 million SNPs with 1000 repetitions and one designated causal 

SNP in each repetition. A) OR(G) = 1.0 & OR(E) = 1.0; B) OR(G) = 1.2 & OR(E) = 1.2; C) 
Both OR(G) and OR(E) are induced by the interaction effect and are not held constant.
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Figure 4. 
Receiver operating characteristic (ROC) curves for True and False positives in simulations of 

1000 repetitions of 10,000 SNPs. A) 20 SNPs with non-zero GxE interaction (causal), no 

presence of non-causal SNPs associated with E, presence of marginal effect of causal SNPs. 

B) 20 SNPs with non-zero GxE interaction (causal), 500 non-causal SNPs associated with E, 

presence of marginal effect of causal SNPs. C) 20 SNPs with non-zero GxE interaction 

(causal), 500 non-causal SNPs associated with E, no marginal effect of causal SNPs.
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Table I.

Type I error rates across one – step methods in scenarios with and without G-E association

OR(G) = 1.0 and OR(GxE) = 1.0

Method MA CC DF2 CO
CO

BMA
BMA 2DF BMA 2DF BMA 2DF

2DF 1:1 1:100 100:1

No G-E Association 0.056 0.038 0.06 0.034 0.044 0.016 0.036 0.044 0.038

G-E Association

0.8 0.05 0.058 0.048 0.228 0.172 0.054 0.044 0.13 0.038

1.2 0.052 0.05 0.052 0.258 0.198 0.096 0.072 0.17 0.04

OR(G) = 1.2 and OR(GxE) = 1.0

Method MA CC DF2 CO
CO

BMA
BMA 2DF BMA 2DF BMA 2DF

2DF 1:1 1:100 100:1

No G-E Association 0.320* 0.048 0.264* 0.062 0.260* 0.028 0.190* 0.200* 0.208*

G-E Association

0.8 0.254* 0.046 0.218* 0.24 0.350† 0.04 0.174† 0.258† 0.174†

1.2 0.340* 0.046 0.226* 0.2 0.382† 0.088 0.218† 0.336† 0.166†

Error rate is calculated as the proportion of independent markers identified by a given method as having a significant interaction with E out of all 
independent markers simulated. Type I error rate for the marginal association model is calculated as the proportion of simulated SNPs identified by 
the marginal model as having a significant effect on outcome from all independent SNPs simulated. (Top) Error rates shown for null effects of both 
marginal G and GxE interaction; (Bottom) Error rates shown for marginal G effect OR(G)=1.2 and null GxE interaction effect;

*
Value is the power to detect a main G effect and does not represent inflated type I error accurately for GxE interaction

†
Value is a composite of 1) power to detect a main G effect and 2) type I error for testing GxE which is inflated by G-E association.
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Table IV.

Stratified marginal analysis of rs6866110 and rs4672623 by exposure group

Analysis SNP Exposure Group Marginal OR(G)
Strata Specific

P-value

G x PM2.5

rs6866110 PM2.5 ≤ 15.12 1.89 1.62E-06

PM2.5 > 15.12 0.94 7.10E-01

G x Hispanicity

rs4672623 Non-Hispanic White 1.73 9.89E-08

Hispanic White 0.71 0.00285
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