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Abstract

The purpose of this study was to quantify muscle activity in the time-frequency domain, therefore 

providing an alternative tool to measure muscle activity. This paper presents a novel method to 

measure muscle activity by utilizing EMG burst presence probability (EBPP) in the time-

frequency domain. The EMG signal is grouped into several Mel-scale subbands, and the 

logarithmic power sequence is extracted from each subband. Each log-power sequence can be 

regarded as a dynamic process that transits between the states of EMG burst and non-burst. The 

hidden Markov model (HMM) was employed to elaborate this dynamic process since HMM is 

intrinsically advantageous in modeling the temporal correlation of EMG burst/non-burst presence. 

The EBPP was eventually yielded by HMM based on the criterion of maximum likelihood. Our 

approach achieved comparable performance with the Bonato method.
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1. Introduction

The detection of muscle activity using surface electromyography (EMG) is one fundamental 

step in many applications such as motor control (Merlo et al., 2003; Micera et al., 2001), 

posture and gait analysis(Bonato et al., 1998; Li et al., 2007), and myoelectric control of 

prosthetic devices(Dalley et al., 2012; Severini et al., 2012). The literature has widely 
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reported various computerized detection techniques of muscle activity onset, in which the 

most common utilized parameters were associated with the EMG signal amplitude(Bonato et 

al., 1998; Hodges and Bui, 1996; Santello and McDonagh, 1998). However, most EMG 

onset detection methods up to now only give EMG burst presence information in the time 

domain (Hodges and Bui, 1996; Lee et al., 2007; Merlo et al., 2003; Micera et al., 2001; 

Santello and McDonagh, 1998; Severini et al., 2012; Staude, 2001; Xu et al., 2013), the 

more detailed information in each frequency component is absent. A novel time-frequency 

representation is required to investigate the changes in wideband spectral power over time 

during EMG bursts. Moreover, EMG signal is sparsely distributed in the time-frequency 

domain, namely not each frequency component is occupied by EMG signals even for EMG 

bursts are present. Thus, it is required to identify the frequency components of non-burst 

EMG and further suppress them in the detection of the onset of muscle activity.

Signal presence probability can give a full description of signal presence in the time-

frequency domain. This description method was conventionally used for speech signal 

processing, wherein it was derived from the ratio between the local energy of the noisy 

speech and its minimum within a specified time window (Cohen and Berdugo, 2002). This 

ratio-based method subsequently evolved into a Gaussian mixture model (GMM) that 

consists of speech and non-speech Gaussian models (Cohen, 2003; Rangachari and Loizou, 

2006). But the GMM does not consider the temporal correlation of signal power. To 

overcome this limitation, the hidden Markov model (HMM) has successfully been applied to 

estimation of speech presence probability (SPP), which has the capability of modeling the 

temporal correlation (Ying and Yan, 2013). Since the envelope of EMG signal exhibits the 

temporal correlation, similar to speech signal, HMMs have been applied to modeling the 

EMG signal (Chan et al., 2002; Chan et al., 2006; Lee, 2008).

The aim of this study was to quantify muscle activity in the time-frequency domain, 

therefore providing an alternative tool to measure muscle activity. This paper presents a new 

measure of muscle activity for mitigating the effects of the frequency components of non-

burst EMG signals by introducing EMG burst presence probability (EBPP) to characterize 

the EMG activity.

2. Methods

A. EMG burst presence probability

Motivated by previous SPP estimation studies (Cohen, 2003; Cohen and Berdugo, 2001, 

2002; Gerkmann et al., 2008; Rangachari and Loizou, 2006), we estimated the probability of 

the presence of EMG bursts using a sequential GMM that consists of EMG burst and non-

burst Gaussian models. Let sℓ = 1 and sℓ = 0 respectively indicate the two hypotheses of EMG 

burst presence and absence in the ℓ th frame, corresponding to the EMG burst and non-burst 

states.

The GMM is represented as
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p y𝓁 |λ𝓁 = ∑
s𝓁

p y𝓁, s𝓁 |λ𝓁

= ∑
s𝓁

p s𝓁 |λ𝓁 p y𝓁 |s𝓁, λ𝓁 ,

(1)

where yℓ represents the logarithmic power in the ℓ th frame, λℓ denotes the parameter set, p(sℓ 
|λℓ) represents the priori distribution of EMG burst presence/absence, and p(yℓ | sℓ,λℓ) is the 

conditional probability density function of EMG burst presence/absence, given by

p y𝓁 |s𝓁 = i, λ𝓁 = 1
πηi, 𝓁

exp{ − y𝓁
2 /ηi, 𝓁}, (2)

where ηi, 𝓁 ≜ E y𝓁
2 |s𝓁 = i  denotes the short-term magnitude spectrum of the EMG burst/non-

burst components. Accordingly, the EBPP is represented as

p𝓁 =
p y𝓁, s𝓁 = 1|λ𝓁

p y𝓁 |λ𝓁
=

p s𝓁 = 1|λ𝓁 p y𝓁 |s𝓁 = 1, λ𝓁
∑s𝓁

p s𝓁 |λ𝓁 p y𝓁 |s𝓁, λ𝓁
. (3)

