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ABSTRACT: Tetrazole derivatives are a prime class of heterocycles, very important to
medicinal chemistry and drug design due to not only their bioisosterism to carboxylic acid
and amide moieties but also to their metabolic stability and other beneficial
physicochemical properties. Although more than 20 FDA-approved drugs contain 1H-
or 2H-tetrazole substituents, their exact binding mode, structural biology, 3D
conformations, and in general their chemical behavior is not fully understood. Importantly,
multicomponent reaction (MCR) chemistry offers convergent access to multiple tetrazole
scaffolds providing the three important elements of novelty, diversity, and complexity, yet
MCR pathways to tetrazoles are far from completely explored. Here, we review the use of
multicomponent reactions for the preparation of substituted tetrazole derivatives. We
highlight specific applications and general trends holding therein and discuss synthetic
approaches and their value by analyzing scope and limitations, and also enlighten their
receptor binding mode. Finally, we estimated the prospects of further research in this field.
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1. INTRODUCTION
Tetrazoles belong to the class of twice unsaturated five-
membered ring aromatic heterocycles, consisting of one carbon

and four nitrogen atoms. They do not exist in nature.
Interestingly, they have the highest number of nitrogen atoms
among the stable heterocycles because pentazoles are highly
explosive compounds even at low temperature.1 The first report
of the synthesis of a tetrazole derivative was obtained by the
Swedish chemist J. A. Bladin in 1885 at the University of
Upsala.2,3 He observed that the reaction of dicyanophenylhy-
drazine and nitrous acid led to the formation of a compound
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Scheme 1. Tautomerism of Tetrazole Derivatives

Review

pubs.acs.org/CRCite This: Chem. Rev. 2019, 119, 1970−2042

© 2019 American Chemical Society 1970 DOI: 10.1021/acs.chemrev.8b00564
Chem. Rev. 2019, 119, 1970−2042

This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

pubs.acs.org/CR
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.chemrev.8b00564
http://dx.doi.org/10.1021/acs.chemrev.8b00564
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html


with the chemical formula of C8H5N5 which he later proposed
the name “tetrazole” for the new ring structure. On the basis of
the number of the substituents, tetrazoles can be classified as un-,
mono-, di-, and trisubstituted. 5-Substituted tetrazoles with 6π
electrons may exist in tautomeric forms as either I or II (Scheme
1). In solution, the 1H tautomer is the predominant form, but in
the gas phase the 2H-tautomer is more stable.1

The tetrazole motif is an important synthetic scaffold that
found broad applications in numerous fields such as in medicine,
biochemistry, pharmacology, and in industry as materials, e.g., in
photography, imaging chemicals, and military.4−9 Indicatively,
tetrazole derivatives are investigated both as a potential
explosives and as rocket propellant components based on their
high energy properties.10−14 Moreover, tetrazoles, due to their
high number of nitrogen atoms, could serve as an environ-
mentally benign component of gas generators with a high burn
rate and relative stability.15 However, the most important and
fruitful application of tetrazoles with many future prospects is
their utility in medicinal chemistry.16−32 Not surprisingly, the
number of publications on new drugs and promising biologically
active compounds containing the tetrazole moiety increased
dramatically the last seven years, 2010−2017 (Scopus, Sci-
Finder, Figure 1).
To date, Drug Bank33 mentions 43 drugs that contain 1H- or

2H-tetrazole substituents, 23 of them FDA approved; these
compounds possess hypertensive, antimicrobial, antiviral,
antiallergic, cytostatic, nootropic, and other biological activities
(Table 1).
Bioisosterism,34 defined as classical or nonclassical, is a useful

strategy for rational lead modification and drug design and
prevail in medicinal chemistry to alter unfavorable ADME

properties and/or to access free patent space. Among −CO2H
isosteres,35 5-substituted tetrazole, which has a mobile hydrogen
(on the contrary 1- or 2-substituted tetrazole have no mobile
hydrogen), is of special interest because it has a comparable pKa
(tetrazole 4.5−4.9 vs carboxylic acid 4.2−4.4), a similar size,
spatial arrangement of the heteroatom lone pairs, and a similar
molecular electrostatic potential (Figure 2A).36 Therefore, it
often undergoes very similar receptor−ligand interactions.37,38

However, the tetrazole group often exhibits a prolonged half-life
because of the enhanced metabolic stability,39,40 enhanced
spatial delocalization of the negative charge, and better
membrane penetration resulting from increased lipophilicity
(tetrazoles with a mobile H are ionized at physiological pH
(∼7.4), but are almost 10 times more lipophilic than the
corresponding carboxylates).41,42 In addition, the high density
of nitrogens in tetrazoles could provide more opportunities to
form hydrogen bonds or π-stacking with the receptor
recognition sites, explaining the sometimes-increased binding
affinity.43 A thorough analysis on Isostar from the Cambridge
Structural Database (CSD)44 showed the probability of
occurrence and spatial characteristics of interactions between
the 5-substituted tetrazole and different functional groups as
−NH (aliphatic and aromatic), −OH (aliphatic, phenol,
aromatic), carbonyl (ester, amide, ketones, etc.), and sp2-N
(aromatic N included). This analysis clearly demonstrates a few
things: First of all, the similarity with carboxylic acids with the
mobile N−H as hydrogen bond donor (Figure 2B−E). The
negative charge delocalization among N2−N3−N4 of the
tetrazole is obvious (Figure 2B,C), and moreover, the hydrogen
bonds via the σ-lone pairs of nitrogens are almost coplanar with
the tetrazole plane.45 Finally, data mining in CSD revealed π−π

Figure 1. (A) Number of publications containing the keyword “tetrazole(s)” in the title of the articles plotted against the publication date as analyzed
by Scopus (December 2018, 2707 articles). (B) Documents by country/territory of most publications contain the keyword “tetrazole(s)” in the title of
the articles as analyzed by Scopus (December 2018, 2707 articles). (C) Documents by subject area as analyzed by Scopus.
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interactions of the tetrazole ring with phenyl rings;46 for the
interactions between these two π systems, the T-shaped edge-to-
face and the parallel-displaced stacking arrangement are
predominant (Figure 2F).
In general, 5-substituted-1H-tetrazolic acids exhibit physical

characteristics similar to carboxylic acids and are strongly
influenced by the effect of substituents at the C5-position.
Finally, tetrazoles are more resistant to biological metabolic
degradation pathways, for example, β-oxidation or amino acid
conjugation.
The same analysis on Isostar for the 1,5-disubstituted

tetrazoles showed that most of the aforementioned interactions

with different functional groups, due to the absence of the free
NH, are focused on the electronegative sp2 nitrogens of the
tetrazole (characteristic examples are given with the −NH and
−OH groups, Figure 3A,B). Furthermore, it seems that there is
mostly a parallel-displaced stacking arrangement in the π−π
interactions with phenyl groups (Figure 3C).
The most important feature of 1,5-disubstituted tetrazoles,

though, is that they are effective bioisosteres for the cis-amide
bonds in peptidomimetics, whereas the 5-substituted tetrazoles
are mostly used as surrogates for carboxylic acids.37,47−49 In
CSD, there are 20272 different crystal structures of amide-
surrogates. An analysis of their torsion angle is shown in the

Table 1. continued
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histogram below (Figure 4A). It clearly shows that the majority
of these amides are in a trans conformation (blue, torsion angle
±180°), and 6961 of the aforementioned structures have a cis
conformation (red, −30° to +30°). A more close analysis on the
cis-amide surrogates (Figure 4B) shows a normal distribution
with a mean value of 0.007 o.
The average geometrical features, that derived from the

inspection of 241 available crystal structures of 1,5-disubstituted
tetrazoles compared with the cis-amide surrogates, demonstrat-
ing the similarity, are shown in Figure 5A. In Figure 5B,C, the
plot of the torsion angle (C6−C5−N1-C7) of 1,5-disubstituted

tetrazoles is depicted, clearly showing the favorable synper-
iplanar conformation. However, the distribution is not normal
(Figure 5,C, mean value 0.050°). A comparison of the
corresponding torsion angles of both cis-amide surrogates
(blue) and 1,5-disubstituted tetrazoles (red) showed that the
latter are more constrained as expected (Figure 5D).
For the reader to have a conclusive and spherical perspective,

we made a query in CSD for 2-substituted and 2,5-disubstituted
tetrazole derivatives (Figure 6A). We found 14 crystal structures
of 2-substituted and 152 crystal structures of 2,5-disubstituted
tetrazoles, with the average geometrical characteristics depicted
in Figure 6B,C.
For all these reasons, 5-substituted tetrazole represents a first-

choice bioisosteric group if the corresponding −CO2H has
issues in medicinal chemistry projects. Thus, effective and time-
saving synthetic methods are important to build up libraries of
tetrazoles for high-throughput screening or other low-
throughput pharmaceutical research applications.
Multicomponent reactions (MCRs) are chemical reactions

where more than two compounds react to form a single product
with several descriptive features, such as atom economy,
efficiency, and convergence.50,51 In 1961, Ugi et al.52,53 first
reported the use of HN3 to replace carboxylic acid in the
Passerini reaction54−56 and in the Ugi reaction to form tetrazole

Figure 2. (A) Tetrazolic acids (5-substituted 1H-tetrazole or 2H-
tetrazole) are bioisosteres of carboxylic acids. (B) The interactions of
the 5-substituted 1H-tetrazoles with any N−H in CSD (655 different
plotted compounds, left). The majority of these interactions exist
around the two sp2 3- and 4-nitrogens of the tetrazole ring as shown also
by the contour surface (right). (C) The interactions of the 5-substituted
1H-tetrazoles with any O−H in CSD (696 different plotted
compounds, left). The majority of these interactions is distributed
among the sp2 nitrogens of the tetrazole ring and the N−H,
respectively, as shown also by the contour surface (right). (D) The
interactions of the 5-substituted 1H-tetrazoles with aromatic or sp2 N in
CSD (1315 different plotted compounds), which demonstrate the
acidic character of the N−H of the tetrazole. (E) Likewise, the
interactions of the 5-substituted 1H-tetrazoles with terminal oxygen
(carbonyl, amides, esters, acids, etc.) in CSD (159 different plotted
compounds) depict the hydrogen bond formation of N−H···OC.
(F) π−π Interactions of the 5-substituted 1H-tetrazoles with phenyl
rings (different poses in left and right picture) in T-shaped edge-to-face
and parallel-displaced stacking arrangement in CSD (50 different
plotted compounds).

Figure 3. (A) The interactions of the 1,5-disubstituted 1H-tetrazoles
with any N−H in CSD (2567 different plotted compounds, left). The
majority of these interactions exists again around the two sp2 3- and 4-
nitrogens of the tetrazole ring as shown also by the contour surface
(right). (B) The interactions of the 1,5-disubstituted 1H-tetrazoles with
any O−H in CSD (2180 different plotted compounds, left). The
majority of these interactions is distributed among the sp2 nitrogens of
the tetrazole ring and the N−H, respectively, as shown also by the
contour surface (right). (C) π−π Interactions of the 1,5-disubstituted
1H-tetrazoles with phenyl rings, mostly in parallel-displaced stacking
arrangement (left) as shown also by the contour surface (right) in CSD
(946 different plotted compounds).
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derivatives, and since then, numerous advancements were
published on the synthesis of tetrazoles viaMCRs. In this review,
we shortly summarize the currently mostly used synthetic routes
for the preparation of tetrazole derivatives through non-
multicomponent reaction, however, our focus is on the use of
multicomponent reactions for the preparation of substituted
tetrazole derivatives. We wish to reveal specific applications and
general trends holding therein and discuss synthetic approaches
and their value by analyzing scope and limitations and estimated
prospects of further research in this field. Moreover, we believe
that the structural understanding of this scaffold class and its 3D
conformations are of uttermost importance for the process of
understanding and predicting binding properties of compounds
toward its receptor, e.g., in structure-based drug design and in a
wider sense to predict properties of specific molecules.
Therefore, in addition to synthetic accessibility, we will discuss
both the 3D solid state conformations of tetrazole derivatives as
well as some cocrystal structures with their protein receptors.
Thus, this review covers the literature in this area reported to
date as exhaustive as possible. Other published reviews on
tetrazoles are more specialized on specific aspects.57−63

1.1. Structural Biology of Tetrazoles

As of March 2018, there are 155 tetrazole cocrystal structures
present in the Protein Data Bank (PDB, Table 2).64 Their
classification according to their structures showed that the
majority of them belongs to the 5-monosubstituted tetrazole
derivatives (58%), followed by 1-monosubstituted (18%) and

1,5-disubstituted tetrazoles (14%, Figure 7). The PDB files can
serve as excellent resource to study preferential binding poses
and interactions of the tetrazole moiety toward the recep-
tors.65−90 These can be used to understand their bioisosteric
character toward the carboxylic acids, elaborate similarities and
differences, and develop guiding rules for the use of tetrazole
scaffolds in medicinal chemistry (1 and 2, Figure 8).
Understanding typical binding poses of tetrazoles in certain
receptor pockets can help in the structure-based design of novel
inhibitors, thus a few selected examples will be discussed.

