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Robotic weed control has seen increased research of late with its potential for boosting productivity 
in agriculture. Majority of works focus on developing robotics for croplands, ignoring the weed 
management problems facing rangeland stock farmers. Perhaps the greatest obstacle to widespread 
uptake of robotic weed control is the robust classification of weed species in their natural environment. 
The unparalleled successes of deep learning make it an ideal candidate for recognising various weed 
species in the complex rangeland environment. This work contributes the first large, public, multiclass 
image dataset of weed species from the Australian rangelands; allowing for the development of 
robust classification methods to make robotic weed control viable. The DeepWeeds dataset consists 
of 17,509 labelled images of eight nationally significant weed species native to eight locations across 
northern Australia. This paper presents a baseline for classification performance on the dataset using 
the benchmark deep learning models, Inception-v3 and ResNet-50. These models achieved an average 
classification accuracy of 95.1% and 95.7%, respectively. We also demonstrate real time performance of 
the ResNet-50 architecture, with an average inference time of 53.4 ms per image. These strong results 
bode well for future field implementation of robotic weed control methods in the Australian rangelands.

Robotic weed control promises a step-change in agricultural productivity1,2. The primary benefits of autonomous 
weed control systems are in reducing the labour cost while also potentially reducing herbicide usage with more 
efficient selective application to weed targets. Improving the efficacy of weed control would have enormous eco-
nomic impact. In Australia alone, it is estimated that farmers spend AUD$1.5 billion each year on weed control 
activities and lose a further $2.5 billion in impacted agricultural production3. Successful development of agricul-
tural robotics is likely to reduce these losses and improve productivity.

Research in robotic weed control has focused on what many consider to be the four core technologies: detec-
tion, mapping, guidance and control4. Of these, detection and classification remains a significant obstacle toward 
commercial development and industry acceptance of robotic weed control technology4,5. Three primary methods 
of detection exist that focus on different representations of the light spectrum. Varied success has been achieved 
using image-based6–15, spectrum-based16,17 and spectral image-based18,19 methods to identify weeds from both 
ground and aerial photography. Spectrum and spectral image-based methods are most suitable for highly con-
trolled, site-specific environments, such as arable croplands where spectrometers can be tailored to their envi-
ronment for consistent acquisition and detection. However, the harsh and complex rangeland environment make 
spectral-based methods challenging to implement, while image-based methods benefit from cheaper and simpler 
image acquisition in varying light conditions, especially when deployed in a moving vehicle in real time20. Thus 
for this work, we focus on image-based techniques for recognising weed species.

The automatic recognition of plants using computer vision algorithms is an important academic and prac-
tical challenge21. One way of solving this challenge is to identify plants from their leaf images7,9–15. A variety 
of algorithms and methods have been developed to solve this problem22. Perhaps the most promising recent 
leaf-classification methods are based on deep learning models, such as Convolutional Neural Networks 
(CNN)7,13,14,23; which now dominate many computer vision related fields. For example, the ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC) has been dominated by CNN variants since 2012 when a CNN24 won 
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for the first time, and by a wide margin. This and other recent successes behoove the use of deep learning in the 
detection and classification of weed species.

The performance of every machine learning model, from linear regression to CNNs, is bound by the dataset it 
is learning. The literature boasts many weed and plant life image datasets9,10,14,21. The annual LifeCLEF plant iden-
tification challenge25–27 presented a 2015 dataset25 composed of 113,205 images belonging to 41,794 observations 
of 1,000 species of trees, herbs and ferns. This sprawling dataset is quite unique, with most other works presenting 
site-specific datasets for their weeds of interest9,14,21. These approaches all deliver high classification accuracy for 
their target datasets. However, most datasets capture their target plant life under perfect lab conditions9,14. While 
the perfect lab conditions allow for strong theoretical classification results, deploying a classification model on a 
weed control robot requires an image dataset that photographs the plants under realistic environmental condi-
tions. Figure 1 illustrates the comparative difficulty of classifying species in situ.

The majority of current weed species classification methods also lean towards weed control in cropping appli-
cations7,28–30, where classification using machine vision is simple because the land is often flat, vegetation homo-
geneous and the light conditions are controlled. Classification of weeds in rangeland environments, however, 
has been largely ignored. Rangeland environments pose unique challenges for weed management and classifi-
cation because they are remote and extensive, with rough and uneven terrain, and complex target backgrounds. 
Furthermore, many different species of weeds and native plants may also be present in the same area, all at varying 
distances from the camera, each experiencing different levels of light and shade, with some weeds being entirely 
hidden. To allow the classification methods deployed in this environment any chance of success, site-specific and 
highly variable weed species image datasets are needed.

Liaison with land care groups and property owners across northern Australia led to the selection of eight target 
weed species for the the collection of a large weed species image dataset; (1) chinee apple (Ziziphus mauritiana), 
(2) lantana (Lantana camara), (3) parkinsonia (Parkinsonia aculeata), (4) parthenium (Parthenium hysteropho-
rus), (5) prickly acacia (Vachellia nilotica), (6) rubber vine (Cryptostegia grandiflora), (7) siam weed (Chromolaena 
odorata) and (8) snake weed (Stachytarpheta spp.). These species were selected because of their suitability for 
foliar herbicide spraying, and their notoriety for invasiveness and damaging impact to rural Australia. Five of the 
eight species have been targeted by the Australian Government as Weeds of National Significance in a bid to limit 
their potential spread and socio-economic impacts31.

In this study, we present the DeepWeeds dataset, containing 17,509 images of eight different weed species 
labelled by humans. The images were collected in situ from eight rangeland environments across northern 
Australia. Furthermore, we train a deep learning image classifier to identify the species that are present in each 
image; and validate the real time performance of the classifier. We anticipate that the dataset and our classification 
results will inspire further research into the classification of rangeland weeds under realistic conditions as would 
be experienced by an autonomous weed control robot.