B. Muscle activity estimation using EMG burst presence probability

Presence of EMG burst in a given frame can be determined by the ratio between the local 

energy of the noisy EMG and its minimum within a specified time window. Thus, EMG 

burst and non-burst frequency components can be detected by an EBPP estimator in 

frequency subands. It follows from (3), the computation of the EBPP requires an estimate 

for the parameter set λℓ. The algorithm of improved minima controlled recursive averaging 

(IMCRA) represents the parameter set as a function of the a posteriori and a priori signal-to-

noise ratio(Cohen, 2003). Similar to the IMCRA method, the constrained sequential HMM 

can be used to estimate SPP, which has the capability of modeling the temporal correlation 

(Ying and Yan, 2013). Specifically, HMMs can model a time sequence of presence/absence 

of EMG burst as a dynamic process of the transition between EMG burst and non-burst 

states (Chan et al., 2002; Chan et al., 2006; Lee, 2008)..

Similar to the estimation of SPP in previous studies (Ying and Yan, 2013), the EBPP was 

derived from the HMM in this study. An HMM considers a log-power sequence in a causal 

window of L samples, xℓ = {xℓ−L+1,….xℓ}. The logarithmic powers of EMG burst and non-

burst are assumed to follow a Gaussian distribution. The transitional dynamics of the power 

sequence between EMG burst and non-burst states is modeled by a Markov chain, in which 

the output probability of each state is represented by a Gaussian model. These transition 

probabilities are estimated from the observed data based on the criterion of maximum-

likelihood.
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In the succeeding sections, λℓ denotes the parameter set of HMM that is estimated from log-

power sequence xℓ, and sℓ = {sℓ − L+1,…, sℓ} represents a state sequence corresponding to x¡. 

Given a training sequence xℓ, a maximum-likelihood estimate of the parameter set λℓ is given 

by

λ𝓁 = argmaxln
λ

∑
sl

p x𝓁, s𝓁 λ , (4)

. The model parameters were determined using the expectation-maximization (EM) 

algorithm The HMM probability density function ∑s𝓁
p x𝓁, s𝓁 |λ𝓁  and the mathematical 

details of the HMM were described in (Ying and Yan, 2013).

The EMG signal was first chopped into a series of frames using a Hanning window (window 

length: 32 ms, overlapping step: 16 ms). The signal of each frame was subsequently 

transformed into the frequency domain by the fast Fourier transform (FFT). Then, the signal 

is grouped into eight Mel-scale subbands by using the logarithmic value of the absolute 

magnitude sum of included FFT bins, where the boundary for the d-th Mel-scale is given by

Id = 700 × exp dm
2595 × log10 − 1 × NFFT / f (5)

Where f is the sampling frequency, NFFT is the FFT length, and NF is the number of the mel 

- scale subbands, and m is the maximal Mel value, given by

m =
2595 × log10(1 + f

1400 )
NF

(6)

The whole band was partitioned into NF subbands by the boundaries I0, I1, I2, …, INF
. 

Finally, the EBPP was computed at each subband, which describes the EMG burst in the 

time-frequency domain using energy information along both time and frequency axes. Our 

method utilizes a one-dimension HMM model on each subband. All HMMs run in parallel.

C. Performance evaluation

The EBPP was examined using both simulated and experimental surface EMG signals to 

measure muscle activity. A series of EMG signals were simulated at a sampling rate of 2000 

Hz by filtering white Gaussian noise with a shaping filter modeling the characteristics of 

typical surface EMG(Shwedyk et al., 1977; Stulen and De Luca, 1981). The shaping filter is 

defined as
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Hs f (s) =
ks 2π f h

2

s + 2π f l s + 2π f h
2 (7)

where s is the Laplace variable, k is a scaling factor. The cutoff frequencies fl and fh of the 

band-pass filter were set to 80 Hz and 120 Hz (Bonato et al., 1998; Vannozzi et al., 2010), 

respectively. An independently generated zero-mean white Gaussian noise was added to 

clean EMG signals to simulate surface EMG recordings with different noise levels. The 

standard deviation of the noise was determined by the noise level resulted in different SNRs 

(20, 15, 10, 8, 5 and 2 dB, respectively) of the EMG signal. The SNRs were selected 

according to previous studies (Bonato et al., 1998; Li et al., 2007). For each SNR, 60 trials 

of signal were generated.