1.1.1. Tetrazole Undergoes up to Four Hydrogen
Bindings with Its Four Nitrogen σ-Lone Pairs. This is
exemplified in Figure 9 of a β-lactamase inhibitor complex,
where the central tetrazole moiety 3 is embedded between two
serines, one threonine, and one water molecule, forming an
extended hydrogen bonding network with distances between 2.7
and 2.8 Å.91 Remarkably, the four receptor heavy atoms involved
in the hydrogen bonds are almost coplanar with the tetrazole
plane underlining the involvement of the σ-lone pairs of the four
nitrogens. This structure also reveals the key difference between
the two isosteres, carboxylic acid and tetrazole, based on their
lone pairs both which can form in principle four hydrogen
bonds, however with differential spatial orientation: The
tetrazolyl forms four orthogonal hydrogen bonds in the plane
of the five-membered ring, whereas the carboxylate forms four
hydrogen bonds along the O-lone pairs in the plane spanned by
the three atoms O−C−O.

1.1.2. The Tetrazole Moiety Is an Efficient Metal
Chelator Similar to Carboxylate.92 The X-ray crystal
structure of the enzyme bound to the biphenyl tetrazole L-
159,061 (4) (Figure 10) shows that the tetrazole moiety of the
inhibitor interacts directly with one of the two zinc atoms in the
active site, replacing a metal-bound water molecule. Two N−N
polar interactions and two C−N interactions are presented in
Figure 10.

1.1.3. The Tetrazolyl Unit Is Forming an Arg
Sandwich.93 The protein−protein interaction of the Keap1
with Nef2 recently became a hot target in drug discovery for
neuro-inflammatory diseases.94 The tetrazole molecule 5 was
described binding to the Kelch domaine (Figure 11).
Interestingly, the bioisostere carboxylic acid compound 6
(PDB 4l7B, Figure 12) is also available together with structural
biology information, thus providing the opportunity for a direct
comparative analysis.95 The alignment of the two structures is
very good, and only small differences in the two ligand and
receptor side chain orientations can be observed (RMSD0.142).
Both acid units of 5 and 6 are sandwiched between Arg415 and
Arg380. However, tetrazole 5 is able to bury a water molecule
underneath the tetrazole moiety that makes possible several
close contacts to the receptor which cannot be seen with the
carboxylic acid 6. Therefore, the highly buried water molecule
can be considered as part of the receptor. Moreover, the
conformation of Arg415 is slightly different in 5 and 6, placing
Arg415 closer to the two carboxylic acid oxygens by a ∼80° turn
around the C2−C3−Arg415 bond. Taken together, carboxylic
acid 6 binds with an IC50 of 2.4 μM, slightly better than the
tetrazole 5 with 7.4 μM.
In addition, the in vivo brain exposure was tested for both

compounds and several physicochemical and DMPK properties
are summarized in Table 3. None of the two compounds showed
sufficient brain penetration, likely due to being substrates for
efflux pumps phosphoglyco proteins (PGP).

Figure 4.Geometrical features of cis and trans amides. (A) A histogram
of the torsion angle analysis. (B) A close-up histogram of the torsion
angle analysis.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.8b00564
Chem. Rev. 2019, 119, 1970−2042

1975

http://dx.doi.org/10.1021/acs.chemrev.8b00564


Yu et al.96 designed inhibitors of the β-catenin/T-cell factor
protein−protein interaction by pursuing a bioisosteric replace-
ment approach. The available crystal structures revealed a very
large protein−protein contacting surface between β-catenin and
Tcf4 of ≥2800 Å2 (PDB 2GL7). Moreover, biochemical
analyses indicate that the dissociation constant (Kd) value of

β-catenin/Tcf PPIs is in the 7−10 nM range. To disrupt such a
large and tightly binding complex, it requires an extraordinarily
high ligand efficiency of the small molecule. Biochemical analysis
of truncated and mutated Tcf peptide epitopes revealed several
potential hot spots for small molecule design. The Asp16 (D16)
and Glu17 (E17) of human Tcf was chosen as a critical binding

Figure 5. (A) Geometrical features of 1,5-disubstituted tetrazoles as cis-amides surrogates. (B) Plot of the torsion angle of 1,5-disubstituted tetrazoles.
(C) Corresponding cone angle correlation (left) and the polar histogram (right) revealing the favorable synperiplanar conformation. (D) A
comparison of the torsion angle (picture in bottom in zoom pose) between the cis-amides (blue) and 1,5-disubstituted tetrazoles (red), showing a
more constrained conformation for the latter.
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element and converted into small molecules mimicking this key
element (Figure 13).96 The tetrazole ring (pKa= 4.5−4.95) was
used to replace the carboxyl group of Asp16 (D16) and mimic
the charge−charge and H-bond interactions with Lys435
(K435) and Asn430 (N430) of β-catenin. The four lone pairs
of the deprotonated tetrazole ring are evenly distributed on the
five-membered ring and can form two additional H-bonds with
the side chains of His470 (H470) and Ser473 (S473). These two
H-bonds do not exist in the β-catenin/Tcf complex. Tetrazole
derivative 7 with a molecular weight of 230 and a ligand
efficiency of 0.512 has a Kd of 0.531 μM for binding to β-catenin
and a Ki of 3.14 μM to completely disrupt β-catenin/Tcf
interactions. Replacement of the tetrazole moiety with other
carboxyl bioisosteres such as 5-oxo-1,2,4-oxadiazole and 5-
thioxo-1,2,4-oxadiazole (pKa = 6.1−6.7) decreased binding
affinity dramatically. According to modeling studies, the
tetrazole and the indazole-1-ol moiety mimic the Asp16
carboxylic acid and the carboxyl group of Glu17, respectively
(Figure 13).

2. TETRAZOLES THROUGH NON-MULTICOMPONENT
REACTION ROUTES

To date, the multitude of synthetic methods of 1,5-disubstituted
tetrazoles and monosubstituted tetrazoles have been reviewed

several times58,98−103 and thus will only be briefly mentioned
here.
The most common used synthesis of tetrazole derivatives is

the 1,3-dipolar cycloaddition reaction between nitriles and
azides (azide ion or hydrazoic acid, Scheme 2).104−114 It was first
described by Hantzsch and Vagt115 in 1901 through a [2 + 3]
cycloaddition of an azide to a nitrile (Scheme 2). Electron
withdrawing groups lower the LUMO of the nitriles and thus
enhance the interaction opportunities with the HOMO of the
azide, leading to a smooth reaction.116,117 However, the
requirement of the strong electron withdrawing groups in the
nitrile substrate somehow limits the scope of the reaction,
needing, in general, high reaction temperature and catalysts. The
synthesis of several ω-chloroalkyl tetrazoles and their sub-
sequent attachment to a solid support was also described.118

Recently, selenium-containing triazole carbonitriles were used
as precursors for the corresponding tetrazole derivatives with
antioxidant activity based on the aforementioned reaction.119

Sharpless et al.,120−122 among the many existing methods,
reported the [2 + 3] cycloaddition of an azide to the p-
toluenesulfonyl cyanide (TsCN) with a nice substrate scope of
aromatic and aliphatic azides under solvent-free conditions
followed by simple isolation in good yields (8a−c, Scheme 2).
Later, they extended this methodology to produce acyltetrazoles
9 in high yields with readily available acyl cyanides and aliphatic
azides with simple purification.123

Moreover, fused 5-heterotetrazole ring systems 11, 13, and 15
were synthesized in high yields via intramolecular [2 + 3]
cycloadditions of organic azides and heteroatom substituted
nitriles 10, 12, and 14, respectively (Scheme 3). Cyanates,
thiocyanates, and cyanamides were employed, yielding various
five- and six-membered heterocyclic systems fused to a tetrazole
ring.124

In addition, the synthesis of more than 20 5-substituted 1H-
tetrazoles (17) was described by Dömling et al.125 from various,
readily available cyanoacetamides 16.126 The combination of
sodium azide, trimethylamine hydrochloride in toluene at 90 °C
afforded the corresponding library in excellent yields with broad
reaction scope (Scheme 4).
The 1,3-dipolar cycloaddition reaction between nitriles and

azides (azide ion or hydrazoic acid) toward 1,5-disubstituted
tetrazoles is well established (Schemes 2 and 3). The [2 + 3]
cycloaddition of isocyanides and hydrazoic acid or trimethylsilyl
azide leading to 1-monosubstituted tetrazole derivatives by
Oliveri and Mandala,127 at the beginning of 20th century, is also
notable. This reaction is less known, however, it is quite general
and works both with aliphatic and aromatic substrates having a
broader scope than the corresponding nitrile cycloaddition
(Scheme 5). Because of the in situ access to a much greater
diversity of isocyanides from their formamides,128 this method
offers an alternative pathway for the synthesis of many 1-N-
monosusbtituted tetrazoles, 18−21. Considering the impor-
tance of this heterocycle, synthetic routes toward labeled
tetrazoles have also been described.129 Very recently, the
catalytic visible-light reaction of aliphatic, aromatic, and
heterocyclic aldehydes with sodium azide via 1,3-dipolar
cycloaddition has been described. The azide not only behaves
as three-nitrogen donor of tetrazole ring but also it converts the
aldehyde into isocyanide.130

Elaborating the above-mentioned reaction, Dömling et al.125

treated the N-substituted 2-isocyanoacetamides131 22 with
trimethylsilyl azide with 25% cosolvent water in methanol at rt.
A library of 18 1-substituted-1H-tetrazoles 23 was efficiently

Figure 6. (A) Geometrical features of 2-substituted and 2,5-
disubstituted tetrazoles. (B) Scatterplot of the distance R1−N
(DIST1, blue color) with the angle R1−N-N (ANG1, blue color) of
the 2,5-disubstituted tetrazoles with average values of 1.47 Å and
123.1°, respectively. (C) Scatterplot of the distance R2−N (DIST2, red
color) with the angle R2−N-N (ANG2, red color) of the 2,5-
disubstituted tetrazoles with average values of 1.46 Å and 123.9°,
respectively.
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Table 2. Structure of Selected Tetrazoles with Their Protein Receptors and Its PDB ID
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synthesized as most of the final products were precipitated
during workup (Scheme 6).
The synthesis of 1,5-diaryl-substituted tetrazoles 25 was

reported by the treatment of amides 24 with tetrachlorosilane/
sodium azide using a high wall (HW) pressure vessel at 90 °C in
a dry MeCN (Scheme 7). The corresponding derivatives were
evaluated as COX-2 inhibitors.132,133

3. MULTICOMPONENT REACTIONS FOR THE
SYNTHESIS OF TETRAZOLES

A main focus of our review is the description of the applications
of the MCR synthetic routes toward the tetrazole motif in terms
of their utility in medicinal chemistry, understanding the
structural behavior on specific examples and their binding
properties. Thus, in the following chapter, due to the diversity of

tetrazole derivatives, the MCR-based tetrazole syntheses will be
classified according to the number of the overall rings, e.g.,
monocyclic, bicyclic, tricyclic, or polycyclic (Figure 14). Scope
and limitations of its scaffold along with the 3D conformations,
where available, will be given with special focus on their
medicinal and pharmaceutical application.
3.1. Monocyclic Tetrazoles Derivatives

The most important approach to aminomethyl tetrazoles using
MCR by far is the Ugi-4CR. Ivar Ugi described the
aforementioned reaction in his seminal publication from 1959,

Table 2. continued

Figure 7. Classification of the selected PDB cocrystal structures of
tetrazole derivatives into the categories of 5-monosubstituted tetrazoles
(green), 1-substituted tetrazoles (blue), 1,5-disubstituted tetrazoles
(yellow), 2-substituted tetrazoles (magenta), 2,5-disubstituted tetra-
zoles (cyan), and tetrazolium salt (orange).

Figure 8. Examples of characteristic receptor−tetrazole binding modes
found in the PDB. (A) Sterol 14α-demethylase (CYP51) from
Trypanosoma cruzi in complex with the 1-monosubstituted-tetrazole
derivative VT-1161 (1) (PDB 5AJR) exhibiting the metal ligand
character of tetrazoles. (B) CTX-M-9 class A β-lactamase complexed
with 1H-tetrazole 2 (PDB 3G34), exhibiting a hydrogen contact to
water and one hydrogen contact to Gln188 side chain amide.
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where he introduced most of the today’s important variation of
his MCR (Scheme 8).134 Some years later, again, Ugi was the
first who introduced a Passerini MCR variation leading to α-
hydroxymethyl tetrazoles,52,53 a reaction mechanistically related
to the Passerini reaction described 30 years earlier (Scheme 8).
Furthermore, some other less known MCRs will be discussed.
These include reactions involving for example acetylenedicar-
boxylates and three component reaction of isocyanides, azides,
and other nucleophiles, leading to interesting 1,5-disubstituted
building blocks.