Methods
Data collection platform.  The first goal of this work was the collection of a large labelled image dataset 
to facilitate the classification of a variety of weed species for robotic weed control. The emerging trend of deep 
learning for object detection and classification necessitates its use for this task. As a result, careful consideration 
was taken for key factors to aid the learning process. These factors include: the optical system, scene variability, 
dataset size, weed targets, weed locations, negative samples, image metadata and labelling.

Oftentimes image processing frameworks fail in real world application because they are hamstrung by unfore-
seen errors during the first and most important step in the framework: image acquisition32. The images acquired 
must match the target application as closely as possible for real world success. Our goal is to use the collected 
dataset to train a ground-based weed control robot; therefore, we must tailor the dataset to match this application. 
Our prototype ground-based weed control robot, AutoWeed (pictured in Fig. 2), incorporates high-resolution 

Figure 1.  A comparison of the inherent difficulty associated with classifying weed species in the lab versus in 
the field. (a) An image of a lantana leaf taken in a controlled lab environment. (b) A sample image of lantana 
from the DeepWeeds dataset, taken in situ capturing a realistic view of the entire plant.
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cameras and fast acting solenoid sprayers to perform selective spot spraying of identified weed targets. Boundary 
conditions in the prototype which affect the design of the optical system and subsequent classification models 
include:

•	 The height from the camera lens to the ground was set to 1 m in order to allow the solution to target in-fallow 
weed regrowth for a variety of weed species. Similarly, the ground clearance underneath the robotic vehicle is 
288 mm. Weed targets will rarely exceed this height, therefore the optical system should have a depth of field 
of approximately 288 mm from the ground up.

•	 No external shading or lighting is to be used for the optical system, so as not to limit the vehicle’s maneuver-
ability. The camera and lens must be chosen and utilised to adequately capture dynamic lighting in the scene.

•	 The ideal vehicle speed while spraying is 10 km/hr. The field of view of the optical system is 450 × 280 mm. 
This gives the system approximately 100 ms per image (or 10 fps) to detect a weed target before a new image 
is captured and ready for processing. This vehicle speed also requires a fast shutter speed to resolve images 
without motion blur.

•	 The system will operate under harsh environmental conditions. Therefore we look exclusively at machine 
vision cameras and lenses to provide the robust mechanical specification required here. Similarly, it is benefi-
cial for external camera and lens parameters (such as focus, iris, zoom) to be fixed.

A data logging instrument was developed to: (1) photograph images with the same optical system as the target 
robotic platform, (2) ensure consistent image acquisition and (3) accelerate the image collection process. The 
WeedLogger (pictured in Fig. 3) consists of a Raspberry Pi, high resolution camera, machine vision lens and a GPS 
receiver. The FLIR Blackfly 23S6C Gigabit Ethernet high-resolution colour camera was chosen for this design. Its 
large (1920 × 1200 px) and high dynamic range (73.90 dB) image sensor affords robust imaging of a wide field of 
view in our highly contrasted scene. The 25 mm fixed focal length Fujinon CF25HA-1 machine vision lens was 
paired with the 1/1.2″ image sensor to provide a 254 mm depth of field focused to a working distance just above 
the ground with an aperture of f/8. At a working distance of 1 m, this optical system provides a 450 mm × 280 mm 
field of view for one image. This translates to just over 4 px per mm resolution, which has proven sufficient for leaf 
texture recognition in past work21.

The lens’ mode of operation was designed to resolve detail in the shadows and highlights of high dynamic 
range scenes without motion blur while moving at high speeds. This was achieved by selecting an aperture size 
of f/8 to allow some sunlight in; while simultaneously restricting the shutter speed to less than 0.05 ms. The auto-
matic exposure and automatic white balance algorithms within FLIR’s FlyCapture Software Development Kit were 
utilised to achieve acceptable imaging without the need for manual tuning between different sites. Nevertheless, 
colour variations will occur in the images due to changing light conditions in the natural environment through-
out the day. Rather than accounting for this directly, our preference is to capture this variability in the training 
set for associated machine learning algorithms. Finally, the touchscreen interface allowed for in-field labelling of 
geo-mapped images. GPS data was collected automatically using a SkyTraq Venus638FLPx GPS receiver, V.Torch 
VTGPSIA-3 GPS antenna, an Arduino Uno and custom electronics shield. The GPS data was used exclusively 
to track progress during the dataset collection process. GPS data has not been used in the development of our 
classification models.

Dataset collection.  When designing models or algorithms for learning features, our goal is to separate 
the factors of variation that explain the observed data33. The depth of a deep learning model conceptually refers 
to said model’s layer count and parameter complexity. Typically, the more confounding factors of variability in 

Figure 2.  AutoWeed: A prototype weed control robot for selective foliar spot spraying in the Australian 
rangelands.
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the dataset, the deeper and more complex the model required to achieve acceptable performance33. Despite our 
efforts to mitigate inter-scene variance of photographed images in the design of the optical system; scene and 
target variability will persist in our target application. Thus, a major design consideration in the construction of 
this dataset is to capture images that reflect the full range of scene and target variability in our target application. 
Hence we have chosen to abide several factors of variation, namely: illumination, rotation, scale, focus, occlusion, 
dynamic backgrounds; as well as geographical and seasonal variation in plant life.