The experimental surface EMG signals were collected from the brachioradialis of one 

normal control subject with no known neuromuscular disease (31, male) with a Refa EMG 

system (TMS International B.V., Netherlands). The signal sampling rate was 2000 Hz.

In addition, the performance of the EBPP method was compared with one previous method 

for muscle activity onset detection. The method is based on the double threshold algorithm 

(Bonato et al., 1998) (denoted as Bonato method). A two-way ANOVA (factors are SNR and 

detection method) was performed to determine how much of effects the SNR value and 

detection method had on the latency.

3. Results

A. Distribution of logarithmic powers in EMG burst and non-burst states

The probability distribution of the logarithmic power amplitudes of burst or non-burst EMG 

was estimated from a histogram using the aforementioned experimental EMG signals. Fig. 1 

shows an example of experimental EMG and the corresponding histograms of logarithmic 

power amplitudes of the EMG in burst and non-burst conditions, which displays two typical 

histograms together with two plots of a Gaussian distribution with mean and variance. The 

logarithmic power amplitudes of burst and non-burst EMG were normally distributed and 

were fitted by single Gaussian curves (smooth curves) with means at 21.3 and 53.6 dB, 

respectively. Furthermore, the composite normality of the logarithmic power amplitudes of 

burst or non-burst EMG was tested using the Lilliefors test (Lilliefors, 1967). The test 

showed that the logarithmic power amplitudes of burst and non-burst EMG could be 

assumed to have a Gaussian distribution, at risk of 5%. These results provide quantitative 

evidence consistent with the hypothesis that the distribution of logarithmic power amplitudes 

of burst or non-burst EMG closely approximates a Gaussian distribution.

B. Results from simulated surface EMG signals

We plot the frequency resolution curves of the Mel frequency warping method in Fig. 2, 

where the frequency-EBPP curve is also plotted. Fig. 2 shows that the EMG signal is always 

present with higher probability at low frequency than that at high frequency within the EMG 
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bandwidth, thus the EBPP appears to increase when the frequency of the corresponding 

EMG signal decreases. These results indicate that the Mel-scale emphasizes the lower 

frequencies, which distributes linearly and is more meaningful for EMG frequency warping 

processing than the uniform frequency warping method.

An example of EBPPs from simulated EMG is shown in Fig. 3, where the EBPP (c) and the 

spectrograms of the EMG signal (b) are presented for an EMG trial corrupted by white noise 

with different SNR values (a). The probability of EMG burst presence is a time-frequency 

representation, which has three key quantities including magnitude, frequency and time, thus 

provides the probability of the presence of an EMG burst at a specific time and frequency. 

We found that the EBPP demonstrates a consistent but discriminative pattern to detect 

presence of EMG burst from background noise therefore providing an alternative tool for 

muscle activity detection. Note that we plotted the EBPP with high frequency resolution 

instead of using eight Mel subbands to provide a graphical comparison between the EBPP 

and noisy spectrum.

C. Muscle activity detection

The EMG recordings were band-pass filtered between 20 and 500 Hz prior to onset 

detection using the EBPP and Bonato methods. The onset performance was evaluated by the 

latency τ, defined as the absolute difference between the true onset time t0 (e.g. 0.5 s for 

each testing signal) and the detected onset time td:

τ = td − t0 (8)

The muscle activity detection performance with different methods is summarized in Fig.4. 

Although the EBPP has a larger latency at high SNR (around 3–4 ms difference from 

Bonato), but the EBPP method is more resilient to noise. While the latency increases by 8–

9ms for the EBPP when SNR is decreased to 2dB, it increases almost 70 ms for the Bonato 

method. A twoway ANOVA showed no significant effects. The onset detection performance 

of all two tested methods was comparable (two-way ANOVA, P> 0.05, for all tested SNRs). 

In the cases of relatively low SNRs, the method based on EBPP exhibited better 

performance than the Bonato method, but without significant difference.