3.1.1. Ugi Tetrazole Four-Component Reaction (UT-
4CR). α-Aminomethyl tetrazoles are of great importance due to
isosterism to α-amino acids. The classical Ugi tetrazole (UT-
4CR) synthesis presents a broad scope regarding to the starting
materials, i.e., isocyanides, oxo components, and amines (Figure
15). A representative set of UT-4CR adducts (26−38) that have
been cited in this review is presented in Figure 16. In parallel
synthesis of UT adducts, among others, in 96-well plates have
also been described enabling the production of 5000−10000
compound range.135 This also demonstrates one very attractive
feature of MCRs, the relative ease of its automation. The UT-
4CR differs from the classical Ugi-4CR in that the azide traps out
the intermediate nitrilium ion (replacing the carboxylic acid seen
in the classical Ugi variation), leading to the formation of the
final 1,5-disubstituted tetrazole. The reaction is often performed
in methanol, however, 2,2,2-trifluoroethanol or biphasic water
chloroform mixtures were also reported.136−139 Recently, an
ultrasound accelerated UT-4CR was described without solvent

Figure 9. Comparison of the hydrogen bonding pattern of tetrazolyl
and carboxyl. Example of a tetrazolyl (3) forming four hydrogen bonds
(PDB 4DE1).6 Ser130 and Ser237 form each a hydrogen bond to the
tetrazole −N2 and −N5 via their side chain −OH at 2.8 and 2.7 Å,
respectively. N-3 is in a 2.7 Å contact to the side chain −OH of Thr.235

The fourth N-4 forms a close hydrogen bonding contact of 2.8 Å to a
water molecule, which itself is further involved into hydrogen bonding
contacts.

Figure 10. Tetrazole compound 4 as a ligand for the metallo-β-
lactamase (PDB 1A8T).92 The central Zn2+ is tetrahedrally coordinated
by the ligands tetrazole-N1, the His206 side chain N3, Asp86 carboxyl-O,
and Cys164 side chain-S. The tetrazoloyl not only forms a bond to Zn2+

but forms several hydrogen bonds to the receptor, including Asn176

backbone NH (3.3 Å), His145 side chain NH (2.8 Å), and Lys187 side
chain NH2 (3.8 Å). Moreover, the His145 imidazole moiety is on top of
the tetrazolyl moiety, forming an electrostatic interaction with an
interplane angle of ∼30°.

Figure 11. Kelch domain interaction of Keap1 with tetrazole 5 (PDB
4L7C). A dense network of electrostatic and hydrogen bindings
contributes to the tight small molecule receptor interaction. It features
an interesting sandwich charge−charge interaction driven motive
between two positively charged arginines and the tetrazole moiety. The
boxed figure shows the Arg sandwich from a different orientation.

Figure 12. Kelch domain interaction of Keap1 with compound 6 (PDB
4L7B). Same as its bioisostere tetrazole 5, a dense network of
electrostatic and hydrogen bindings also contributes to the tight small
molecule receptor interaction. The difference is the weaker interaction
between residue Arg380 and the carboxylic ligand, which is caused by the
special orientation of carboxylic group.

Table 3. Physicochemical and DMPK Properties of
Compounds 5 and 6

compd log Da

polar surface
area (PSA)

[Å2]b

efflux
ratio
(ER)c

unbound
brain-to-plasma

(Bu/Pu)
d

Cu
[μM]e

5 (tetrazole) 0.69 107 NT <0.01 <0.01
6 (carboxylic
acid)

1.36 95 20 <0.01 <0.01

0.4a 0.18a

aMeasured at pH 7.4. bPolar surface area. cEfflux ratio in MDCK-
MDR1 cells (10 mm incubated up to 120 min). dUnbound brain-to-
plasma ratio measured in mice. eUnbound brain concentration
measured in mice at Cmax.
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based on a water-triggered formation of hydrazoic acid via
single-proton exchange with TMS azide.140 The reaction is
generally fast at room temperature; only some special educt
combinations require heating, for example, the reaction of bulky
trityl amine.141,142 The UT-4CR is considerably more
exothermic than the classical Ugi four-component condensation
of isocyanides, oxo components, primary amines, and carboxylic
acids, yielding the α-aminoacylamides. Therefore, the addition
of the components, especially on a larger scale, should proceed

carefully under cooling. The order of addition of the
components in the Ugi reaction in most cases does not really
matter and the yields are comparable. Often the components are
added to the reaction’s vessel in the order of oxo component,
amine, isocyanide, and finally the azide source. In the past, Ugi
was using isolated hydrazoic acid in a benzene stock solution.143

Nowadays the safer substitute trimethylsilylazide (TMS azide,
TMSN3) is utilized, which forms in situ the hydrazoic acid in the
typically used protic alcoholic solvent. Alternatively, especially if

Figure 13. Bioisosteric replacement strategy for the design of β-catenin/Tcf protein protein interaction. (A) Hot spot of β-catenin/Tcf interaction
showing key electrostatic interactions (PBD 2GL7).97 Tcf peptide is shown in pink and green, and the hot spot Asp16-Glu17 is highlighted as pink
sticks. β-Catenin is shown as surface representation, and interacting amino acids are shown as gray sticks. (B) Bioisosteric replacement step. (C) Close-
up analysis of the aligned 7 and Asp16-Glu17 of Tcf with the β-catenin receptor. The indazole-1-ol formsH-bond and charge−charge interactions with
β-catenin Lys508. The tetrazole ring was used to replace the carboxyl group of Asp16 and mimics the charge−charge and H-bond interactions with
Lys435 and Asn430 of β-catenin. The deprotonated tetrazole ring with two more Lewis bases can form two additional H-bonds with the side chains of
His470 and Ser473. These two H-bonds do not exist in the β-catenin/Tcf complex.

Scheme 2. Different Synthetic Routes to Tetrazoles Using Non-Multicomponent Reactions
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ammonium salts of the primary or secondary amines are used,
the hydrazoic acid source should be sodium azide. Both aromatic
and aliphatic isocyanides work well, whereas the functional
groups of the isocyanide side chain are often well tolerated, e.g.,
the amino acid derived isocyano esters work nicely (Figures 15
and 16). However, α- and β-amino acid derived isocyanomethyl
esters can cyclize with the primary or secondary amine of the

tetrazole side chain, forming δ-lactams. This has been
advantageously used to create tetrazoloketopiperazines and
will be discussed below. Oxo components can be aldehydes,
ketones, and substituted variants thereof. Substituted benzalde-
hydes, heteroaromatic aldehydes, including formyl-ferrocene
and substituted aliphatic aldehydes, glyoxals, formaldehyde,
cyclic and acyclic aliphatic ketones, and monosubstituted
arylketones work efficiently (Figure 15, 16).144 In the UT-
4CR, both primary and secondary amines react well, comparing
with the classical U-4CR where normally only primary amines
are involved.145−151 The amines can be both aliphatic and
aromatic and widely substituted. Even the super bulky trityl

Scheme 3. Intramolecular Cycloaddition of Azidonitriles: (a)
Heterocyclic Nitrile, (b) Aliphatic Nitrile, (c) Aromatic
Nitrile

Scheme 4. Synthesis of 5-Substituted 1H-Tetrazoles 17 viaN-
Substituted Cyanoacetamides

Scheme 5. Synthesis of 1-Substituted Tetrazoles by Click
Reaction of Azides and Isocyanides

Scheme 6. Synthesis of 1-Substituted 1H-Tetrazoles 23 viaN-
Substituted Cyanoacetamides

Scheme 7. Synthesis of 1,5-Diaryl-Substituted Tetrazoles 25
via Amides 24

Figure 14. Classification of the MCR-based synthesis of tetrazole
derivatives according to the number of cycles.

Scheme 8. Tetrazole MCRs Overview

Figure 15. Scope and limitations of the UT reaction.
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amine can react with aliphatic aldehydes to give compound 31,
however, only under microwave conditions due to the slow
Schiff base formation (Figures 15 and 16).141,142 Notably,
ammonia, which causes often problems in other Ugi variations,
reacts reasonably well with ketones in the UT-4CR (see
compound 32).136,152−155 In 2007, Marcaccini and Torroba156

described a detailed protocol for the UT-4CR, including the
general mechanism and the effects of the nature of the
components as well as the reaction conditions on the Ugi
reaction.
Recently, Nenajdenko et al.9,157 studied the diastereoselec-

tivity of the UT-4CR with cyclic amines 39, yielding the
derivatives 40 and 41 (Scheme 9). They found that the reaction
with α-substituted five- to seven-membered cyclic amines
provided high control of diastereoselectivity (≤100% de,

≤98% yields) under mild conditions. As a matter of fact, the
diastereoselectivity of the reaction depends on the ring size of
the starting cyclic amines. More rigid piperidines provided the
highest selectivity of the reaction.
Interestingly, the 2-aminopyridine, prone to undergo the

Groebke−Blackburn−Bienayme ́ multicomponent reaction
(GBB-3CR) with isocyanides and aldehydes in a competing

Figure 16. SAR of the UT-4CR and typical reaction products (26−38)
which are cited in the current review underlining the scope of the
reaction.9,24,53,144,148,159,167,168,170,185,320,327,360

Scheme 9. Stereoselective Synthesis of Tetrazole Derivatives
40 and 41 via a Diasteroselective UT-4CR with Secondary
Cyclic Amines

Scheme 10. UT-4CR vs GBB-3CR of the 2-Aminopyridine

Scheme 11. Isocyanide-less Ugi 4-CR Tetrazole Variation
(UT-4CR)
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reaction, reacts in the UT-4CR selectively as an amine
component.158−160 Apparently, the GBB-3CR (42) has slower
kinetics than the UT-4CR (43) (Scheme 10).
Taken together, the UT-4CR is very easy to perform156,161

and has an amazingly great scope in all three classes of variable
starting materials, especially combined with the in situ
generation of the isocyanides.128 The substrate scope includes
diverse substituted aldehydes and ketones, substituted for-
mamides, and a multitude of primary and secondary amines,
yielding the 1,5-disubstituted tetrazoles, e.g., 44−46 in yields of
39−64% (Scheme 11). Another application of this in situ
method is the access without the need of protecting group to
photoinducible probe 47, a bioisostere of the important
neurotransmitter glycine. Photocleavable tetrazole was synthe-
sized, via an UT-4CR, using the Leuckart−Wallach accessible o-
nitrobenzyl formamide (Scheme 12). Since its first description
in 1959, many researchers have used the UT-4CR, and some
applications are highlighted in the following.
In 1972, Zinner et al.162 started the early studies of UT-4CR

using amine variations. In this approach, the corresponding
diaziridine reacted with formaldehyde, cyclohexyl isocyanide,
and HN3 to generate diaziridine tetrazole derivatives 48,
however, in low yields. The subsequent acidic treatment opens
up the diaziridine ring, giving, unexpectedly, quantitative yield of
the hydrazone derivative 49 (Scheme 13).
Continuing their studies, in 1974, Zinner et al.163 described an

UT-4CR approach to 1,5-disubstituted tetrazoles using
hydroxylamines as amine components. Reaction with form-
aldehyde in the presence of cyclohexyl isocyanide and hydrazoic
acid (HN3) afforded the corresponding 1,5-disubstituted
tetrazole methylene hydroxylamines 50. Sterically hindered
cyclic ketones and different substituted benzylhydroxylamines
led to the expected products at mild reaction conditions though
with lower yields (Scheme 14).
The basic amino group is highly hydrophilic and also a good

hydrogen bond acceptor which is of use for potential drug
candidates. Ammonia and other amine-like components have
been reported sporadically in Ugi reactions, however, they often
afford mixed or poor yields, e.g., hydroxylamine, N-acylated
hydrazine, N-sulfonated hydrazine, and unprotected hydrazine.

