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Abstract

Recent studies have examined genetic correlations of single nucleotide polymorphism (SNP) 

effect sizes across pairs of populations to better understand the genetic architectures of complex 

traits. These studies have estimated ρg, the cross-population correlation of joint-fit effect sizes at 

genotyped SNPs. However, the value of ρg depends both on the cross-population correlation of 

true causal effect sizes (ρb) and on the similarity in linkage disequilibrium (LD) patterns in the two 

populations, which drive tagging effects. Here, we derive the value of the ratio ρg/ρb as a function 

of LD in each population. By applying existing methods to obtain estimates of ρg, we can use this 

ratio to estimate ρb. Our estimates of ρb were equal to 0.55 (s.e. 0.14) between Europeans and East 

Asians averaged across 9 traits in the Genetic Epidemiology Research on Adult Health and Aging 

(GERA) data set, 0.54 (s.e. 0.18) between Europeans and South Asians averaged across 13 traits in 

the UK Biobank data set, and 0.48 (s.e. 0.06) and 0.65 (s.e. 0.09) between Europeans and East 

Asians in summary statistic data sets for type 2 diabetes and rheumatoid arthritis, respectively. 

These results implicate substantially different causal genetic architectures across continental 

populations.
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Introduction

There has been substantial recent interest in comparing the genetic architecture of complex 

traits across world populations (de Candia et al., 2013, Mancuso et al., 2016, Brown et al., 

2016). The global phenotypic distributions of complex traits can vary based on a 

combination of genetic and environmental factors (Robinson et al., 2015, Burt et al., 1995), 

and uncovering these factors is key to both understanding complex traits and ensuring that 

medical genetics research is globally equitable(Popejoy and Fullerton, 2016). Multi-ethnic 

studies have analyzed the replication rates of associations from genome-wide association 

studies (GWAS)(Marigorta and Navarro, 2013), improved fine-mapping resolution(Zaitlen et 

al., 2010, Kichaev and Pasaniuc, 2015), increased meta-analysis power(Mahajan et al., 2014, 

Coram et al., 2015, Morris, 2011), and assessed the global relationships between allelic 

effect sizes via the genetic correlations(de Candia et al., 2013, Mancuso et al., 2016, Brown 

et al., 2016). However, differences in joint-fit effect sizes are influenced both by differences 

in causal variant effect sizes and by differences in linkage disequilibrium (LD) patterns 

between the populations. In this study, we derive an approach for estimating genetic 

correlations of causal variant effect sizes across populations, leveraging data from densely 

genotyped reference panels to apply a correction factor to conventional estimates of genetic 

correlations of joint-fit effect sizes.

The cross-population genetic correlation of joint-fit effect sizes (ρg) is a scalar quantity that 

summarizes the similarity of joint-fit allelic effects between two populations(de Candia et 

al., 2013, Mancuso et al., 2016, Brown et al., 2016). It is defined as the correlation between 

the vectors of joint-fit effect sizes at single nucleotide polymorphisms (SNPs) shared 

between two populations (see Materials and Methods). It is closely related to the genetic 

correlation of two phenotypes in a single population, which is a scalar quantity that 

summarizes the shared genetic architecture between the traits (Lee et al., 2013, Bulik-

Sullivan et al., 2015a). Rather than focusing on a limited number of GWAS associations, the 

cross-population genetic correlation provides a genome-wide estimate of the similarity in 

genetic effects between the two populations.

Several recent studies have estimated cross-population genetic correlations (de Candia et al., 

2013, Mancuso et al., 2016, Brown et al., 2016) by extending previous methods to estimate 

cross-trait genetic correlations from either raw genotype/phenotype data(Lee et al., 2012a, 

Lee et al., 2012b, Lee et al., 2013) or summary association statistic data(Bulik-Sullivan et 

al., 2015a). These studies estimated the correlation of joint-fit effect sizes at genotyped 

SNPs that are shared between the populations. However, ρg may depend on patterns of LD 

between SNPs, which differ across populations (Lee et al., 2013). For example, consider the 

case of an untyped causal SNP u with the same effect size in two populations, and two SNPs 

t1 and t2 that are genotyped in both populations. If t1 perfectly tags u in population 1 (but not 

in population 2), and t2 perfectly tags u in population 2 (but not in population 1), then the ρg 

at those genotyped SNPs will be 0 despite identical causal effects in the two populations.