D. Testing of experimental surface EMG signals

The performance of the proposed method using an experimental surface EMG was 

demonstrated. An example of the EBPP with high frequency resolution from experimental 

EMG is shown in Fig. 5, where the EBPPs from the entire Mel-scale subbands were 

summed to form the envelope for characterizing muscle activation. It is easier to visually 

determine the EMG onset from the EMG burst spectral structure depicted by the EBPP 

(Figure 5c) than the spectrograms of the EMG signal (Figure 5b).
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4. Discussion

A novel approach for characterizing muscle activation was presented based on the time-

frequency probability computation. The EMG burst presence was represented by EBPP in 

each subband of the EMG signal. The constrained sequential HMM was employed to model 

the log-power sequence by taking advantage of the HMM’s capability of modeling the 

temporal correlation of EMG burst/non-burst. The EBPP was eventually derived from the 

HMM parameters based on the criterion of maximum likelihood. The performance of the 

proposed method was examined using both simulated and experimental surface EMG 

signals. Our results show that the EBPP can effectively detect bursts of EMG by suppressing 

the interference of frequency components of the non-burst EMG and the EBPP method is 

resilient to noise.

In this study, exact time-frequency structure has been analyzed with the use of the EBPP 

analysis for yielding the analysis of EMG signal in the time-frequency domain. We observed 

that EMG signal is always present with higher probability at low frequency within the EMG 

bandwidth than at higher frequencies where the EMG power is low (Fig.2). EMG signal is 

very similar to speech signal at this point (Lu and Dang, 2008). Thus the low-frequency 

bands should be partitioned with a higher resolution than the high-frequency bands. To 

emphasize low frequency information of EMG signals, the Mel frequency warping method 

was used in this study. It should be noted that this study utilizes the Mel scale property of 

frequency resolution, instead of human auditory perception. We found that Mel-scale is 

useful to obtain frequency components of EMG recordings to characterize the EMG activity.

HMMs preserve the structural characteristics and temporal ordering of the signal by using a 

Markov chain topology. Taking this advantage, a sequence of EMG signals can be modelled 

by HMMs. Previous studies have used HMMs to classify EMG signals in automatic speech 

recognition systems (Chan et al., 2002; Chan et al., 2006; Lee, 2008). Whereas, the 

constrained sequential HMM(Ying and Yan, 2013) was utilized in this study to model a time 

sequence of presence/absence of EMG burst as a dynamic process of the transition between 

the states of EMG burst and non-burst. Similarly, we estimated the EBPP from the 

constrained sequential HMM.

SPP estimators have successfully been used in detecting the non-speech frequency 

components and further suppressing them in speech enhancement (Cohen and Berdugo, 

2001, 2002; Gerkmann et al., 2008). An implication of this is the possibility that the EBPP 

can be used to denoise EMG, further studies are therefore recommended to demonstrate the 

potential use of the EBPP.
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Fig.1. 
Comparison of distributions of logarithmic powers in EMG burst and non-burst states. An 

example of EMG was collected from the brachioradialis of one normal control subject with 

no known neuromuscular disease (31, male) at a sampling rate of 2000 Hz. The 

corresponding histograms of logarithmic power amplitudes of the EMG in burst and non-

burst states are plotted. Both distributions closely approximate a Gaussian distribution 

(determined by a Lilliefors test).
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Fig.2. 
Comparison of frequency resolutions of filter bands with Mel scale processing and EBPPs 

across all the frequencies. The EBPP curve uses the scale of the right axis, and the Mel-scale 

curve uses the scale of the left axis.
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Fig. 3. 
Spectrogram illustrating the EBPP estimated by the sequential HMM method. (a) 

Superimposing the rectangular envelope built on the basis of the onset/offset to the EMG 

trace with SNRs. (b) The magnitude spectrogram of the EMG data. (c) The EBPPs obtained 

from the EMG traces. The transition from white to black associated with the EBPPs 

corresponds to probability changing from 0 to 1. The two-dimensional representation (color 

map: dark, high values; white, low values) provides the probability of EMG burst presence 

at each time instant (x-axis) and frequency (y-axis).
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Fig. 4. 
Comparison of onset detection performance using different methods (mean ± standard 

error). Bonato: the double threshold algorithm; EBPP: method based on EBPP conditioning. 

For each SNR level, the mean latency was averaged over 60 trials of simulated surface EMG 

signals. The EMG recordings were band-pass filtered between 20 and 500 Hz prior to onset 

detection.
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Fig. 5. 
An experimental EMG recording and the corresponding signal spectra, the EBPPs and the 

EBPP envelope. (a) A representative EMG trace consisting of four bursts. (b) The magnitude 

spectrogram of the EMG data. (c) The EBPPs obtained from the EMG data, the transition 

from white to black associated with the EBPPs corresponds to probability changing from 0 

to 1. (d) The EBPP envelope generated from the sum of the EBPP at each Mel-scale 

subband.
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