Dömling et al.141 introduced tritylamine as a convenient
ammonia substitute in the Ugi tetrazole synthesis, synthesizing
15 trityl protected 1,5-disubstituted tetrazole derivatives 51 in
satisfactory to good yields. The trityl deprotecting reaction went
through a mild acidic condition, with quantitative yields
affording tetrazoles 52. Ammonia, as it was expected, was
found to lead to amixture of multiple products caused by its high
reactivity (Scheme 15, Figure 17); HPLC-MS analysis of the
reaction of tert-butyl isocyanide with formaldehyde, ammonia,
and TMS-azide revealed such a mixture of mono-, di-, and tri-
Ugi products.
However, this problem was overcome by using ammonium

chloride as the ammonia source.164 With in-depth scope and
limitation study with more than 70 oxocomponents and 15
isocyanides, it was shown that the UT with ketones, isocyanides,
sodium azide, and ammonium chloride afforded the free-amino
tetrazoles 53 (Scheme 16). The primary amine component of
the α-amino tetrazole is a versatile starting material for further
reactions because it can be converted to the tetrazole
deprotected α-amino tetrazole compound165 54 by choosing
the 1,1,3,3-tetramethylbutyl isocyanide (Walborsky’s re-
agent).166 As a matter of fact, Dömling et al.167 utilized this α-
amino tetrazole as the primary amine component in an U-3CR
(a so-called “truncated” Ugi reaction, not involving a carboxylic
acid) toward the synthesis of the compounds 55 (with more
than 50 derivatives), expanding even more the chemical space,
establishing a library-to-library approach (Scheme 16, Figure
18).
Balalaie et al.168,169 reported a novel and efficient method for

the diastereoselective synthesis of α-hydrazine tetrazoles 56
using cyclic ketones, TMS azide, hydrazides, and the

Scheme 12. Example of an Application of the Isocyanide-less
UT-4CR to Synthesize the Photocleavable Tetrazole
Derivative 47

Scheme 13. UT-4CR to Diaziridine Tetrazole Derivative 48

Scheme 14. Hydroxylamines as Amine Equivalents in UT-
4CR
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corresponding isocyanides without any catalyst via an UT-4CR
in mostly good yields (Scheme 17). Two diastereomers were
observed during the Ugi reaction with dr up to 4:1. On the basis
of a solved X-ray structure, the major diastereomer was found to
have trans configuration (Figure 19).
Dömling et al.170 synthesized via a two-step procedure a series

of 1-substituted 5-(hydrazinylmethyl)-1-methyl-1H-tetrazoles
58 by an UT-4CR using Boc-protected hydrazine, various
aldehydes or ketones, isocyanides, and TMS azide with a
subsequent deprotection (57, Scheme 18, Figure 20). To further
improve the yield of the Ugi reaction, ZnCl2 was used as a
catalyst increasing the Schiff base formation. The straightfor-

ward access to highly substituted hydrazines is of interest
because hydrazines can act as aspartic protease inhibitors
interacting through charge−charge interactions with the active
side aspartate residues.
An application of secondary amines in UT-4CR was reported

by Dömling et al.165 by investigating a versatile and
commercially available isocyanide, the 1-isocyanomethylbenzo-
triazole 59 (BetMIC). Initially, BetMIC was reacted with an
enamine and TMS azide in methanol to form the expected
tetrazole in good yields. Moreover, in the following cleavable
step, they observed the almost quantitative and mild cleavage of
the Ugi product to give the expected α-aminomethyl tetrazole
60 (Scheme 19).
The concept of convertible isocyanides was introduced as

early as 1963 by Ugi with cyclohexenyl isocyanide, which can be
cleaved in the Ugi reaction product using acidic conditions.171

This concept was later extended by many others.166,172−175

Convertible isocyanides are highly useful in that they can be
transformed into other functional groups during a multistep
synthesis of complex molecules, e.g., natural products.176

However, the majority of the work performed concerns the
transformation of the secondary amide formed during the Ugi
and Passerini reactions into esters, thioesters, ketones,
carboxylic acids, and other groups. Despite the increasing
popularity of using convertible isocyanides for further molecular
modification, these isocyanides suffer from major disadvantages
such as lengthy synthesis procedures, instability, incompatibility
with delicate substrates, laborious workup, and multistep
cleavage. Furthermore, these isocyanides are only applicable in
one type of reactions either U-4CR or UT reactions.
Mayer et al.177 chose two new cleavable isocyanides, the 3-

isocyano-3-phenyl-ethylpropionate (61a) and the 2-isocyano
succinic acid dimethyl ester (61b), in order to react with
aldehydes, amines, and TMS azide synthesizing a library of UT
adducts (62) bearing three points of diversity in good yields.

Scheme 15. A Synthetic Pathway to N-Unsubstituted Primary α-Aminotetrazoles 52 Using an Ugi-4CR Employing Tritylamine
As an Ammonia Surrogate

Figure 17. Crystal structures of tetrazole derivatives 50d,e. They are
dominated not only by π-stacking and hydrophobic interactions
between the trityl group, the alkyl group, and the phenylethyl groups
but also the tetrazole ring makes short intermolecular contacts (CCDC
903083 and 903084).
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These isocyanides could be later cleaved with an alkoxide base
(NaOEt, or KOtBu), affording the desired 5-substituted 1H-
tetrazoles 63. The two new cleavable isocyanides were both
synthesized from β-amino acids (Scheme 20).
β-Cyanoethyl isocyanide (64) was introduced as a cleavable

isocyanide in the UT-4CR, giving rise to the tetrazole derivatives
65 (Scheme 21).178 After the UT reaction, the β-cyanoethyl
moiety was cleaved under very mild basic hydrolysis conditions
in only 30 min, yielding the free tetrazoles 66.
Dömling et al.179 employed successfully the isocyanide 67,

which bears a cleavable 2-nitrobenzyl group in both U-4CR and
UT reactions using acidic and basic conditions, respectively.
They demonstrated its use as a truly convertible isocyanide
which performed moderately to good in the UT-4CR, affording
tetrazoles 68 and compatible with diverse substrates. The
cleavage was performed under basic conditions, by KOtBu,
giving the adducts 69 (Scheme 22).
Tetrazoles are not only widely recognized for their

pharmacological activities but also for their high chemical and
thermal stabilities.100,180 The decomposition of substituted
tetrazoles normally occurs above 250 °C, and the fragmentation
at lower temperatures mainly was only found during acylation of
monosubstituted tetrazoles (Huisgen fragmentation).181,182 El
Kaim̈ et al.183 described a Lewis acid triggered fragmentation of
tetrazoles synthesized through an UT-4CR (Scheme 23). The
Ugi tetrazole undergoes copper-catalyzed oxidative Schiff base
formation (70), and then it is converted into triazoles through

Zn(OTf)2 catalyzed fragmentation of the tetrazole under
microwave conditions toward the 1,5-disubstituted triazoles
71. The mechanism, as proposed by the authors, is based on an
electrocyclization of an intermediate α-diazo imine as the final
step. Initial formation of a zinc chelate is triggering tert-butyl E1
elimination, which leads to the liberation of a small amount of
triflic acid in the medium. This acid protonates the ring, which
leads to a dearomatization of the tetrazole (Scheme 24).
Due to the fact that the C(sp2)−Si bonds in organosilicon

compounds undergo numerous transformations, Safa et al.184

developed a library of tetrazole derivatives bearing 2,2-
bis(trimethylsilyl)ethenyl groups (73), from the corresponding
benzaldehyde (72), via a simple one-pot UT-4CR in the
presence of catalytic amounts of MgBr2·2Et2O (Scheme 25).
Noteworthy, primary aromatic amines with electron-donating
groups such as methoxy and methyl afforded the tetrazole
derivatives in slightly higher yields than amines with electron
withdrawing groups such as nitro, whereas the cyclohexyl
isocyanide instead of tert-butyl isocyanide required longer
reaction times to afford similar products.
In 2012, Bazgir et al.185 synthesized a series of ferrocenyl

dialkylamino tetrazoles and ferrocenyl arylamino tetrazoles 74
via an UT-4CR without any catalyst in dichloromethane
(Scheme 26). This is the first example of an efficient synthesis
of ferrocenyl-fused tetrazoles. To explore the scope and
limitations of the reaction, both aliphatic secondary amines
and aromatic primary amines were employed, which afforded

Scheme 16. A Synthetic Pathway to α,α-Disubstituted α-Aminotetrazoles 53 and 54 Using an UT-4CR Employing Ammonium
Chloride as an Ammonia Surrogate and the Post-Modification Towards Tetrazoles 55
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the final ferrocenyl tetrazoles in good yields. Because α-
ferrocenyl-alkyl amines are important ligands in asymmetric
catalysis reaction, such tetrazole derivatives could be further
evaluated.186

The UT-4CR has found profound application in the field of
medicinal chemistry. Histamine H3 receptor (H3R) acts both as

an auto receptor in presynaptic histaminergic neurons and also
controls histamine turnover by feedback inhibition of histamine
synthesis and release.187 Attracted by the potential of the H3R as
a drug target, Davenport et al.145 described a series of potent and
subtype selective H3 receptor antagonists containing a novel
tetrazole core and diamine motif. A one-pot UT-4CR was
utilized to rapidly develop the structure−activity relationships
(SARs) of these compounds. According to the biological
screening results, the piperazine ring with small alkyl groups
should be maintained. Shielding around the nitrogen, however,
did not afford an improvement in metabolic stability. After
modifications of the aromatic substituents and further
optimization, potent derivatives (75) were the result (Scheme
27).
A library of tetrazole-based diselenides and selenoquinones

77 and 78, respectively, were synthesized via UT-4CR and a
sequential nucleophilic substitution, which was evaluated
against hepatocellular carcinoma.188 Employing the correspond-
ing diamines 76, 18 tetrazole/naphthoquinone-based organo-
selenium derivatives were synthesized in good yields and their
cytotoxic activity was evaluated using hepatocellular carcinoma
(HepG2) and breast adenocarcinoma (MCF-7) cancer cells and
compared with their cytotoxicity in fibroblast (WI-38) cells. It
was found that the selenoquinones 78 downregulated the
apoptosis regulator Bcl-2 and Ki-67 expression levels and
activated the expression of proapoptotic caspase-8 in HepG2
cells compared to untreated cells (Scheme 28).
The UT-4CR was also utilized in order to derivatize the

anticancer drug Imatinib.189 Under microwave irradiation, 30
adducts (80) with 10 different aldehydes and two isocyanides
were synthesized bearing the amine 79, which is the precursor of

Figure 18. Structures of tetrazoles as seen in the solid-state by X-ray
structure analysis. (A) Compound 53a (CCDC 1441248) forms a
hydrogen bridge of 2.4 Å length between the amine NH and the N4 of
an adjacent molecule; moreover, the benzyl side chains undergo parallel
and T-shaped π−π interactions. (B) Compound 53b (CCDC
1441249) forms a hydrogen bridge of 2.3 Å length between the
amine NH and the N3 of an adjacent molecule. (C) Compound 55a
(CCDC 1484778) forms a hydrogen bridge of 2.2 Å length between the
amine NH and the N3 of an adjacent molecule.

Scheme 17. Diastereoselective Synthesis of α-Hydrazine
Tetrazoles 56 via a Facile UT-4CR

Figure 19.Crystal structures of α-hydrazine tetrazole 56a and 56d. (A)
Hydrophobic interactions between the C of phenyl group and N(2),
N(3) of tetrazole, hydrophilic interactions between N(3) of tetrazole,
and the N close to CO (CCDC 950021). (B) Hydrophobic
interactions between the C of oxo component cyclohexyl groups, and
hydrophilic interactions between N(3), N(4) of tetrazole, and N close
to CO (CCDC 950022).
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Imatinib (Scheme 29). Unfortunately no biological results were
reported.
The tumor-suppressor protein p53 is the principal regulator of

cell division and growth,190,191 as it is able to control genes that
are implicated in cell-cycle control, apoptosis, angiogenesis,
senescence, and autophagia. Mutations in this protein are
present in ∼50% of human cancers. Inhibiting the binding
between wild-type (WT) p53 and its negative regulatorsMDM2
and/or MDMX has become an important target in oncology to
restore the antitumor activity of p53.192 In 2017, a rational
design and synthesis of 1,5-disubstituted tetrazoles 81 and 82 as
potent inhibitors of the MDM2-p53 interaction was reported
(Scheme 30, Figure 21). An extensive SAR study was performed
based on the established four-point pharmacophore model,
yielding derivatives with affinity to MDM2 in the nanomolar
range. Their binding affinity with MDM2 was evaluated using
both fluorescence polarization (FP) assay and 2D-NMR-HSQC
experiments.193

Considering that all receptors, metabolic enzymes, and
transporters involved in GABAergic neurotransmission can be
considered as valid drug targets, Wanner et al.146 employed an
UT-4CR as a key step to synthesize 1,5-disubstituted and 5-
monosubstituted aminomethyltetrazole derivatives 83 and 84,
respectively, derived from glycine. All products were evaluated
regarding their inhibitory potency and subtype selectivity at the
four murine GABA transporter subtypes mGAT1-mGAT4. The
results showed that none of the 5-monosubstituted tetrazoles
has a potential for inhibition of GABA uptake, however, the 1,5-
disubstituted tetrazole derivatives displayed a distinct activity,
especially at the GABA transport proteins mGAT2−mGAT4. A

reasonable potent and selective inhibitor of mGAT3 was found.
Additionally, two more compounds were identified as potent
inhibitors of mGAT2. Interestingly, up to now, only a few potent
and selective inhibitors of mGAT2 that do not affect mGAT1 are
known (Scheme 31).
Dysfunction of excitatory amino acid transporters (EAATs)

has been implicated in the pathogenesis of various neurological
disorders such as stroke, brain trauma, epilepsy, and neuro-
degenerative diseases among others.194,195 EAAT2 is the main
subtype responsible for glutamate clearance in the brain, having
a key role in regulating transmission and preventing
excitotoxicity. Therefore, compounds that increase the
expression or activity of EAAT2 have therapeutic potential for
neuroprotection. After a virtual screening of a library of small
molecules, 10 hit molecules that interact at the proposed domain
were identified as UT-4CR adducts.196 The reaction was
performed with a catalytic amount of trifluoroacetic acid in 2-
propanol at 95 °C for 24 h. Further characterization of the two
best ranking EAAT2 activators 85 and 86 (Figure 22) for
efficacy, potency, and selectivity for glutamate over monoamine
transporters subtypes and NMDA receptors and efficacy in
cultured astrocytes was demonstrated. Authors also found that
the EAAT2 activators interact with residues forming the
interface between the trimerization and the transport domains;
these compounds enhance the glutamate translocation rate, with
no effect on substrate interaction, suggesting an allosteric
mechanism.
Torrence et al.197 examined the use of the Ugi reaction in the

generation of new nucleosides as potential antiviral and
antileishmanial agents. In that direction, starting from aldehyde