Illumination will vary throughout the day with changing sunlight and canopy cover creating highly dynamic 
range scenes with bright reflectance and dark shadows. Rotation and scale of the target weed species will vary 
as they are being photographed in situ with unknown size and orientation. The distance of photographed weed 
species to the camera are also variable. Therefore, the fixed focal region of the camera will cause some targets to be 
blurred and out of focus. Fortunately, motion blur is mitigated by operating with an extremely fast shutter speed. 
Perhaps the most variability in the dataset is due to complex and dynamic target backgrounds. The locations 
subject to dense weed infestations are also inhabited by immeasurable counts of other native species. As we are 
unable to curate a dataset of all plant life, we must concede to labelling all other non-target plant life as negative 
samples; along with all non-target background imagery. Unfortunately, this creates a highly variable class in the 
dataset that will be difficult to consistently classify.

In addition to complex backgrounds, target foreground objects can be unexpectedly occluded from view 
by interfering objects; more often other neighbouring flora. This is yet another unavoidable factor of variation. 
Finally, the dataset must account for seasonal variation in our target weed species. This means that a single class 
of weed species will include photographs of the weed with and without flowers and fruits and in varying health 
condition; which can affect foliage colour, strength of features and other visible anomalies.

Two primary goals were established to achieve the required variability and generality of the dataset. First, 
collect at least 1,000 images of each target species. Second, attain a 50:50 split of positive to negative class images 
from each location. The first goal is a necessity when training high-complexity CNNs which require large labelled 
datasets. The second goal helps to prevent over-fitting of developed models to scene level image features by ensur-
ing targets are identified from their native backgrounds. Finally, the dataset required expert analysis to label each 
image as to whether it contains a target weed species or not. The rigidity of this collection process will ensure that 
the accuracy and robustness of all learning models developed to classify from it, will be upheld when applied in 
the field. Figure 4 illustrates a sampling of images from each class in the dataset. From this, the complexity of the 
learning problem is apparent due to the inherent variation within classes of the dataset.

Deep learning.  The second goal of this study was to establish the baseline accuracy expected from mod-
ern deep learning CNNs; the state-of-the-art computer vision solution. An emphasis was given to off-the-shelf 
CNNs, which could be easily trained and deployed to facilitate wider use of the presented dataset. To that effect, 
the high-level neural network Application Programming Interface (API), Keras34, was utilised; together with 
the machine learning framework, TensorFlow35. Two popular CNN models were chosen for implementation 
based on their strong performance on highly variable datasets and their availability in the Keras and TensorFlow 

Figure 3.  The WeedLogger field instrument was developed to facilitate precise, consistent and fast collection 
of time and GPS stamped images. The instrument consists of: (a) a Raspberry Pi 3, Arduino Uno and custom 
electronics shield, (b) a rechargeable lithium-ion battery pack, (c) a FLIR Blackfly 23S6C Gigabit Ethernet high-
resolution colour camera, (d) a SkyTraq Venus638FLPx GPS receiver and V.Torch VTGPSIA-3 GPS antenna, (e) 
a Fujinon CF25HA-1 machine vision lens, (f) a 4D Systems Raspberry Pi touchscreen display module and (g) an 
Inca i330G light-weight tripod.
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backend. The first model chosen, Inception-v336 (the third improvement upon the GoogLeNet37 Inception archi-
tecture) was the winner of ILSVRC 201438; and the second, ResNet-5039, was the winner of ILSVRC 201538. This 
annual competition sees participant models recognise 1,000 different ImageNet object classes from over 500,000 
images. Other winners of the ILSVRC were considered at the time of writing. The comparable 2014 winner, 
VGGNets40 was dismissed due to having 144 million training parameters compared to the more manageable 21.8 
million parameters of Inception-v3. The 2016 ILSVRC winner, GBD-Net41, was not considered because it requires 
within-image per-pixel labels, which are not yet available for the DeepWeeds dataset. Furthermore, the 2017 com-
petition winner, Squeeze-and-Excitation (SE) networks42 was not considered because the SE augmented models 
are not readily available in the Keras and TensorFlow backend.

Figure 4.  Sample images from each class of the DeepWeeds dataset, namely: (a) Chinee apple, (b) Lantana, 
(c) Parkinsonia, (d) Parthenium, (e) Prickly acacia, (f) Rubber vine, (g) Siam weed, (h) Snake weed and (i) 
Negatives.
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The models considered henceforth, Inception-v336 and ResNet-5039, are both available in Keras with 
pre-trained weights in the TensorFlow backend. The models were trained to recognise the 1,000 different 
ImageNet38 object classes. Their original ImageNet-trained architectures were slightly modified to classify the 
nine DeepWeeds species classes. This was achieved by replacing their last fully connected 1,000 neuron layer 
with a 9 neuron fully-connected layer. Specifically, let b denote the number of images per training batch, and 
r and c denote the number of pixel rows and columns, respectively. Each network then accepted a b × r × c × 3 
input matrix, where 3 was the number of image colour channels. After removing the fully connected 1,000 neu-
ron ImageNet output layer, both network outputs had the b × ra × cα × fα shape, where α denotes the specific 
network, and fα was the number of extracted features for each ra × cα spatial location. Identical to Inception-v3, 
the spatial average pooling layer was used to convert the fully-convolutional b × ra × cα × fα output to the b × fa 
shape, which was then densely connected to the final b × 9 weed classification layer. With 32 images per batch and 
224 × 224 × 3 sized input images, the deployed global average pooling was effectively identical to the 7 × 7 average 
pooling in the ResNet-50 model.

The nature of this classification task and the DeepWeeds dataset allows for multiple weed species to be present 
in each image. Therefore, a sigmoid activation function was used for each weed-specific neuron in the output 
layer. This allowed an output of probabilities for each class to identify the likelihood that an image belonged to 
each class. An image was classified as one of the target weeds if that class’ sigmoid-activated neuron probability 
was the greatest amongst all others and its likelihood was greater than –1/9 11 1 %= .  (i.e. a random guess). The 
random guess threshold was implemented to overcome the immense variation in the negative DeepWeeds class, 
which causes its target probability to be less strongly weighted towards specific image features than the eight pos-
itive classes–whose images are more consistent.