In contrast, our goal here is to estimate the cross-population correlation of causal effect sizes 

(ρb; see Materials and Methods). To accomplish this, we derive the value of the ratio ρg/ρb 

as a function of LD patterns in each population, which can be obtained from a reference 
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panel such as 1000 Genomes(Auton et al., 2015). We first estimate ρg as in previous studies, 

and then divide this estimate by the value of the ratio ρg/ρb to obtain an estimate of ρb. We 

validate our method using simulations, and apply the method to raw genotype/phenotype 

and summary association statistic data sets with 46K-116K European samples and 2K-23K 

East Asian or South Asian samples.

Materials and Methods

Genotype-phenotype model

For population k, let gk,i denote the joint-fit effect size at SNP i in population k, so that gk is 

the vector of joint-fit effect sizes at genotyped SNPs. Similarly, let bk denote the vector of 

causal effect sizes at all SNPs (in practice, reference panel SNPs with minor allele frequency 

(MAF)>1%). We note that gk and bk are population-level parameters rather than estimates in 

a finite sample, but gk can be viewed as the value of joint-fit effect size estimates in the limit 

of infinite sample size. We also note that values of gk, but not bk, depend on the LD patterns 

in the population and on the set of genotyped SNPs. We use “genotyped SNPs” as shorthand 

to denote the set of SNPs for which raw genotype/phenotype data or summary association 

statistic data is available; in some cases this may include both genotyped and imputed SNPs.

Let the heritability at genotyped SNPs of the trait in populations 1 and 2 be h1
2 and h2

2, 

respectively18. Likewise, let the heritability at causal SNPs in populations 1 and 2 be σ1
2 and 

σ2
2, respectively. We assume the additive infinitesimal model for a quantitative phenotype,

Yk = XA,  kbk + eb, k

where Yk is an Nk × 1 vector of phenotypes in Nk individuals from population k, XA,k is an 

Nk × M matrix of mean-centered genotypes at all M SNPs, bk N 0, σk
2I

M
  is an M × 1 vector 

of causal effect sizes and eb, k N 0, 1 − σk
2 IM  is an Nk × 1 vector of environmental noise.

For a fixed set of MG genotyped SNPs, there also exists a vector of joint-fit effect sizes gk 

such that

Yk = XG, kgk + eg, k

where XG,k has dimension Nk × MG and eg,k is scaled such that the heritability explained by 

genotyped SNPs(Yang et al., 2010) is hk
2. Here, A denotes all SNPs and G denotes genotyped 

SNPs, so that XG,k represents a subset of the SNPs in XA,k. In the first model, where all 

SNPs are observed, the vector eb,k represents environmental noise. In the second model eg,k 

represents a combination of environmental noise and the remaining un-modeled SNP effects. 

Thus, Var(eg,k) ≥ Var(eb,k) and hk
2 ≤ σk

2 We can relate gk and bk via
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gk = lim
N ∞

gk = lim
N ∞

XG, k
T X

G, k
−1

XG, k
T X

k
bk + lim

N ∞
XG, k

T X
G, k

−1
XG, k

T eb, k = SGG
−1 SGAbk ,

where the last step follows from the law of large numbers and the fact that E[eb,k] = 0. Here, 

we introduce S as the M × M SNP cross-covariance matrix, which can be partitioned into 

genotyped and untyped SNPs (where G denotes genotyped SNPs, U denotes untyped SNPs 

and A denotes all SNPs):

S =
SGA
SUA

=
SGG SGU
SUG SUU

  .

The above model is based on genotypes X{G,A}, k that have been mean-centered but not 

normalized. It may also be of interest to consider mean-centered, normalized genotypes Wk. 

We can then define normalized causal effect sizes βk (instead of bk) and normalized joint-fit 

effect sizes γk (instead of gk), and relate γk and βk using a normalized SNP cross-

correlation matrix Σk. We employ this approach when estimating ργ the cross-population 

correlation of normalized joint-fit effect sizes, and ρβ, the cross-population correlation of 

normalized causal effect sizes. We note that previous work has reported similar estimates of 

ργ and ρg, representing correlations of joint-fit effect sizes with or without 

normalization(Brown et al., 2016). We focus the derivations below on quantities without 

normalization (b, g, S, ρb, ρg), but all derivations are analogous when employing 

normalization (β, γ, Σ, ρβ, ργ).