Scheme 18. Typical Two-Step Procedure Synthesis of N-Deprotected Tetrazole Derivatives 58
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87, they designed a series of nucleosides using the UT-4CR,
which were evaluated for their activity against vaccinia virus,
cowpox virus, and the parasite Leishmania donovani. They
obtained some novel tetrazole derivatives 88 in good yields,
unfortunately, without possessing any significant antiviral
activity (Scheme 32).
Heterocycle hybrid derivatives 90 bearing both a thiadiazole

(89) and a tetrazole ring were designed and synthesized in 2012

by Fan et al.198 These derivatives were formed via an UT-4CR
and exhibited both broad-spectrum activity against several fungi
and excellent antiviral activity (Scheme 33). A crystal structure
of 90d was reported (Figure 23).
Parasitic diseases are a global problem, affecting 30% of the

world’s population and much of the world’s lifestock. Among
parasitic diseases, malaria is one of the most devastating
infectious diseases claiming many lives. There were at least 216
million cases of acute malaria reported in 2010, and about
655000 people died from malaria, 86% of which were children
under 5 years of age.199 Chibale et al.200,201 designed new
quinoline-based compounds bearing the tetrazole moiety and
protonatable nitrogen(s) that have potential application in
malaria. Thus, utilizing the aldehyde 91, he synthesized in a
diastereoselective way two new series of nitroimidazole and
nitroimidazooxazine derivatives 92 in moderate to excellent
yields using the UT-4CR. Three of these compounds appeared
to be rapidly metabolized in both human and rat liver
microsomes, and they had high metabolic clearance that was
comparable to that of amodiaquine (Scheme 34). All
synthesized tetrazole derivatives were evaluated in vitro for
their antiplasmodial (against the multidrug-resistant K1 strain)
and antimycobacterial activity (against the drug-sensitive
H37Rv Mtb strain). Two of these compounds exhibited potent
activity against the K1 strain of Plasmodium falciparum, with IC50
values in the low micromolar range.
In 2013, Chauhan et al.202 synthesized a series of novel

tetrazole derivatives 91 of 4-aminoquinolines (93) via an UT-
4CR of primary and secondary amines, aliphatic, aromatic and
ferrocene containing aldehydes, TMS azide, and isocyanides
(Scheme 35). All the products were screened for their
antimalarial activities against both chloroquine-sensitive
(3D7) and chloroquine-resistant (K1) strains of Plasmodium
falciparum as well as for cytotoxicity against VERO cell lines.
Most of the synthesized compounds exhibited potent
antimalarial activity as compared to chloroquine against the
K1 strain. Some of the compounds with significant in vitro
antimalarial activity were then evaluated for their in vivo efficacy
in swiss mice against Plasmodium yoelii following both
intraperitoneal (ip) and oral administration. Compounds 94a
and 94b each showed in vivo suppression of 99.99% para-
sitaemia on day 4.
In addition, they introduced a novel series of 7-piperazinyl-

quinolones 95 with tetrazole derivatives 96 and evaluated their
antibacterial activity against various strains of Staphylococcus

Figure 20. Crystal structures of the highly substituted 5-(Boc-
hydrazinylmethyl)-1-methyl-1H-tetrazoles 57. (A) Three hydrophobic
interactions between carbon atom of cyclohexanyl and oxygen atom of
Boc group, carbon atom of cyclohexanyl and N(4) of tetrazole, and
C(1) of benzylethyl and N(4) of tetrazole (57d, CCDC 1438137). (B)
Three hydrophobic interactions between carbon atom of methyl of
isopropyl and oxygen (CO) of Boc group, carbon atom of methylene
of benzyl and oxygen of Boc group, and carbon atom of benzyl and
N(3) of tetrazole, and one hydrophilic interaction between N(4) of
tetrazole and N of hydrozine close to Boc group (57e, CCDC
1438135). (C) Four hydrophobic interactions between C(α) of
isocyanide and N(3) of tetrazole, carbon atom of methyl of isopropyl
and N(3) of tetrazole, and O(CO) of Boc group and methyl of
isopropyl and one hydrophilic interaction between N(4) of tetrazole
and N of hydrazine close to C(α) (57f, CCDC 1438136).

Scheme 19. UT-4CR of BetMIC and Subsequent Acid Hydrolysis Yielding α-Aminomethyl Tetrazoles 60
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aureus.151 All the compounds showed significant in vitro
antibacterial activity against Gram-positive bacteria, whereas
some displayed moderate activity in vivo (Scheme 36).
Sharada et al.203 developed a facile one-pot, four-component

domino reaction involving the 2-(2-bromoethyl)benzaldehyde,
isocyanide, amine, and NaN3 for the synthesis of tetrazolyl-
tetrahydroisoquinoline derivatives 97 without the use of any
catalyst or additive, under ambient conditions with short
reaction times (Scheme 37, Figure 24). The first step is the
imine formation, followed by substitution of the bromine and
reaction of the resulting cyclic iminium ion with the isocyanide
and the azide source. To test the generality of this methodology,
various amines with both electron donating and withdrawing
aromatic groups as well as aliphatic isocyanides were employed
and afforded good to excellent yields. However, nitro-
substituted anilines failed to give the expected products due to
amine deactivation through the strong electron withdrawing
features. Only one aliphatic amine, cyclohexylamine, was tested

and also successfully resulted in the final ring-closed compound
97.
In a similar fashion, the one-pot synthesis of tetrazole

substituted tetrahydro-β-carbolines 98 was reported by
Mukkanti et al.204 The UT reaction of the indole-carboxalde-
hyde with mostly anilines (in some cases benzyl amine was
utilized) and various isocyanides afforded the targeted tetrazole
substituted β-carbolines in excellent yields (Scheme 38). The
process involves the previous formation of a cyclic iminium ion,
followed by reaction with the isocyanide and the azide.

3.1.1.1. Repetitive UT-4CR. Many proteins in nature exist as
symmetrical homodimers, e.g., the HIV-protease. For that
reason, symmetrical dimeric MCR reaction products might be
useful to interact with the interface of symmetrical protein
homodimers to stabilize such complexes.205 Gaḿez-Montaño et
al.206 developed a catalyst-free UT repetitive process to quickly
prepare a series of five novel bis-1,5-disubstituted-1H-tetrazoles
99 in excellent yields. They simply mixed one equivalent of the

Scheme 20. Synthesis of α-Aminoalkyltetrazoles 63

Scheme 21. Synthesis of α-Aminoalkyltetrazoles 66
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corresponding primary amine and two equivalents of the
corresponding aldehyde, isocyanide, and TMS azide in MeOH
at room temperature. After several hours, they afforded first the
mono Ugi product and then, upon further microwave heating,
the repetitive Ugi products in excellent yields as a mixture of two
diastereomers (in the case that R1 is not hydrogen, Scheme 39).
Similarly to the work of Dömling et al.170 in employing

hydrazine in UT-4CR, Andrade et al.207 reported two
consecutive hydrazine UT-4CR incorporating acylhydrazines

within 1,5-disubstituted tetrazoles 102. Their strategy was based
on a one-pot hydrazino UT-4CR (100) using protected acyl
hydrazines (Boc or Cbz) followed by hydrazinolysis (101) by
aqueous hydrazine and finally an additional hydrazino UT-4CR
(Scheme 40).
Another example of a molecule with multiple tetrazole units

was described by Dömling et al.208 Reaction of cyclen 103 with
formaldehyde, TMS azide, and β-cyanoethylisocyanide 64
quantitatively yielded compound 104 (Scheme 41). The β-
cyanoethyl protecting group was used due to its mild
deprotection conditions (LiOH in water at rt). The deprotected
ligand 105 (TEMDO) was successfully metalated and crystal
structures were obtained with Gd, Ln, and Eu. Moreover, the
authors utilized the novel Gd-TEMDO complexes 106 in
magnetic resonance imaging (MRI) in a left ventricular
occlusion (LVO) mouse model (Figure 25). The overall
complex and magnetic properties were compared and proved
to be equivalent tomost of the usedGd-DOTA complexes in the
MRI field. The TEMDO synthesis is short, experimentally
simple, and high yielding. In addition, in a similar fashion, many

Scheme 22. Synthesis of the UT-4CR Adducts and Their Corresponding Deprotected 5-Substituted 1H-Tetrazoles 69

Scheme 23. Synthesis of 1,5-Disubstituted Tetrazoles 70
through Tetrazole Imine Intermediates and Their
Subsequent Oxidation

Scheme 24. Plausible Mechanism of the Synthesized
Triazoles through the Tetrazole Formation
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more oligo amino tetrazoles could be synthesized accordingly
with interesting material properties.
3.1.1.2. UT-4CR on Solid Phase (UT-4CR on SP). Solid-phase

synthesis (SPS) is a method in which a starting material is bound
on solid support and reacts with the other reactants in solution.
SPS, which has been explored by chemists for many years,209−213

is often performed in sequential syntheses to automate synthesis
and intermediate purification, e.g., in oligo-DNA or peptide
synthesis. The synthetic application of solid phase in tetrazole
synthesis using MCR started in 1997 when Mjalli et al.214 first
produced a small library of 1,5-disubstuted tetrazole derivatives
encouraged by their success on solid phase to obtain small-ring
lactams, α-(dialkylamino)amides, hydantoin 4-imides, and 2-
thiohydantoin 4-imides. In their synthetic process, amines,
aldehydes, NaN3, and the supported isocyanides 107 were
simply stirred for 4 days in a solvent mixture containing
methanol, dichloromethane, and water (1:1:0.3) along with
pyridine hydrochloride to afford the corresponding tetrazole-
resin derivatives 108. The subsequent cleavable step was

accomplished by stirring the Ugi products 109 with 20%
trifluoroacetic acid in dichloromethane after washing with
methanol and dichloromethane (Scheme 42). Various amines
and aldehydes could lead to the target tetrazoles by this
methodology. Probably caused by poor activity of ketones in this
reaction, they did not afford the corresponding tetrazoles under
these conditions, but after stirring for long time, only the
formamides could be detected.
Ugi et al.215 also prepared a variety of hydantoinimide and

tetrazole derivatives by the combination of two distinguished
Ugi reactions in solid and liquid phases separately. Although
many types of the combinations of U-4CRs and further reactions
have been developed, this was the first time to employ two
different types of U-4CRs with the primary amines supported by
the polystyrene AM RAM or the TentaGel S Ram. In the first U-
4CR, Fmoc protected amino acid 110 reacted as a carboxylic
acid with aldehydes, isocyanides, and the solid supported
primary amines to form the corresponding amides 111.
Subsequently, after the cleavage of Fmoc group with 20%
piperidine in DMF (112), the second U-4CR was carried out
with TMS azide as an acid component (113) and the removal of
the resin with trifluoroacetic acid treatment led to the final
tetrazole derivatives 114 formation (Scheme 43). Interestingly,
the aromatic aldehydes were tolerated in the second U-4CR to
form tetrazoles with good yields compared with rather low yields
of the hydantoinimides. Moreover, they also compared the
liquid phase combinational MCRs with that of the solid−liquid
method. The results demonstrated that the former one could
give higher yields.
Chen et al.216 employed a Rink-isocyanide resin 115 as a

universal platform for classical Ugi reactions to prepare a small
library of five 5-substituted 1H-tetrazoles 116. The cleavage of

Scheme 25. Synthesis of a Series of Tetrazoles 73 Containing
the 2,2-Bis(trimethylsilyl)ethenyl Group

Scheme 26. Synthesis of Ferrocenyl Substituted Amino
Tetrazoles 74

Scheme 27. Synthesis of Substituted Benzyl Tetrazoles As
Histamine H3 Receptor Antagonists 75
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the resin was performed with 15% trifluoroacetic acid in
dichloromethane (Scheme 44).
Rivera et al.217,218 reported an efficient and reproducible

method implementing on-resin Ugi reactions with peptides
(117) and its utilization in combination with peptide couplings
for the solid phase synthesis of N-substituted and tetrazolo
peptides 118 (Scheme 45).
3.1.1.3. UT-4CR Followed by Subsequent Post Cyclizations.