All 17,509 labelled images from DeepWeeds were partitioned into 60%-20%-20% splits of training, validation 
and testing subsets for k-fold cross validation with k = 5. Stratified random partitioning was performed to ensure 
even distribution of the classes within each subset, except for the negative class which is much larger. The 60% 
random split constitutes the training subset, while 20% were used as the validation subset to monitor the training 
process and minimise over-fitting. The random splits for each fold were controlled by a random seed such that the 
individual split could be reproduced as required. The remaining 20% of images were reserved for testing and were 
not used in any way during the training process. Before training, each model was loaded with the corresponding 
weights pre-trained on ImageNet. The weights of the 9-neuron fully-connected layer (i.e. the output layer) were 
initialised by the uniform random distribution as per Glorot et al.43. The standard binary cross-entropy loss func-
tion was used for training.

To overcome the highly variable nature of the target weed classification application, a series of augmentations 
were performed on both the training and validation image subsets to account for variations in rotation, scale, 
colour, illumination and perspective. Image augmentation was performed using the Open Source Computer 
Vision Library (OpenCV) and its Python wrapper. All images were first resized to 256 × 256 pixels in size and 
randomly augmented for each epoch of training, i.e. one pass through all available training and validation images. 
Each image was also randomly rotated in the range of [−360, +360] degrees. Then, each image was randomly 
scaled both vertically and horizontally in the range of [0.5, 1]. Each colour channel was randomly shifted within 
the range of ±25 (i.e. approximately ±10% of the maximum available 8-bit colour encoding range [0, 255]). To 
account for illumination variance, pixel intensity was randomly shifted within the [−25, +25] range, shifting 
all colour channels uniformly. In addition, pixel intensity was randomly scaled within the [0.75, 1.25] range. 
Random perspective transformations were applied to each image to simulate a large variation of viewing distances 
and angles. Finally, the images were flipped horizontally with a 50% probability and then cropped to retain the 
224 × 224 pixels required for each architecture’s input layer. With all nine classes of the DeepWeeds dataset, the 
ResNet-50 and Inception-v3 models contained approximately 23.5 million and 21.8 million trainable weights, 
respectively. Without this extensive augmentation, both CNN networks drastically over-fitted the available 
images by memorising the training subsets.

The Keras implementation of Adam44, a first-order gradient-based method for stochastic optimisation, was 
used for the training of both models. The initial learning-rate (lr) was set to lr = 1 × 10−4. It was then successively 
halved every time the validation loss did not decrease after 16 epochs. Note that the validation loss refers to the 
classification error computed on the validation subset of images. The training was performed in batches of 32 
images, and aborted if the validation loss did not decrease after 32 epochs. While training, the model with the 
smallest running validation loss was continuously saved, in order to re-start the training after an abortion. In such 
cases, training was repeated with the initial learning rate lr = 0.5 × 10−4.

Figure 5 illustrates the learning process for both the Inception-v3 and ResNet-50 models on the DeepWeeds 
training and validation subsets. It can be seen that both methods plateaued in accuracy after roughly 100 epochs. 
It took an average of 13 hours to train a single model on an NVIDIA GTX 1080Ti Graphical Processing Unit 
(GPU), where ResNet-50 and Inception-v3 consumed comparable training times.

Results
The DeepWeeds dataset.  From June 2017 to March 2018, images were collected from sites across northern 
Australia using the WeedLogger in-field instrument. The result is DeepWeeds, a large multiclass dataset compris-
ing 17,509 images of eight different weed species and various off-target (or negative) plant life native to Australia.

Table 1 shows the quantitative distribution of images, sorted by weed species and location. Over 1,000 images 
were collected of each weed species, totaling over 8,000 images of positive species classes. Images of neighbouring 
flora and backgrounds that did not contain the weed species of interest were collated into a single “negative” class. 
To balance any scene bias, an even split of positive and negative samples were collected from each location. This 
balance can be observed in Fig. 6 which maps the geographical distribution of the images.
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The breadth of the dataset is also apparent from Fig. 6, which spans several collection sites across northern 
Australia. Each collection site was identified to contain large infestations of specific target species, including: siam 
weed from Black River (1913′44″S, 14637′45″E), rubber vine from Charters Towers (2004′44″S, 14610′55″E), par-
kinsonia from Cluden (1919′02″S, 14651′02″E), snake weed from Douglas (1919′29″S, 14645′44″E), chinee apple 
from Hervey Range (1919′35″S, 14638′50″E), parthenium from Kelso (1922′38″S, 14643′05″E), prickly acacia 
from McKinlay (2120′21″S, 14131′27″E) and lantana from Paluma (1857′23″S, 14602′17″E).

Deep learning performance.  The DeepWeeds dataset was classified with the ResNet-50 and Inception-v3 
CNN models to establish a baseline level of performance for future comparison. Results are tabulated below. 
Table 1 documents a variety of metrics evaluating the average classification performance across all five cross val-
idated folds for both Inception-v3 and ResNet-50. We specifically look at the class weighted top-1 accuracy (%), 
precision (%) and false positive rate (%) averaging across the five folds. Meanwhile, Table 2 provides the combined 
within-class confusion matrix across the five cross validated folds for ResNet-50, which was found to perform 
slightly better than Inception-v3.