Definition of ρg and ρb

We define the cross-population genetic correlation at genotyped SNPs as the correlation 

between g1 and g2,

ρg = corr g1, g2 =
∑ig1, ig2, i

h1
2h2

2 .

Likewise, we define the cross-population genetic correlation at causal SNPs as the 

correlation between b1 and b2,

ρb = corr b1, b2 =
∑ib1, ib2, i

σ1
2σ2

2 .

Based on these definitions, it follows that ρg (but not ρb) depends on the LD patterns in the 

two populations and on the set of genotyped SNPs.

The first step of our method for estimating ρb is to estimate ρg, the cross-population 

correlation of joint-fit effect sizes. When raw genotype/phenotype data is available, we use 

bivariate REML(Lee et al., 2013, Lee et al., 2012a, Lee et al., 2012b), as implemented in 
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GCTA (see Web Resources). When only summary association statistic data is available, we 

use Popcorn(Brown et al., 2016) (see Web Resources), a maximum-likelihood based method 

that analyzes summary statistics and population-specific LD information from a reference 

panel.

Estimating ρg/ρb

The second step of our method for estimating ρb is to estimate the ratio ρg/ρb, which we 

derive as a function of LD in each population. We then divide our estimate of ρg by the value 

of ρg/ρb to obtain an estimate of ρb. In practice, this derivation requires that we estimate S, 

the cross-covariance LD matrix of all SNPs. We estimate S using an LD reference panel, 

because all SNP genotypes are unavailable in analyses of summary statistics and because 

SNP genotypes at untyped SNPs are unavailable in analyses of raw genotypes/phenotypes.

As noted above, the joint-fit effect sizes g (at genotyped SNPs) can be viewed as the value of 

joint-fit effect size estimates in the limit of infinite sample size:

gk = lim
Nk ∞

gk = lim
Nk ∞

XG, k
T X

G, k
−1

XG, k
T Yk

= lim
Nk ∞

XG, k
T X

G, k
−1

XG, k
T XA, kbk + eb, k

= lim
Nk ∞

XG, k
T XG, k

−1
XG, k

T XA, kbk

= SGG
k −1

SGA
k bk

where XA,k is the Nk × M matrix of mean-centered genotypes for all SNPs in population k, 

SGG
k  is the MG × MG cross-covariance sub-matrix between genotyped SNPs in population k 

and SGA
k  is that MG × M cross-covariance sub-matrix between genotyped SNPs and all SNPs 

in population k. It follows that SGG
k gk = SGA

k bk and therefore that

Corr SGG
1 g1,  SGG

2 g2 = Corr SGA
1 b1, SGA

2 b2 .

Web Resources
GCTA: http://cnsgenomics.com/software/gcta
Popcorn: https://github.com/brielin/popcorn
1000 Genomes: http://www.internationalgenome.org
GERA: http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000674.v1.p1
UK Biobank: http://www.ukbiobank.ac.uk
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where by Corr we refer to the scalar-valued correlation, rather than the matrix-valued cross-

correlation. We now relate the right hand side of this equation to ρb. From the fact that E[bk] 

= 0M (the 0-vector) and properties of the trace, it follows that

Cov SGA
1 b1, SGA

2 b2 = E SGA
1 b1 − E SGA

1 b1
T

SGA
2 b2 − E SGA

2 b2

= E SGA
1 b1

T
SGA

2 b2 = E b1
TSGA

1 TSGA
2 b2

= E tr b1
TSAG

1 SGA
2 b2 = tr SGA

1 E b1
Tb2 SAG

2

= ρbσb1
σb2

tr SGA
1 SGT

2 ,

so that

Corr SGA
1 b1, SGA

2 b2 =
Cov SGA

1 b1, SGA
2 b2

Var SGA
1 b1 Var SGA

2 b2

=
ρbσb1

σb2
tr SGA

1 SAG
2

σb1
2 tr SGA

1 SAG
1 σb2

2 tr SGA
2 SAG

2

= ρb
tr SGA

1 SAG
2

tr SGA
1 SAG

1 tr SGA
2 SAG

2 .