Multicomponent reactions combine two major principles in
organic synthesis, convergence, and atom economy. The
combination of multicomponent reaction and post-trans-
formation reactions is another tremendously useful tool to
increment the complexity and diversity of the molecular
scaffolds. An important subgroup of MCRs is the so-called

unions of MCRs as coined by Dömling and Ugi,219 where an
MCR is combined with a secondary MCR.220 The union of
MCRs is the strategy for the rational design of novel MCRs
combining two (or more) different types of MCRs in a one-pot
process. The presence of orthogonal reactive groups in the
product of the primary MCR, which is either formed during the
primary MCR or present in one of the inputs, allows the union
with the secondary MCR.221

There are many classical documented post-transformation
reactions, i.e., Pictet−Spengler cyclization, intramolecular
Diels−Alder reaction, Mitsunobu reaction and acyl migration,
Knovenagel condensation, amide reduction, metathesis reac-
tion, Ugi−Ugi, and Ugi−Petasis etc.52,120,127,222−236 The
strategies entailing intramolecular variants of the Ugi reaction

Scheme 28. Synthesis of Tetrazole/Naphthoquinone-Based Organoselenium Derivatives 78

Scheme 29. Representative Scheme for the Preparation of 1,5-Disubstituted Tetrazoles 80 Containing a Fragment of the
Anticancer Drug Imatinib
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and post condensation modifications of the Ugi product inspire
the development of methodology that enables concise access to
diverse pharmacologically relevant scaffolds. These Ugi variants
indeed afforded enticing structures for further diversification.
The hydantoin (imidazoline-2,4-dione) scaffold is a reoccurring
motif in many biologically relevant compounds with anti-
convulsant, antimuscarinic, antiulcer, antiviral, and antidiabetic
activities and showing strong BACE binding for potential anti-
Alzheimer application.237−242 Hulme et al.243 described a novel
methodology to elegantly obtaining new and biologically
appealing 1,5-substituted tetrazole-hydantoins and thiohydan-
toins 120 with three points of variation (Scheme 46, Figure 26).
The UT-4CR is based on the glyoxale ethylester, as a not
variable oxo input, followed by the treatment of the Ugi
intermediate 119 with an excess of isocyanate or isothiocyanate
to generate the final scaffold in moderate to good yields. Various
amines, isocyanides and isocyanates, or isothiocyanates were
used to test the generality of this methodology. Because of the
general availability of a large number of isocyanides, aldehydes,
ketones, and iso(thio)cyanates, this reaction sequence is of high
combinatorial value representing a large chemical space
(Scheme 46). Furthermore, a one-step extension (but still one
pot) of this methodology using a functionalized hydantoin with

an internal-masked amino nucleophile previously introduced by
the isocyanide input has also been reported giving imidazote-
trazolodiazepinones 121 in good yields.244 A crystal structure of
the hydantoin 120c was reported featuring an interesting
intermolecular halogen bonding involving a Br and two
nitrogens of the tetrazole (Figure 26).
Benzodiazepines are important drugs with a wide spectrum of

biological and medicinal activities and marketed applications as
anxiolytics, anticonvulsants, hypnotics, etc.245,246 Besides these
classical applications, the benzodiazepine scaffold is also of
interest in numerous other areas as antagonizing the protein−
protein interaction p53-MDM2,247 GPIIbIIIa antagonists,248

antioxidants,249,250 and inhibitors of farnesyltransferase.251

Multiple synthetic pathways are described toward benzodiaze-
pines, which also include routes involving MCRs.147,252−263

Because of the privileged scaffold character of tetrazoles and
benzodiazepines, several researchers designed synthetic strat-
egies to combine the two heterocycles.264

Shaabani et al.265 reported a new class of benzodiazepine-
containing tetrazole scaffold, 1H-tetrazol-5-yl-4-methyl-1H-
benzo[b][1,4]diazepines 124, via a two-step condensation
reaction of o-phenylenediamines (oPDM), ethyl 3-oxobuta-
noate, or 2,2,6-trimethyl-4H-1,3-dioxin-4-one, an isocyanide,
and TMS azide (Scheme 47, route 1). The first reaction involves
the cyclocondensation of o-phenylenediamine with a β-
ketoester to yield benzodiazepinone Schiff base 122, which
reacts in a second step in an UT reaction. Monosubstituted
(NO2 and CH3) phenylenediamines reacted highly regioselec-
tively as indicated by NMR and crystal structure (Figure 27).
Moreover, they also disclosed two IMCRs,266,267 employing 2,3-
diaminomaleonitrile, ketones, isocyanides, and either sodium
azide or trimethylsilyl azide in the presence of pTsOH·H2O in
various organic solvents and water at room temperature to afford
1H-tetrazolyl-1H-1,4-diazepine-2,3-dicarbonitriles 125 in high
yields (Scheme 47, Figure 28).
o-Phenylenediamines are a limiting component in this

otherwise interesting scaffold because only a few are
commercially available. Therefore, Shabaani et al.268 elaborated
a second variation to this scaffold by first reacting 2-nitroanilines
in the UT reaction, affording the tetrazole intermediate 123

Scheme 30. Synthesis of the Potent 1,5-Disubstituted Tetrazoles 81 and 82 as p53-MDM2 Inhibitors

Figure 21. Crystal structure of the 1,5-disubstituted tetrazole 82e
(CCDC 1449789). The ring planes of substituents at positions 1 and 5
are almost coplanar, being constrained by tetrazole geometry and are
oriented vertically to the plane of the tetrazole ring.
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followed by reduction of the o-nitro group and NaH promoted
cyclization to yield compounds 124 (Scheme 47, route 2).While
the second synthetic access is much more versatile in the o-
nitroaniline component, it also involves a longer synthetic route.
The overall yields are higher for the first route and also leading to
short reaction times.
Isoindoline is a heterocyclic organic compound with a bicyclic

structure, not found itself in nature although many of its
derivatives have, with a broad structural diversity and broad-
spectrum biological activities. Thus, many biologically active
compounds have been discovered, i.e., endothelin-A receptor
antagonists, PPARd agonists, NMDA receptor antagonists,
herbicidal, anti-inflammatory, antileukemic agents, etc.269−272

Yet, various synthetic procedures have been reported for the
preparation of isoindoline core structural skeletons.

Chauhan et al.273 first employed a two-step combination of an
UT reaction (126) and palladium-catalyzed cyclization with
isocyanide insertion for the synthesis of tetrazole isoindolines.
They constructed a series of 1,5-disubstituted-1H tetrazoles 127
with reaction conditions that could well tolerate a wide range of
functional groups in excellent overall yields (Scheme 48).
The presence of a tetrazole N−H proton in compound 127a

was verified by D2O exchange experiment in which an
unexpected change in 1H NMR spectrum was observed as

Scheme 31. Synthesis of Aminomethyltetrazoles 83 and 84

Figure 22. Two of the most potent compounds as positive allosteric
modulators of EAATs.

Scheme 32. Antiviral Tetrazole Desoxyribose Derivatives 88
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proven by X-ray structure analysis (Scheme 49). Degradation
occurred, most probably provoked by water giving the isoindole-
1-one 128.
β-Carbolines are heterocyclic systems which are the key

structural motif of a variety of biologically important alkaloids of
natural and synthetic origin.274,275 Tetrahydro-β-carbolines are
often key intermediates in natural product syntheses.276,277

Because of their structural similarity with a number of
neurotransmitters, they are also incorporated in numerous
compounds with biological activity. The intramolecular
Mannich reaction of electron rich aromatic rings with oxo
components and 1° or 2° amines, also called the Pictet−
Spengler reaction, is an often used post modification in
MCR.278−285

El Kaïm et al.286 first prepared an array of tetrahydro-1H-β-
carboline-tetrazoles in excellent overall yields using the UT/
Pictet−Spengler reaction sequence. Tryptamine was used as a
common starting material in the UT reaction (129), and the
subsequent Pictet−Spengler reaction was performed with
formaldehyde to form a series of 2-tetrazolylmethyl-2,3,4,9-
tetrahydro-1H-β-carbolines 130 either under refluxing con-
ditions in methanol/toluene or under microwave conditions in
the same reaction solvent with generally good to excellent yields
(Scheme 50). A direct comparison of these two methods of
Pictet−Spengler ring closure reveals that the yields are similar;
however, the microwave variation was generally slightly less
yielding.
In 2013, R. Gaḿez-Montaño287 reported the synthesis of nine

novel tris-heterocyclic-type 3-tetrazolyl-azepino[4,5-b]indol-4-
ones via a sequential combination of a one-pot process (UT-
4CR/N-acylation/SN2)/xanthate free-radical-mediated cycliza-
tion. Thus, tryptamine was combined sequentially with the
corresponding aldehydes, TMS-azide and isocyanides in MeOH
as the solvent at room temperature for 24 h to give the

Scheme 33. Synthesis of the Thiadiazolo Tetrazole
Derivatives 90

Figure 23. Crystal structure of N-((1-cyclohexyl-1H-tetrazol-5-yl)(5-
methyl-1H-1,2,3-triazol-4-yl)methyl)-4-nitroaniline (90d). It shows
that the dihedral angles formed between the thiadiazole and tetrazole
rings, the benzene and tetrazole rings, and the thiadiazole and benzene
rings are 62.59°, 86.73°, and 70.07°, respectively. Three intermolecular
hydrogen bonds N(1)−H(2)···N(6), C(4)−H(4B)···O(2), and
C(17)−H(17)···N(3) are identified (CCDC 859295).

Scheme 34. Synthesis of New Nitroimidazole and
Nitroimidazooxazine Derivatives 92

Scheme 35. Synthesis of 4-Aminoquinoline-Tetrazole
Derivatives 94
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corresponding indole-tetrazoles 131, which underwent a N-
acylation with chloroacetyl chloride to give the corresponding
chlorides. These latter compounds, after a SN2 reaction with
potassium ethyl xanthogenate salt, afforded the bis heterocyclic
xanthates 132 in 47−71% yield. Then, DLP (dilauroyl peroxide)
was added portionwise in 1,2-dichloroethane at 85 °C (using
conventional or MW) to generate the azepino[4,5-b]indol-4-
one heterocycles 133 in 45−82% yields after a favored 7-endo-
trig cyclization (Scheme 51, Figure 29).
Hulme et al.288 described a two-step methodology based on

an oxidation/oxidative amidation cyclization strategy toward

isatins starting from the o-aminoacetophenone. UT adducts 134
were successfully oxidatively cyclized through a postcondensa-
tion process utilizing selenium dioxide, affording valuable
peptidomimetic-like isatins 135 (Scheme 52).
Chalcones is a class of compounds that have a wide range of

biological activities289−292 such as antidiabetic, antineoplastic,
antihypertensive, antiretroviral, anti-inflammatory, etc. MCR-
oxidative deamination approach was employed to access α-
ketotetrazoles (with aromatic or aliphatic aldehydes) and α,β-
diketotetrazoles (with glyoxals) with two diversity elements
(137, Scheme 53, Figure 30).293,294 Dual functionalized α-
ketotetrazole compounds were synthesized in two steps in 25−
77% yields, accessing also tetrazole chalcones 137a−d via the
UT adduct 136. In addition, α,β-diketotetrazoles (137e−h)
were formed using various glyoxals as the aldehyde component,
providing a route to vicinal tricarbonyl cis-amide bioisosteres.
Further functionalization of the aforementioned tetrazole

derivatives is presented below, giving rise to derivatives 138−
140 (Scheme 54).
Tron et al.295 discovered an attractive short synthetic

approach to 5-aroyl-1-aryltetrazoles 142, a class of compounds
hardly accessible by other means. The novel and operationally
simple synthetic procedure to obtain elusive 5-aroyl-1-

Scheme 36. Representative Scheme for the Preparation of 1H-Tetrazol-5-yl-(aryl)methyl Piperazinyl-6-fluoro-quinolones 96

Scheme 37. Synthesis of a Variety of Tetrazole Substituted
Tetrahydroisoquinolines 97

Figure 24. X-ray crystal structure of tetrahydroisoquinoline 97d
(CCDC 1012826). Two intermolecular hydrophobic interactions
between the two cyclohexyl groups are observed

Scheme 38. Synthesis of Tetrahydro-β-carbolines 98 Bearing
a Tetrazole Moiety through an UT-4CR-5C
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Scheme 39. Synthesis of Bis-1,5-disubstituted-1H-tetrazoles 99

Scheme 40. Synthesis of the Acylhydrazines with 1,5-Disubstituted Tetrazoles 97 via a Two Consecutive Hydrazine UT-4CR

Scheme 41. Synthesis of the MRI Agent Gd-TEMDO 106
Involving a Key UT-MCR

Figure 25. Left: Crystal structure of Gd-TEMDO 106. Middle and
right: LVO mouse model showing the MRI properties of Gd-TEMDO.
MRI obtained from isoflurane-anaesthetized mice (middle) taken 30
min after IP administration of Gd-TEMDO (0.6 mmol/kg). Middle:
the heart fully visible. Right: heart with reduced brightness; the
damaged tissue remains visible due to absorbed Gd-TEMDO following
the red line. Reproduced with permission from ref 208. Copyright 2016
John Wiley and Sons.
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aryltetrazoles in good yields consists of an UT adduct 141,
followed by a hydrogenolysis/transamination posttransforma-
tion (Scheme 55). This postmodification reaction sequence was
based on the Rapoport procedure, which is a simple and mild
biomimetic conversion to convert amines to carbonyls in the
presence of 4-formyl-1-methylpyridinium benzene-sulfonate as
a pyridoxal phosphate (vitamin B6) surrogate.296,297 Different
aldehydes and isocyanides with various different electron-
withdrawing and electron-donating substituents were employed
to demonstrate the functional group tolerance and generality of
this new synthetic process. α-Keto (hetero) arynes represent a
significant compound class as they have been described as
covalent serine protease inhibitors or as tetrazole analogues of
chalcones.