Table 2 illustrates that Inception-v3 and ResNet-50 achieved an average top-1 classification accuracy of 95.1% 
and 95.7%, respectively. This is a very strong baseline result. ResNet-50 also outperformed Inception-v3 in terms 
of both precision and false positive rate. The slightly better performance of the ResNet-50 model may be attrib-
uted to its slightly higher complexity, constituting 23.5 million trainable weights, as opposed to 21.8 million for 
Inception-v3. This added complexity allows for a broader optimisation space within which the ResNet-50 model 
can learn.

The classification accuracy is seen to vary from species to species for both models. The strongest performance 
for the ResNet-50 model was achieved on the negative class with 97.6% average top-1 accuracy. This is a strong 
and surprising result considering the immense variation in this class. Other weed species with strong perfor-
mance are parkinsonia at 97.2%, siam weed at 96.5%, parthenium at 95.8%, lantana at 95.0% and prickly acacia at 
95.5%. The weed species with the lowest classification accuracy were rubber vine at 92.5%, snake weed at 88.8% 
and chinee apple at 88.5%. We suspect the relatively low performance on these weed species may be due to the 
weed having less unique visible features to train on.

Observing the precision statistics of Table 2 for the ResNet-50 model, it can be seen that the confidence in the 
model’s positive predictions are quite high (greater than 90% for all species). The three species with the strongest 
positive predictive value are rubber vine at 99.1%, parkinsonia at 97.9% and parthenium at 96.7%. The negative 

Figure 5.  Visualisation of the learning process for a single cross validated fold where the training and 
validation accuracy for Inception-v3 and ResNet-50 improve after successive epochs; beginning to plateau 
after 100 epochs. Optimal validation accuracies of 96.7% and 97.6% were achieved at epochs 193 and 155 for 
Inception-v3 and ResNet-50, respectively.

Black 
River

Charters 
Towers Cluden Douglas

Hervey 
Range Kelso McKinlay Paluma Total

Chinee apple 0 0 0 718 340 20 0 47 1125

Lantana 0 0 0 9 0 0 0 1055 1064

Parkinsonia 0 0 1031 0 0 0 0 0 1031

Parthenium 0 246 0 0 0 776 0 0 1022

Prickly acacia 0 0 132 1 0 0 929 0 1062

Rubber vine 0 188 1 815 0 5 0 0 1009

Siam weed 1072 0 0 0 0 0 0 2 1074

Snake weed 10 0 0 928 1 34 0 43 1016

Negatives 1200 605 1234 2606 471 893 943 1154 9106

Total 2282 1039 2398 5077 812 1728 1872 2301 17509

Table 1.  The distribution of DeepWeeds images by weed species (row) and location (column).
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class prediction is also of high confidence with a precision score of 96.7%. Comparatively, chinee apple, lantana, 
prickly acacia and snake weed demonstrate the lowest relative confidence in their positive predictions ranging 
from 91.0% to 93.0%. This may be attributed to the high confusion rates between these specific weed species due 
to similar image features.

The average false positive rate for both models is around 2%, with the individual false positive rates for each 
weed species sitting well below 1% (as shown in Table 2). This strong result indicates that our models are likely to 
result in minimal off-target damage when deployed in the field. However, the negative class has a relatively high 
false positive rate of 3.77% and 3.59% for Inception-v3 and ResNet-50, respectively. Because this class contains 
non-target plant life, this tells us that over 3% of our weed targets are being falsely classified as belonging to the 
negative class. We reason this is due to the large variation of plant life in the negative class across the eight rural 

Figure 6.  The geographical distribution of DeepWeeds images across northern Australia (Data: Google, SIO, 
NOAA, U.S. Navy, NGA, GEBCO; Image 2018 Landsat/Copernicus; Image 2018 DigitalGlobe; Image 2018 
CNES/Airbus).

Species

Top-1 accuracy (%) Precision (%) False positive rate (%)

Inception-v3 ResNet-50 Inception-v3 ResNet-50 Inception-v3 ResNet-50

Chinee Apple 85.3 88.5 92.7 91.0 0.48 0.61

Lantana 94.4 95.0 90.9 91.7 0.62 0.55

Parkinsonia 96.8 97.2 95.6 97.9 0.29 0.13

Parthenium 94.9 95.8 95.8 96.7 0.26 0.21

Prickly Acacia 92.8 95.5 93.4 93.0 0.43 0.46

Rubber Vine 93.1 92.5 99.2 99.1 0.05 0.05

Siam Weed 97.6 96.5 94.4 97.2 0.38 0.18

Snake Weed 88.0 88.8 86.9 90.9 0.82 0.55

Negatives 97.2 97.6 96.5 96.7 3.77 3.59

Weighted average 95.1 95.7 95.1 95.7 2.16 2.04

Table 2.  The average test classification accuracy, recall rate, precision and false positive rate across all five 
cross validated folds for both Inception-v3 and ResNet-50. The statistic from the best performing network are 
emboldened for each species.
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locations for the dataset. Consequently, when deploying such models in the field it is beneficial to train location 
specific models to further minimise the number of misclassified targets.

Table 3 shows the confusion matrix resulting from combining the ResNet-50 model’s performance across the 
five cross validated test subsets. The model confuses 3.4% of chinee apple images with snake weed and 4.1% vice 
versa. Reviewing these particular samples shows that under certain lighting conditions the leaf material of chinee 
apple looks strikingly similar to that of snake weed. This is illustrated in the sample misclassification of snake 
weed in Fig. 7. Furthermore, the ResNet-50 model incorrectly classifies 1.3% of parkinsonia images as prickly 
acacia. Figure 7 also shows a sample misclassification of prickly acacia. It should be noted that parkinsonia and 
prickly acacia are from the same genus, and are commonly both known as prickle bush species. In addition to 
their similar shape and size, they both produce thorns, yellow flowers and bean-like seed pods. This likeness is the 
reason for these false positives in our model.