We define a function τ to simplify our notation:

τ SGA
1 , SGA

2 =
tr SGA

1 SAG
2

tr SGA
1 SAG

1 tr SGA
2 SAG

2 ,

so that

Corr SGA
1 b1, SGA

2 b2 = ρbτ SGA
1 , SGA

2 .
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It similarly follows that

Corr SGG
1 g1, SGG

2 g2 = ρgτ SGG
1 , SGG

2 .

Combining the above equations, we have

ρgτ SGG
1 ,  SGG

2 = ρbτ SGA
1 ,  SGA

2  ,

so that

ρg
ρb

=
τ SGG

1 , SGG
2

τ SGA
1 ,  SGA

2   .

We note that the trace of the product of the LD matrices in the numerator and dominator of 

the τ function corresponds to the sum of the entries of the Hadamard product of the two 

matrices:

tr S 1 T
S 2 = ∑i, j Si j

1 Si j
2  ,

tr S k T
S k = ∑i, j Si j

k 2  .

Thus, the denominator of the τ function contains the sums of LD scores, while the 

numerator contains the sum of a cross-population analog of LD scores(Brown et al., 2016). 

Since naïve estimates of squared correlations are upward biased, we adjust squared 

correlation estimates to remove this bias, as in previous work(Bulik-Sullivan et al., 2015b):

Σ2
i j
k

= Σi j
k 2 −

1 − Σi j
k 2

Nk − 2 ,

where Σ denotes the SNP cross-correlation matrix. We propagate this adjustment to squared 

covariance estimates:

S2
i j
k

= Sii
k S j j

k Σ2
i j
k  

 ,

τS S 1 , S 2 =
∑i, j Si j

1 Si j
2

∑i, j S2
i j
1

∑i, j S2
i j
2

  .
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We only consider LD within 1Mb windows, setting Si j
k  and Σi j

k  to 0 if the distance between 

SNPs i and j is greater than 1Mb, similar to previous work(Bulik-Sullivan et al., 2015b, 

Kichaev and Pasaniuc, 2015).

Simulations with real genotypes and simulated phenotypes

To ensure realistic LD patterns, we performed simulations using real genotypes from the 

Genetic Epidemiology Research on Adult Health and Aging (GERA) data set and simulated 

phenotypes. The GERA data set contains 45,725 European ancestry (EUR) individuals, 

3,357 East Asian ancestry (EAS) individuals, and 315,434 SNPs, after QC (see below). In 

each simulation, we sampled N1 EUR and N2 EAS samples, and restricted the simulation to 

all SNPs on chromosome 11 (we chose chromosome 11 because larger chromosomes tend to 

have higher LD, and smaller chromosomes tend to have lower LD). We selected a subset of 

MG SNPs that were considered as “genotyped” SNPs for the purpose of the simulation, and 

selected a subset of MC causal SNPs (from the set of all M SNPs) to simulate phenotypes. 

For each of the MC causal SNPs, we sampled per-allele causal effect sizes in the two 

populations from a bivariate normal distribution with variance N(0, Pb), where Pb is a 2 × 2 

matrix with diagonal entries equal to 1 and off-diagonal entries equal to ρb, the cross-

population correlation of causal effect sizes. In each population, we multiplied the matrix of 

real genotypes by the vector of causal effect sizes to construct simulated genetic values. We 

scaled the genetic values to have mean 0 and variance h2 and added environmental noise 

sampled from N(0, 1 – h2) to the genetic values to construct simulated phenotypes.

1000 Genomes data set

The 1000 Genomes data set(Auton et al., 2015) (see Web Resources) contains 503 

individuals of European ancestry (EUR), 504 individuals of East Asian ancestry (EAS) and 

489 individuals of South Asian ancestry (SAS). We performed QC in each population 

separately, retaining only bi-allelic SNPs in Hardy-Weinberg equilibrium (p>0.001) with 

MAF>0.1% and excluding SNPs with duplicate IDs, leaving 13,258,254 EUR SNPs, 

12,285,372 EAS SNPs and 24,463,301 SAS SNPs. For each pair of populations analyzed 

(EUR-EAS and EUR-SAS), we restricted to SNPs with MAF>1% in each population (as in 

previous studies(Brown et al., 2016, de Candia et al., 2013, Mancuso et al., 2016)), resulting 

in 1,352,543 EUR-EAS SNPs and 2,115,911 EUR-SAS SNPs.