The double bond in the chalcone scaffold is commonly
thought to be an important structural linker, but, for example, it
is not essential for the interaction with tubulin. Yet, it may be a
potential site of metabolic degradation and interaction with
biological nucleophiles. To circumvent that, following the same
strategy as previously described (an UT-4CR combined with the
Rapoport procedure), Tron et al.295,298 investigated the 5-aroyl-
1-aryltetrazol analogues 142 for their biological antiproliferative
activity. They tested these compounds and their precursors in
SH-SY5Y cells, a neuroblastoma cell line. Compound 142g was
found active with an IC50 of 4.1± 0.3 μΜ, which was confirmed
by cell cycle analysis as well by disrupting the mitotic spindle
(Scheme 56).
A series of tetrazole linked imidazo[1,5-a]pyridines 144 were

recently synthesized from simple and readily available building
blocks.299 The reaction sequence involves an Ugi tetrazole-
deprotection reaction (143), followed by an acetic anhydride
mediated N-acylation-cyclization process to afford the target
heterocycles. The acylating agents include commercial available
acid chlorides, anhydrides, and acids (Scheme 57).
Among the MCRs and postcondensation examples, mostly

C−N and C−C bond formations to form monocyclic ring or
fused structures were reported,300−302 whereas N−N bond
formation were rarely disclosed up to date. El Kaim̈ et al.303

envisioned that a N−N bond formation as the Ugi
postcondensation transformation could lead to unusual
scaffolds. They selected as starting materials primary amines,
ortho-nitrobenzaldehyde to react with TMS azide and various
isocyanides to form the indazole derivatives 145 in good yields

Scheme 42. Synthesis of 5-(1′-Aminoalkyl)tetrazoles 109 on Solid Phase

Scheme 43. Repetitive Ugi Reaction on the Polystyrene AM
RAM

Scheme 44. Synthesis of 5-Substituted Tetrazoles 116 on the
Universal Rink-Isocyanide Resin
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via a highly efficient multicomponent condensation process
involving an Ugi−Cadogan cascade.304 Indazoles are a highly
underused scaffold in drug discovery.305 The UT-4CR reactions

are followed by a Cadogan reductive cyclization using triethyl
phosphite as the reducing agent. A one-pot synthetic strategy
was developed and compared with the two-step procedure. With
no significant difference between these two methods, the one-
pot sequence gave a slightly lower yield 61% compared with 62%
from two-step. A variety of amines was tested, assesing the
generality of this reaction. Sterically hindered amines led to the
expected products with a slight decreased yield, whereas anilines
gave sluggish indazole formation probably caused by the lower
nucleophilicity of the nitrogen atom (Scheme 58).
Morpholines and piperazines are privileged structures, which

are abundantly used as substituents in medicinal chemistry,
improving the pharmacokinetic properties of molecules as water
solubility and metabolic stability. These moieties belong to the

Scheme 45. On-Resin UT Reactions for the N-Terminal Derivatization of Peptide with Lipids and Steroids

Scheme 46. Synthesis of 1,5-Substituted Tetrazole Hydantoins and Thiohydantoins 120 and Imidazotetrazolodiazepinones 121

Figure 26. Crystal structure of a 4-bromophenyltetrazolohydantoin
120d featuring two short contacts (3.2 and 3.3 Å) between the p-Br and
N2 and N3 of an adjacent tetrazole moiety exhibiting halogen bonding
character (CCDC 922820).
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25 most frequent nitrogen heterocycles in U.S. FDA approved
drugs.306 Dömling et al.307 reported for the first time the
successful incorporation of highly substituted morpholines and

piperazines in an UT-4CR. After quite a bit of optimization, the
reaction of an α-hydroxy oxo-component together with an
isocyanide, NaN3, and 2-haloamine yielded the corresponding
Ugi-tetrazole adduct 146, which under treatment withNaH gave
the corresponding morpholine derivative 147. To facilitate the
high throughput process, the aforementioned procedure was
also performed in one pot, affording 20 morpholine-tetrazole
derivatives (Scheme 59, Figure 31). In addition, underscoring
the usefulness of the produced scaffolds, some further
transformations of the secondary amine of morpholines and
piperazines via sulfonation, acylation (148), urea and thiourea
formation (149), and reductive amination (150) were described
(Scheme 60). Similarly, the reaction of the mono-Boc protected
ethylenediamine or mono-Boc oPDM, 2-chloroacetaldehyde,
the corresponding isocyanide, and TMS azide (Scheme 61)
afforded the Ugi adducts 151, which were subsequently cyclized
to the corresponding piperazine derivatives 152 after basic
treatment (tBuOK or NaH).
3.1.1.3.1 . UT-4CR Followed by Cyclizations toward Tetrazole-

Lactam Derivatives. The N-unsubstituted γ- and δ-lactam
moieties play a very important and diverse role in medicinal
chemistry because they are found in many drugs, for example, in
the anti-Parkinson drug Oxotremorin,308 and in the anti-
rhinoviral and enteroviral drug Rupintrivir.309 The substitution
on the lactam nitrogen position clearly affects its hydrogen
bonding profile in the receptor binging site.
The general strategy of post cyclizations toward tetrazole-

lactam derivatives is based on the usage of bifunctional building
blocks (Scheme 62).

Scheme 47. Synthesis of 1H-Tetrazol-5-yl-4-methyl-1H-benzo[b][1,4]diazepines 124 and 1H-Tetrazolyl-1H-1,4-diazepine-2,3-
dicarbonitriles 125

Figure 27. Crystal structure of the benzodiazepin-2-one 124f (CCDC
900744). The symmetrical hydrogen bonding interaction between O
and N was measured 3.0 Å

Figure 28. Crystal structure of compound 125d (CCDC 814967). A
network of intramolecular hydrogen bonds of N−H can be observed
among the NH and CN groups and the tetrazole moieties varying from
3.1 to 3.3 Å
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Marcaccini et al.,310 in order to obtain heterocyclic systems by
means of postcondensation modifications of the Ugi reaction,
employed methyl o-formylbenzoates as bireactive carbonyl
components and mixed it with amines, isocyanides, and TMS
azide to afford the expected tetrazolyl-isoindolinones 154 with
good isolated yields via a tandem Ugi tetrazole (153)/
intramolecular amidation. In some cases, the intermediate Ugi
tetrazole intermediate cyclized spontaneously, whereas in other
cases the cyclization occurred only in ethanolic sodium ethoxide
under refluxing conditions. Aliphatic amines generally cyclized
spontaneously and also precipitated out, whereas deactivated
anilines needed forced conditions for cyclization (Scheme 63).
Hulme et al.311,312 reported bifunctional building blocks in the

UT-4CR, offering an unprecedented significant scope expansion

and combinatorial applications toward novel pharmacologically
relevant complex bis-heterocyclic lactam-tetrazoles. They
reported the reaction of suitable protected and unprotected
orthogonal oxo-carboxylic acids, which yielded a great diversity
of bis-heterocyclic lactam-tetrazole scaffolds, few of them
containing fragments of importance in medicinal chemistry.
Clearly, many of these scaffolds can be synthesized in parallel to
provide libraries of interesting compounds. He established a
postcondensation modification methodology which reacted
keto-esters (e.g., methyl levulinate), primary amines, isocya-
nides, and TMS azide in one pot via the UT reaction followed by
the lactam formation under acidic condition to afford a small
library of novel peptidomimetic-like bispyrrolidinone tetrazoles
155. It is noteworthy that this is the first example of a
trifluoroacetic acid mediated γ-lactam formation. Sterically
hindered amines gave no or low yields, such as 2,6-
dichlorobenzylamine, 4-morpholinoaniline, 1-benzylpiperidin-
4-amine, and cyclohexylamine. A virtual library of 400000
compounds was enumerated and compared to the NIH
molecular libraries small-molecule repository (MLSMR) to
show uniqueness of occupancy of chemical space by principal
component analysis. Moreover, a small library of 84 compounds
was obtained in 24-well plates with overall yields ranging from 2
to 84%, with 82 compounds having purity greater than 95% [as
judged by UV absorbance at 214 nm, 254 nm, and evaporative
light scattering (ELS)] (Scheme 64).
In 2012, Hulme et al.252 utilized the UT to generate unique

1,5-disubstituted tetrazole with ethyl glyoxalate and mono-N-
Boc-protected-o-phenylenediamine derivatives (156). The
subsequent acid treatment and intramolecular cyclization led
to bis-3,4-dihydroquinoxalinone tetrazoles 157 in just two steps
but with moderate yields (Scheme 65, Figure 32). Directly
catalytic oxidation using a stable solid-phase supported radical
catalyst, derived from the 2,2,6,6-tetramethylpiperidin-1-yl)oxyl
(TEMPO)with stoichiometric ceric ammonium nitrate (CAN),
generated the final targeted bis-quinoxalinone tetrazoles 158.
They also extended the research to synthesize the diazepinone
derivatives 161 with N-Boc-2-aminobenzylamine via the UT

Scheme 48. General Strategy for the Synthesis of the Tetrazole-isoindolines 127

Scheme 49. Compound Degradation after D2O Shake during
NMRExperiment and ORTEPDiagramDrawn of the Crystal
Structure of (E)-3-(tert-Butylimino)-2-(4-
methoxybenzyl)isoindolin-1-one (128) Determined at 293 K
(CCDC 959960) (The Interaction between O of Lactam and
Methyl of tert-Butyl Was Measured as 3.5 Å
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159 (Scheme 66). Unexpectedly, the similar acidic deprotecting
procedure did not further proceed to the cyclized product and
the additional aminolysis of the ester by either activating the
ester or the amine failed. Therefore, a hydrolysis was performed
under basic conditions (160) followed by an EDC-promoted
intramolecular amide coupling to obtain the corresponding
diazepinones 161 in 27−66% yield (Scheme 66).
Dependent on the used oxocarboxylic acid esters, quite

different cyclization conditions were used. Seven series of bis-
heterocyclic lactam-tetrazoles were synthesized: tetrazolyl-

pyrrolidinones 162, indolinonetetrazoles 163, thiomorpholi-
none-tetrazoles 164, 4-sulfonyl-2-piperazinone-tetrazole deriv-
atives 165, 4,5,6,7-tetrahydropyrazolo[1,5-a]-pyrazine-4-one
tetrazole derivatives 166, benzo[1,4]oxazepinone derivatives
167, and [1,4]thiazepanone derivatives 168 (Scheme 67 and
Table 4). As it was previously stated,312 in the tetrazolyl-
pyrrolidinones 162 series simply trifluoroacetic acid in dichloro-
methane was added after completion of the Ugi tetrazole
reaction. Alternatively, the Ugi intermediate was isolated,
purified, and then subjected to methanolic KOH solution to

Scheme 50. Synthesis of 2-Tetrazolylmethyl-2,3,4,9-tetrahydro-1H-β-carbolines 130

Scheme 51. Synthesis of the 3-Tetrazolyl-azepino[4,5-b]indol-4-ones 128 via a One-Pot (UT-4CR/N-Acylation/SN2)/Xanthate
Free-Radical Mediated Cyclization
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afford the tetrazolyl-pyrrolidinones. The methodology was
importantly shown to be compatible with 96-well plate-based
production. Yields reported for the eight isolated compounds
varied between 40 and 78% (Figure 33).
Concerning the six-membered piperidinone-tetrazoles, cycli-

zation is accomplished by KOH mediated hydrolysis of the UT
methylester followed by EDC/DMAP cyclization or alter-
natively by thionyl chloride mediated cyclization. Interestingly,
by using 5-oxo-hexanoic acid the Ugi tetrazole product 169 is
formed exclusively, and no trace of the alternatively possible Ugi
lactam is formed (Scheme 68).
The intermediate and not isolated Ugi tetrazole can then be

cyclized in situ using DCC. The authors argue that the small and
strongly nucleophilic azide ion leads to a kinetically favorable
formation of the four-component Ugi tetrazole product.
Also, several seven-membered lactammotifs were introduced.

Four examples of azepinone-tetrazoles were synthesized in two
steps comprising consecutive basic hydrolysis and in situ acyl
chloride formation. In the case of the tetrazolyl-indolinones 163,
2-acetylbenzoate was found to be a poor substrate in the Ugi
reaction, while methyl 2-formylbenzoate worked well in all eight
cases in yields between 36 and 66% (Scheme 67). As described
previously,310 the cyclization occurred spontaneously at room
temperature (Figure 33). The integration of a sulfur atom into
the six-member ring to generate tetrazole-thiomorpholinone
derivatives 164 was found to be another interesting scaffold.