While these minor confusions are indeed limitations of the learning model, we should highlight that chinee 
apple, snake weed, parkinsonia and prickly acacia are all weeds that need to be controlled. So confusing one for 
the other when eradicating them all is inconsequential. Of more concern are false positives where established 
native plant life is incorrectly classified as weeds. Consequently spraying off-target plant life may cause harm to 
the native ecosystem, as well as waste expensive herbicide. Figure 8 provides examples of negative plant life that 
has been misclassified as each of the eight target weed species. In every case, the native plant exhibits image fea-
tures that closely resemble the species it has been confused with. This shows that the immense variation in plant 
life that makes up the negative class does introduce unavoidable false positives. Fortunately, these cases are few 
and far between, with false positive rates below 1% for each species in Table 2 and less than 3% of the negative 
class being falsely classified in Table 3.

Real time inference.  As we progress toward the application of robotic weed control, we must also assess 
our chosen model’s viability for real-time and in-field performance. As discussed earlier, our optical system’s 
450 × 280 mm field of view allows approximately 100 ms of total processing time per image for the selective spot 
sprayer to operate at the target speed of 10 km/hr. In other words, we must be able to process images at 10 fps or 
more to achieve target real time performance. The complexity of the ResNet-50 and Inception-v3 CNN models 
demand a dedicated and high performance GPU card. The NVIDIA Jetson TX2 is an embedded platform for 
power-efficient edge computing. Combining a Tegra Parker system on a chip (SoC) with a Pascal™ architecture 
GPU, the Jetson TX2 provides an embedded platform for the inference of complex CNNs with a conservative 
maximum power consumption of 15 W.

To assess if our developed models are sufficient for real time robotic weed control, our best performing model, 
ResNet-50, was deployed on an NVIDIA Jetson TX2 compute module. Inference was performed on all images in 
the DeepWeeds dataset while measuring inference time per image and the resulting achievable frame rate. Two 
machine learning platforms were investigated for this experiment: TensorFlow, which was also used for training; 
and TensorRT45, an optimised platform for high-performance deep learning inference. Note that the time taken to 

Chinee 
apple Lantana Parkinsonia Parthenium

Prickly 
acacia

Rubber 
vine

Siam 
weed

Snake 
weed Negatives

Chinee apple 88.5 1.78 0.00 0.44 0.18 0.18 0.27 3.37 5.33

Lantana 0.56 95.0 0.00 0.00 0.00 0.09 0.28 0.94 3.10

Parkinsonia 0.10 0.00 97.2 0.10 1.26 0.00 0.00 0.00 1.36

Parthenium 0.10 0.20 0.10 95.8 0.88 0.10 0.00 0.29 2.54

Prickly acacia 0.00 0.00 0.56 0.66 95.5 0.00 0.00 0.09 3.20

Rubber vine 0.79 0.50 0.10 0.10 0.00 92.5 0.20 0.40 5.45

Siam weed 0.00 0.19 0.00 0.00 0.00 0.00 96.5 0.09 3.26

Snake weed 4.13 1.77 0.00 0.30 0.20 0.10 0.30 88.8 4.43

Negatives 0.46 0.48 0.14 0.20 0.55 0.03 0.21 0.37 97.6

Table 3.  The confusion matrix (%) achieved by the ResNet-50 model on the test subsets for the five cross 
validated folds.

Figure 7.  Example images highlighting confusions between classes of weed species. Specifically, (a) correctly 
classified snake weed, (b) chinee apple falsely classified as snake weed, (c) correctly classified prickly acacia, and 
(d) parkinsonia falsely classified as prickly acacia.
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perform the required pre-processing steps was also measured. These steps include loading an image and resizing 
it for input to the network.

Table 4 reveals that our best performing ResNet-50 deep learning model cannot perform inference within the 
real time performance target of 100 ms per image using the standard TensorFlow library. However, through the 
use of the optimised deep learning inference engine, TensorRT, the real time performance target is met. TensorRT 
delivers unparalleled inference speed, taking an average of 53.4 ms to perform pre-processing and inference on a 
single image. The model could theoretically run at 18.7 fps, almost doubling the required target frame rate of 10 
fps for our robotic weed control application.

Conclusions
In summary, this work introduces the first, large, multiclass weed species image dataset collected entirely in situ 
from Australian rangelands. DeepWeeds contains eight weed species of national significance to Australia, and 
spans eight geographic locations from northern Australia. We present strong baseline performance on the dataset 
using the Inception-v3 and ResNet-50 CNN models, that achieve an average classification performance of 95.1% 
and 95.7%, respectively. The best performing ResNet-50 model also performed inference well within the real-time 
requirements of the target robotic weed control application, inferring at 53.4 ms per image and 18.7 fps. These 
strong classification results further prove the power of deep learning for highly variable image datasets, and show 
that real time deployment of such complex models is viable.

We anticipate that the dataset and our classification results will inspire further research into the classification 
of rangeland weeds under realistic conditions. Future work in this area includes: improving the accuracy and 
robustness of classifying the DeepWeeds dataset, field implementation of our learning models as the detection sys-
tem for a prototype weed control robot and investigating the use of NIR spectroscopy and hyperspectral imaging 
for weed species classification. The great lengths taken to collect a dataset including the real life complexity of the 
rangeland environment should allow for strong in-field performance.

Data Availability
The DeepWeeds dataset and source code for this work is publicly available through the corresponding author’s 
GitHub repository: https://github.com/AlexOlsen/DeepWeeds.