GERA data set

The Genetic Epidemiology Research on Adult Health and Aging (GERA) data set(Banda et 

al., 2015) (see Web Resources) includes 62,318 individuals of European ancestry (EUR) and 

5,188 individuals of East Asian ancestry (EAS) genotyped on population-specific 

microarrays containing 657,184 and 694,877 SNPs, respectively. We performed QC in each 

population separately, retaining only bi-allelic SNPs with MAF>1% (as in previous 

studies(Brown et al., 2016, de Candia et al., 2013, Mancuso et al., 2016)) and missing 

genotype rate less than 2%. Only SNPs that passed QC in both populations were retained, 

resulting in 351,421 SNPs. This SNP set was further intersected with the 1000 Genomes 

EUR-EAS SNPs, resulting in 315,434 EUR-EAS SNPs. Related individuals and individuals 

with a greater than 2% missing data rate were also excluded from the study, resulting in 
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45,725 EUR and 3,357 EAS samples. We analyzed 9 traits that were previously analyzed 

in(Loh et al., 2015): allergic rhinitis, asthma, cardiovascular disease, type 2 diabetes, 

dyslipidemia, hypertension, macular degeneration, osteoarthritis and osteoporosis.

UK Biobank data set

The UK Biobank data set(Sudlow et al., 2015) (see Web Resources) includes 120,286 

individuals of British ancestry QC-ed for GWAS analysis (EUR) and 1,784 individuals of 

South Asian ancestry (SAS) genotyped at 847,131 SNPs. We performed QC as with the 

GERA data set, resulting in 392,598 EUR-SAS SNPs, 116,478 EUR samples and 1,706 SAS 

samples. We analyzed 13 traits: bone-densitometry of heel, height, weight-height ratio, 

diastolic blood pressure, systolic blood pressure, college education, smoking status, eczema, 

asthma, hypertension, FEV1, FEV1-FCV ratio and age at menarche.

RA and T2D summary statistic data sets

We analyzed rheumatoid arthritis (RA) and type 2 diabetes (T2D) summary statistic data 

sets that were used to estimate ρg between Europeans and East Asians in a previous 

study(Brown et al., 2016). The RA data set included summary statistics from 58,284 

European ancestry individuals(Okada et al., 2014) and summary statistics from 22,515 East 

Asian ancestry individuals(Okada et al., 2014), each computed at 2,539,629 genotyped or 

imputed SNPs. The T2D data set included summary statistics from 69,033 European 

ancestry individuals(Morris et al., 2012) and summary statistics from 18,817 East Asian 

ancestry individuals(Cho et al., 2011), each computed at 1,054,079 genotyped or imputed 

SNPs. For both RA and T2D, we used the estimates of ρg from the previous study(Brown et 

al., 2016), so that we only directly analyzed 1000 Genomes data (informed by the set of 

genotyped/imputed SNPs in the summary statistic data sets). As noted in the previous 

study(Brown et al., 2016), estimates of hg
2 in these data sets were incorrectly scaled due to 

genomic control correction, which does not affect estimates of ρg, but were greater than 0 

with very high statistical significance.

Results

Simulations with real genotypes and simulated phenotypes

We first evaluated our method using simulations in which the true value of ρb is known. To 

ensure realistic LD patterns, we used real genotypes from chromosome 11 of the GERA data 

set and simulated causal effect sizes and phenotypes in EUR and EAS samples (see 

Materials and Methods). We included NEUR=2K EUR samples, NEAS=2K EAS samples, 

MT=5,000 SNPs that were considered as “genotyped” SNPs (used to estimate ρg) and 

MC=100 causal SNPs with nonzero causal effect sizes (selected from set of all MT SNPs). 

We estimated ρg using bivariate REML, and transformed this into an estimate of ρb using 

our derivation of ρg/ρb (see Materials and Methods). We first fixed h2=0.8 and varied ρb. We 

determined that our method produced accurate estimates of ρb across all values of ρb (Figure 

1). We then fixed h2=0.8 and ρb =0.8 and varied MT, MC, NEUR=NEAS, and NEUR only, 

respectively. In each case, our method continued to produce accurate estimates of ρb (Figure 

S1). However, our results are subject to two caveats. First, we noted that regularizing LD 
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estimates by restricting to 1Mb windows reduced slight biases (Figure S2). Second, we 

varied h2 and determined that estimates of ρb were downward biased at very low values of 

h2 (less than 0.2; Figure S3); this cannot be a limitation of our derivation of ρg/ρb, which 

does not depend on h2 (or on any phenotypic values), and must instead be a limitation of 

estimation of ρg at very low values of h2 (and hg
2, although the true value of hg

2 in these 

simulations is unknown). Thus, efforts to estimate either ρg or ρb should avoid traits with 

very low values of h2.

Application to 9 traits from GERA data set

We applied our method for estimate ρb to 9 traits from the GERA data set, which includes 

data from 45,725 Europeans (EUR) and 3,357 East Asians (EAS) at 315,434 genotyped 

SNPs (see Materials and Methods). We first computed a value of 0.93 for the ratio ρg/ρb, for 

this set of genotyped SNPs relative to 1000 Genomes reference SNPs. We then used 

bivariate REML to estimate ρg for each trait (restricting the computation to 10K EUR and all 

EAS samples), and divided by 0.93 to obtain estimates of ρb. Estimates of ρg and ρb are 

reported in Table 1. The inverse-variance weighted average of ρg was 0.51 with standard 

error 0.13, and the inverse-variance weighted average of ρb was 0.55 with standard error 

0.14. Estimates of cross-population correlations of normalized effect sizes (ργ and ρβ) were 

slightly lower, with inverse-variance weighted averages of 0.41 (SE=0.13) and 0.44 

(SE=0.14) respectively.

Application to 13 traits from UK Biobank data set

We next applied our method for estimating ρb to 13 traits from the UK Biobank data set, 

which includes data from 116,478 Europeans (EUR) and 1,706 South Asians (SAS) at 

392,598 genotyped SNPs (see Materials and Methods). We first computed a value of 0.98 

for the ratio ρg/ρb, for this set of genotyped SNPs relative to the 1000 Genomes reference 

SNPs. The larger value of ρg/ρb between Europeans and South Asians than between 

Europeans and East Asians (despite similar numbers of genotyped SNPs) is expected 

because Europeans and South Asians are more recently diverged than Europeans and East 

Asians(Sved et al., 2008). We then used bivariate REML to estimateρg for each trait 

(restricting the computation to 10K EUR and all SAS samples), and divided by 0.98 to 

obtain estimates of ρb. Estimates of ρg and ρb are reported in Table 2. The inverse-variance 

weighted average of ρg was 0.53 with standard error 0.17, and the inverse-variance weighted 

average of ρb was 0.54 with standard error 0.18. Estimates of cross-population correlations 

of normalized effect sizes (ργ and ρβ) were slightly lower, with inverse-variance weighted 

averages of 0.50 (SE=0.17) and 0.51 (SE=0.17) respectively.

Application to RA and T2D summary statistics

We next applied our method for estimating ρb to summary statistic data sets for RA (58,284 

EUR and 22,151 EAS samples, 2,539,629 genotyped/imputed SNPs) and T2D (69,033 EUR 

and 18,817 EAS samples, 1,054,079 genotyped/imputed SNPs) that were used to estimate ρg 

in a previous study(Brown et al., 2016), which reported estimates of ρg of 0.463 (s.e. 0.058) 
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for RA and 0.621 (s.e. 0.088) for T2D. We computed a value of 0.96 for the ratio ρg/ρb for 

the RA genotyped/imputed SNPs relative to the 1000 Genomes reference SNPs, and a value 

of 0.97 for the ratio ρg/ρb for the T2D genotyped/imputed SNPs relative to the 1000 

Genomes reference SNPs. The larger values of ρg/ρb between Europeans and East Asians for 

these SNP sets, compared to 0.93 for the GERA genotyped SNP set, is expected due to the 

larger numbers of genotyped/imputed SNPs. We divided the previously reported estimates of 

ρg by the values of ρg/ρb to obtain estimates of ρb. The resulting estimates of ρb were 0.48 

(s.e. 0.06) for RA and 0.65 (s.e. 0.09) for T2D, which are still significantly less than 1.