References
	 1.	 Gonzalez-de Santos, P. et al. Fleets of robots for environmentally-safe pest control in agriculture. Precis. Agric. 18, 574–614 (2017).
	 2.	 Fernández-Quintanilla, C. et al. Is the current state of the art of weed monitoring suitable for site-specific weed management in 

arable crops? Weed Res. 58, 259–272 (2018).
	 3.	 Commonwealth of Australia. Agricultural competitiveness white paper. ISBN: 978-1-925237-73-3 (2015).
	 4.	 Slaughter, D. C., Giles, D. K. & Downey, D. Autonomous robotic weed control systems: A review. Comput. Electron. Agric. 61, 63–78 

(2008).
	 5.	 Shaner, D. L. & Beckie, H. J. The future for weed control and technology. Pest Manag. Sci. 70, 1329–1339 (2014).

Figure 8.  Example false positives where images from the negative class were falsely classified as (a) Chinee 
apple, (b) Lantana, (c) Parkinsonia, (d) Parthenium, (e) Prickly acacia, (f) Rubber vine, (g) Siam weed and (h) 
Snake weed.

Platform
Inference 
time (ms)

Preprocessing 
time (ms)

Total inference 
time (ms)

Frame 
rate (FPS)

TensorFlow 128 ± 47 51.9 ± 4.6 180 ± 52 5.55

TensorRT 26.7 ± 6.3 26.7 ± 1.8 53.4 ± 8.1 18.7

Table 4.  Real time inference results for a DeepWeeds trained ResNet-50 model on an NVIDIA Jetson TX2 using 
the TensorFlow and TensorRT software platforms.

https://doi.org/10.1038/s41598-018-38343-3
https://github.com/AlexOlsen/DeepWeeds


www.nature.com/scientificreports/

1 1Scientific Reports |          (2019) 9:2058  | https://doi.org/10.1038/s41598-018-38343-3

	 6.	 Bakhshipour, A. & Jafari, A. Evaluation of support vector machine and artificial neural networks in weed detection using shape 
features. Comput. Electron. Agric. 145, 153–160 (2018).

	 7.	 dos Santos Ferreira, A., Freitas, D. M., da Silva, G. G., Pistori, H. & Folhes, M. T. Weed detection in soybean crops using ConvNets. 
Comput. Electron. Agric. 143, 314–324 (2017).

	 8.	 Dyrmann, M., Jørgensen, R. N. & Midtiby, H. S. RoboWeedSupport - Detection of weed locations in leaf occluded cereal crops using 
a fully convolutional neural network. Adv. Animal Biosci. 8, 842–847 (2017).

	 9.	 Wu, S. G. et al. A leaf recognition algorithm for plant classification using probabilistic neural network. In Proceedings of the 2007 
IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 11–16 (Cairo, Egypt, 2007).

	10.	 Kumar, N. et al. Leafsnap: A computer vision system for automatic plant species identification. In Proceedings of the 2012 European 
Conference on Computer Vision (ECCV), 502–516 (Berlin, Heidelberg, 2012).

	11.	 Hall, D., McCool, C., Dayoub, F., Sunderhauf, N. & Upcroft, B. Evaluation of features for leaf classification in challenging conditions. 
In Proceedings of the 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), 797–804 (Hawaii, USA, 2015).

	12.	 Kalyoncu, C. & Önsen, T. Geometric leaf classification. Comput. Vis. Image Underst. 133, 102–109 (2015).
	13.	 Lee, S. H., Chan, C. S., Mayo, S. J. & Remagnino, P. How deep learning extracts and learns leaf features for plant classification. Pattern 

Recognit. 71, 1–13 (2017).
	14.	 Lee, S. H., Chan, C. S., Wilkin, P. & Remagnino, P. Deep-plant: Plant identification with convolutional neural networks. In 

Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), 452–456 (Québec City, Canada, 2015).
	15.	 Carranza-Rojas, J., Goeau, H., Bonnet, P., Mata-Montero, E. & Joly, A. Going deeper in the automated identification of herbarium 

specimens. BMC Evol. Biol. 17, 181 (2017).
	16.	 Shirzadifar, A., Bajwa, S., Mireei, S. A., Howatt, K. & Nowatzki, J. Weed species discrimination based on SIMCA analysis of plant 

canopy spectral data. Biosyst. Eng. 171, 143–154 (2018).
	17.	 Li, L., Wei, X., Mao, H. & Wu, S. Design and application of spectrum sensor for weed detection used in winter rape field. Transactions 

Chin. Soc. Agric. Eng. 33, 127–133 (2017).
	18.	 Louargant, M. et al. Unsupervised classification algorithm for early weed detection in row-crops by combining spatial and spectral 

information. Remote. Sens. 10, 761 (2018).
	19.	 Lin, F., Zhang, D., Huang, Y., Wang, X. & Chen, X. Detection of corn and weed species by the combination of spectral, shape and 

textural features. Sustainability 9, 1335 (2017).
	20.	 Mahesh, S., Jayas, D., Paliwal, J. & White, N. Hyperspectral imaging to classify and monitor quality of agricultural materials. J. Stored 

Prod. Res. 61, 17–26 (2015).
	21.	 Olsen, A., Han, S., Calvert, B., Ridd, P. & Kenny, O. In situ leaf classification using histograms of oriented gradients. In Proceedings 

of the 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), 441–448 (Adelaide, 
Australia, 2015).

	22.	 Wäldchen, J. & Mäder, P. Plant species identification using computer vision techniques: A systematic literature review. Arch. Comput. 
Methods Eng. 25, 507–543 (2017).

	23.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
	24.	 Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Proceedings of the 

25th International Conference on Neural Information Processing Systems (NIPS), vol. 1, 1097–1105 (Lake Tahoe, USA, 2012).
	25.	 Joly, A. et al. LifeCLEF 2015: Multimedia Life Species Identification Challenges. In Proceedings of the 2015 International Conference 

of the Cross-Language Evaluation Forum for European Languages (CLEF), vol. 1391, 462–483 (Toulouse, France, 2015).
	26.	 Joly, A. et al. LifeCLEF 2016: Multimedia Life Species Identification Challenges. In Proceedings of the 2016 International Conference 

of the Cross-Language Evaluation Forum for European Languages (CLEF), 286–310 (Évora, Portugal, 2016).
	27.	 Joly, A. et al. LifeCLEF 2017 Lab Overview: Multimedia Species Identification Challenges. In Proceedings of the 2017 International 

Conference of the Cross-Language Evaluation Forum for European Languages (CLEF), 255–274 (Dublin, Ireland, 2017).
	28.	 Pérez-Ortiz, M. et al. A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop 

row detection method. Appl. Soft Comput. 37, 533–544 (2015).
	29.	 Tang, J.-L., Chen, X.-Q., Miao, R.-H. & Wang, D. Weed detection using image processing under different illumination for site-

specific areas spraying. Comput. Electron. Agric. 122, 103–111 (2016).
	30.	 Barrero, O., Rojas, D., Gonzalez, C. & Perdomo, S. Weed detection in rice fields using aerial images and neural networks. In 

Proceedings of the 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), 1–4 (Bucaramanga, Colombia, 
2016).

	31.	 Australian Weeds Committee. Weeds of national significance 2012 ISBN: 978 0 9803249 3 8 (Department of Agriculture, Fisheries 
and Forestry, Canberra, ACT, Australia, 2012).

	32.	 Moeslund, T. B. Introduction to Video and Image Processing (Springer-Verlag London, 2012).
	33.	 Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
	34.	 Chollet, F. et al. Keras, https://keras.io (2015).
	35.	 Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems, https://www.tensorflow.org (2015).
	36.	 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings 

of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2818–2826 (Las Vegas, USA, 2016).
	37.	 Szegedy, C. et al. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 1–9 (Boston, USA, 2015).
	38.	 Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015).
	39.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 770–778 (Las Vegas, USA, 2016).
	40.	 Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 2015 

International Conference on Learning Representations (ICLR) (San Diego, USA, 2015).
	41.	 Zeng, X. et al. Crafting GBD-Net for object detection. IEEE Transactions on Pattern Analysis Mach. Intell. 40, 2109–2123 (2016).
	42.	 Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. arXiv preprint arXiv 1709, 01507 (2017).
	43.	 Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the 13th 

International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 9, 249–256 (Sardinia, Italy, 2010).
	44.	 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning 

Representations (ICLR) (San Diego, USA, 2015).
	45.	 NVIDIA Corporation. Tensor RT, https://developer.nvidia.com/tensorrt (2018).

Acknowledgements
This work is funded by the Australian Government Department of Agriculture and Water Resources Control 
Tools and Technologies for Established Pest Animals and Weeds Programme (Grant No. 4-53KULEI).

https://doi.org/10.1038/s41598-018-38343-3
https://keras.io
https://www.tensorflow.org
https://developer.nvidia.com/tensorrt


www.nature.com/scientificreports/

1 2Scientific Reports |          (2019) 9:2058  | https://doi.org/10.1038/s41598-018-38343-3

Author Contributions
A.O. and D.A.K. wrote the manuscript. A.O., D.A.K. and B.P. conceived the experiments. A.O., P.R., J.C.W., J.J., 
W.B. and B.G. collected the dataset. P.R., R.D.W., B.P., A.O., O.K., J.W., M.R.A. and B.C. conceived the project. 
B.P., P.R., R.D.W., M.R.A., O.K. and B.C. reviewed the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-018-38343-3
http://creativecommons.org/licenses/by/4.0/

	DeepWeeds: A Multiclass Weed Species Image Dataset for Deep Learning

	Methods

	Data collection platform. 
	Dataset collection. 
	Deep learning. 

	Results

	The DeepWeeds dataset. 
	Deep learning performance. 
	Real time inference. 

	Conclusions

	Acknowledgements

	Figure 1 A comparison of the inherent difficulty associated with classifying weed species in the lab versus in the field.
	Figure 2 AutoWeed: A prototype weed control robot for selective foliar spot spraying in the Australian rangelands.
	Figure 3 The WeedLogger field instrument was developed to facilitate precise, consistent and fast collection of time and GPS stamped images.
	Figure 4 Sample images from each class of the DeepWeeds dataset, namely: (a) Chinee apple, (b) Lantana, (c) Parkinsonia, (d) Parthenium, (e) Prickly acacia, (f) Rubber vine, (g) Siam weed, (h) Snake weed and (i) Negatives.
	Figure 5 Visualisation of the learning process for a single cross validated fold where the training and validation accuracy for Inception-v3 and ResNet-50 improve after successive epochs beginning to plateau after 100 epochs.
	Figure 6 The geographical distribution of DeepWeeds images across northern Australia (Data: Google, SIO, NOAA, U.
	Figure 7 Example images highlighting confusions between classes of weed species.
	Figure 8 Example false positives where images from the negative class were falsely classified as (a) Chinee apple, (b) Lantana, (c) Parkinsonia, (d) Parthenium, (e) Prickly acacia, (f) Rubber vine, (g) Siam weed and (h) Snake weed.
	Table 1 The distribution of DeepWeeds images by weed species (row) and location (column).
	Table 2 The average test classification accuracy, recall rate, precision and false positive rate across all five cross validated folds for both Inception-v3 and ResNet-50.
	Table 3 The confusion matrix (%) achieved by the ResNet-50 model on the test subsets for the five cross validated folds.
	Table 4 Real time inference results for a DeepWeeds trained ResNet-50 model on an NVIDIA Jetson TX2 using the TensorFlow and TensorRT software platforms.