Discussion

Recent work comparing the genetic architecture of complex traits across continental 

populations has established that GWAS results do not always transfer across 

populations(Brown et al., 2016, Mahajan et al., 2014), however, this finding may be 

explained by the fact that continental populations have different LD patterns. Our results 

demonstrate for the first time that causal genetic architectures differ between continental 

populations, and therefore that differences in GWAS results across populations cannot be 

explained by differences in LD patterns alone. We introduced a new method for estimating 

ρb, the cross-population correlation of causal effect sizes: we first estimate ρg (the cross-

population correlation of joint-fit effect sizes) using existing methods(Brown et al., 2016, 

Lee et al., 2013, Lee et al., 2012a, Lee et al., 2012b), and then divide by the value of ρg/ρb 

that we obtain from 1000 Genomes reference data (as a function of the set of genotyped 

SNPs used to define ρg) using a new derivation. We applied our method to estimate ρb in 

GERA and UK Biobank data sets for which ρg and ρb had not previously been estimated, 

and to RA and T2D summary statistic data sets for which ρg (but not ρb) had previously 

been estimated. For each of the genotyped SNP sets and population pairs that we analyzed, 

ρg/ρb was only modestly smaller than 1, so that ρb was only modestly larger than ρg, and 

remained significantly smaller than 1. This could for example be explained by gene-gene or 

gene-environment interaction. Importantly, we have only analyzed data from European and 

Asian populations, which are known to have relatively similar LD patterns(Lonjou et al., 

2003); our findings may not generalize to African-ancestry populations, which have more 

divergent LD patterns.

Our method is subject to several limitations. First, our method relies on LD information 

from a reference panel, and restricts to SNPs that are present in the reference panel. Methods 

that use LD information from a reference panel to analyze summary statistic data(Pasaniuc 

and Price, 2017) rely on the assumption that the LD in each study population is well 

approximated by the LD in the respective reference populations(Ni et al., 2018). In addition, 

due to complexities of admixture-LD, such methods may not work well in admixed 

populations(Bulik-Sullivan et al., 2015b, Brown et al., 2016), and thus our method is not 

currently applicable to populations such as African and Latin Americans that often provide 

the most practical route to assaying African and Native American genetic variation(Seldin et 

al., 2011). Second, limitations in existing methods for estimating ρg will carry over to our 

estimates of ρb; this is a particular concern for traits with very low heritability. Third, our 

method assumes that selection of the set of genotyped SNPs is independent of LD. This may 
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not be strictly true in instances where the set of genotyped SNPs is selected based on their 

tagging efficiency, but restricting our analyses to SNPs that are genotyped in both 

populations minimizes the impact of SNPs with population-specific tagging efficiency. 

Finally, we restricted our analyses to SNPs with MAF>1% in both populations, as in 

previous studies(de Candia et al., 2013, Mancuso et al., 2016, Brown et al., 2016). Thus, 

many SNPs that have MAF<1% in either population are excluded (see Materials and 

Methods). It is possible that ρg/ρb would be smaller (i.e. ρb would be larger) when including 

the effects of rare (MAF<1%) causal variants. It will be possible to formally assess this 

when larger multi-ethnic reference panels become available, but we anticipate that the 

impact on our results will be small. This is because most common variation is shared across 

populations and because emerging research suggests that rare and low-frequency causal 

variants contribute only modestly to the heritability of complex traits(Yang et al., 2015, Zeng 

et al., 2018, Schoech et al., 2017) Despite these limitations, our method provides a 

promising way to assess cross-population correlations of causal effect sizes.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Estimates of ρb are accurate in simulations at various values of ρb.
We report estimates of ρb for each value of true ρb. Dashed line is y=x.
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Figure 2. Estimates of ρb are downward biased at very low values of h2.
We report estimates of ρb for various values of h2. The dashed line is the true value ρb =0.8.
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