Under optimized conditions, the intermediate UT was hydro-
lyzed and subsequently the intramolecular amidation using
SOCl2 in dichloromethane afforded five isolated products in
yields 22−96%. The 4-sulfonyl-2-piperazinone skeleton can be
incorporated into the UT reaction sequence by choosing the
appropriate starting material (Scheme 67). The 4-sulfonyl-2-
piperazinone motif 165 represents an essential structural feature
of human factor Xa and gene transcription inhibitors.313,314 A
series of six 4-sulfonyl-2-piperazinones were generated with
yields between 16 and 74% for the UT reaction and 58−93% for
the hydrolysis and cyclization step, respectively (Figure 33).
Intrigued by the potentially pharmaceutical application of

unprecedented bifunctional scaffolds, a series of 4,5,6,7-

Figure 29. X-ray crystal structure of azepinoindolones 133e (CCDC
948622). An intermolecular hydrogen bond of 2.3 Å is observed
between the azepinoindole N−H and the nitrogen of the tetrazole
moiety.

Scheme 52. UT Reaction of o-Aminoacetophenone,
Aldehydes, Isocyanides, and TMSN3, Followed by an
Oxidation/Intramolecular Oxidative Amidation toward the
Tetrazole Derivatives 135

Scheme 53. Dual α-Ketotetrazoles and α,β-Diketotetrazoles
137 Based on the MCR-Oxidative Deamination Approach

Figure 30. X-ray crystal structure and polar contacts of the tetrazole
chalcone 137d (CCDC 1531964) and the α,β-diketotetrazole 137g
(CCDC 1554390).
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tetrahydropyrazolo[1,5-a]-pyrazine-4-one derivatives 166 were
synthesized with moderate to good isolated yields through the
combination of UT-4CR and subsequent basic hydrolysis and
SOCl2-mediated ring closure step. Five compounds were
isolated in yields between 42% and 74% and 51−78% for the
UT-4CR and cyclization, respectively.
The benzo[1,4]oxazepinone motif 167 was incorporated into

the UT-4CR by employing the appropriate benzaldehyde
starting material. Six compounds were isolated with yields
between 66% and 80% and 31−84% for the UT-4CR and
cyclization, respectively (Figure 33, 34).

Last but not least, a small series of five [1,4]thiazepanones 168
was synthesized by UT-4CR, KOH hydrolysis, and SOCl2
mediated cyclization in yields between 61% and 75% and 45−
66% for the UT-4CR and cyclization, respectively (Figure 33).
In an analogous fashion, Stolyarenko et al.315 used 1-

ethoxycarbonyl-cycloalkane oxo compounds 170, isocyanides
and primary amines in theUT-4CR to afford the interesting class
of tetrazole-substituted spirocyclic γ-lactams 171. No sponta-
neous cyclization occurred under the UT-4CR conditions
(MeOH, rt), but it was accomplished under acidic conditions in
DCE with 10% trifluoroacetic acid under heating conditions for
10 h. A library of 20 compounds was produced with yields
between 52% and 72% (Scheme 69). The substrate scope of the
reaction is quite broad, including aliphatic, aromatic, and bulky
isocyanides and heterocyclic, aliphatic, and aromatic primary
amines. Moreover, the straightforward introduction of a spiro
tetrahydro-2H-pyran is worth mentioning, which otherwise is
very difficult to access. Tetrahydro-2H-pyranes are used in
medicinal chemistry to improve pharmacokinetic and CYP
inhibition profile of lead compounds.316 In addition, a
spirocyclic connection adjacent to an amide carbonyl might
protect from spontaneous or enzymatic cleavage. Spirocyclic
fragments are present in many biologically active compounds.
The γ-lactam moiety is also the common structural unit for a
large nootropic class of drugs, called racetames (e.g., piracetam).
Racetams are memory enhancers and are hypothesized to
interact with cholinergic and glutamate receptors in the central
nervous system.
They also described the crystal structures of two compounds

which give some ideas on the 3D conformation and
intermolecular contacts (Figure 35).
Dömling et al.317 designed and synthesized a series of N-

unsubstituted γ- and δ-lactams 173, which were conveniently
accessed in a three-step synthesis involving anUT-4CR followed
by cyclization with overall good yields. While ammonia is often
troublesome in the Ugi reactions, tritylamine was introduced as
a convenient ammonia surrogate.141 However, because of the
bulkiness of the trityl group, only aliphatic aldehydes afforded
the corresponding products in yields between 40% and 80%.
Ketones and aromatic aldehydes did not give the required Schiff
base or only traces, respectively. The trityl amine tetrazole
intermediate 172 was deprotected in quantitative yields using
trifluoroacetic acid in dichloromethane. Optimization of the
final cyclization conditions revealed that using sodium hydride is
a suitable base to afford γ- and δ-lactams in most cases with
reasonable to good yields (Scheme 70). A typical interaction
pattern of the γ- and δ-lactam substructures was found by
analyzing the PDB crystal structures. A general strong
tridirectional hydrogen bond donor−acceptor interaction
between the receptor amino acids and the N-unsubstituted γ-
and δ-lactam fragment reveals a useful molecular moiety to
address corresponding receptor motives (Figure 36). The same
motif is generally found in the X-ray structures of small
tetrazolo-lactams leading to dimerization via the γ- and δ-lactam
NH−CO group.

3.1.1.4. UT-4CR toward 1,5-Disubstituted Tetrazoles
Bearing a Sugar Moiety. Glycosylation is the reaction in
which a carbohydrate is attached to a hydroxyl or other
functional group of another molecule. Many natural products
are glycosylated, and their biological activity is crucially
dependent on the glycosylation, which is a form of cotransla-
tional and post-translational modification. In living organisms,
glycosylation mainly represents the enzymatic process that

Scheme 54. Applications of Tetrazole Chalcones and α,β-
Diketotetrazoles to Produce Diverse Tetrazole Chemotypes
as the Derivatives 138, 139, and 140

Scheme 55. General Procedure for the Synthesis of 5-Aroyl-1-
aryltetrazol Analogues 142
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attaches glycans to proteins, lipids, or other organic
molecules.318

The amino sugar desosamine occurs in diverse natural
products with different activities, for example, in the antibiotics
tylosin with mycaminose structurally related to desosamine,
erythromycin, and methymycin. In 2006, Dömling et al.319

described the employment of desosamine into IMCRs. They
prepared desosamine and the corresponding isocyanide
(Scheme 71A) in a big scale by acid hydrolysis and subsequent
amination from the readily available erythromycin. In addition,
two syntheses were accomplished by stirring equimolar amounts
of TMS azide, aldehyde, desosamine, and an isocyanide in
methanol at rt for 24 h to give the disubstituted α-aminomethyl

tetrazoles 174 as a mixture of diastereomers in 37% and 25%
yield, respectively (Scheme 71B).
Sugar moieties in drugs are used for different purposes, e.g.,

the glycosyl substituent will be recognized by the receptor and
contribute directly to the biological activity or it helps to
improve transport properties through transporters and increase
water solubility. Sugar−organic fragment chimeras are tradi-
tionally synthesized by sequential multistep synthesis. To that
direction, another successful application of sugar moieties in
MCRs was also presented by Dömling et al.320 (Scheme 72). A
series of anomeric sugar isocyanides (β-glycosyl and β-
arabinosyl), which has been known and sporadically used in
IMCRs, were synthesized via the reintroduced Leuckart−

Scheme 56. General Synthesis for Tetrazolic Analogues of Chalcones 142

Scheme 57. General Synthesis for Tetrazolyl Imidazo[1,5-a]pyridines 144
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Wallach approach321,322 in good overall yields. They also
reported the general usage of these two isocyanides in IMCRs to
produce 1,5-disubstituted and α-alkylamino tetrazole derivatives
175 among others.
The conjugation of steroids to other biomolecules, like amino

acids and proteins, is a common strategy employed both by
nature and chemists to modulate the biological and chemical
behavior of these molecules. Considering the growing
importance of sugar/steroid hybrids in drug discovery and
biological chemistry, Rivera et al.218,323 employed multi-
component reactions for the conjugation of carbohydrates to
steroidal derivatives 176 with a great level of molecular diversity
and complexity generated with the low synthetic cost (Scheme
73).
Calixarenes, are a type of macrocycle or cyclic oligomer

produced by the condenseation of p-substituted phenols with
aldehydes. They have been widely used in various fields, i.e., the
synthesis of multivalent/multifunctional ligands, and they are
the ideal candidates for studying noncovalent interactions
occurring in many biological processes based on the easy

accessibility and functionalization at their wide and narrow rims.
Therefore, Zadmard et al.324 synthesized functionalized
calixarenes through MCRs. They first prepared the basic
precursor calixarene dihydrazide 177 using a previously reported
synthetic procedure.325 Then, α-hydrazino tetrazolocalix[4]-
arene derivatives 178were synthesized in good yields via an UT-
4CR (Scheme 74, Figure 37). Metal ion binding properties of

Scheme 58. One-Pot Tetrazolyl Indazole 145 Formation

Scheme 59. Synthesis of the Ugi Adduct 146 and the Morpholines Derivatives 147

Figure 31. Crystal structures of the morpholine derivatives 138f
(CCDC 1507665) and 138a (CCDC 1507068). An intermolecular
hydrogen bond of the morpholine N−H to the N of the tetrazole can be
identified at 2.2 and 2.4 Å, respectively.

Scheme 60. Further Derivatization of the Morpholine and
Piperazine Scaffolds via Acylation, Thiourea Formation, and
Reductive Amination, Respectively
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compound 178a as the model compound were also investigated,
revealing what exhibits the highest binding affinity toward
Ni(II).
3.1.2. Ugi Tetrazole 3-Component Reaction (UT-3CR).

The variation of an Ugi 3-component reaction can be obtained
when two of the four reacting functionalities are placed in the
same substrate. This is the case when, for example, cyclic imines,
oxoacids, and amino acids are employed. In the tetrazole
modification, there are fewer possibilities. Essentially these UT-
3CR are possible with cyclic imines.

Scheme 61. Synthesis of the Ugi Adduct 151 along with the Piperazine and Tetrahydroquinoxalines Derivatives 152

Scheme 62. General Strategy to Lactam-Tetrazoles

Scheme 63. Synthesis of Tetrazolyl-Isoindolinones via UT-4CR/Intramolecular Amidation

Scheme 64. General Synthetic Route to Access Bis-
pyrrolidinone Tetrazole 155
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Organofluorine compounds attract more and more interest
due to their important properties in pharmaceutical applications
and materials science.326 The medicinal chemist often employs
bioisosteres to replace the functional group in drugs to improve
ADMET properties. The replacement of a hydrogen atomwith a
fluorine atom at a site of metabolic oxidation in a drug candidate
might block metabolism without compromising biological
activity and increasing half-life time. Nenajdenko et al.327

studied the application of trifluoroalkylated cyclic imines in UT
reactions. They started from different arrays of five-, six-, and
seven- membered trifluoroalkylated cyclic amines to form target
tetrazole derivatives of saturated nitrogen heterocycles bearing

the trifluoroalkyl moieties 179. In addition, the final 1H-
tetrazoles 180 could easily be obtained by catalytic hydro-
genation in excellent yields (Scheme 75).
In 2013, Ukaji et al.328 first synthesized in good yields the

novel 1,5-disubstituted tetrazoles 182 containing tetrahydroi-
soquinoline skeletons based on the UT-3CR. They utilized C,N-
cyclic N′-acyl azomethine imines 181, both aliphatic and
aromatic isocyanides and in situ TMS azide generated through
TMSCl and sodium azide (Scheme 76).

3.1.3. Passerini Tetrazole 3-Component Reaction (P-
3CR). In 1921, a three-component reaction between carboxylic
acids, oxo components, and isocyanides for the synthesis of an α-
acyloxy amide was discovered by Passerini (P-3CR).55,56 In
1961, Ugi reported the synthesis of tetrazoles via a Passerini type
3CR (P-3CR) for the first time using HN3 and Al(N3)3.

52

Aspartyl proteases which catalyze amide bond hydrolysis
found to play a key role in many biological processes, including
the development of a variety of diseases and the important
therapeutic targets. Hulme et al.225 reported the facile synthesis
of analogous cis constrained norstatine mimetics by simply
mixing an N-Boc-amino aldehyde 183, an isocyanide, and TMS
azide in dichloromethane affording the derivative 184, followed
by deprotection with trifluoroacetic acid and N-capping with
TFP esters to the desired amides and sulfonamides 185 in good
yields. This reaction proved to tolerate a range of functionalities

Scheme 65. Synthesis of Bis-quinoxalinone Tetrazoles 158

Figure 32. Crystal structure of 3-(1-benzyl-1H-tetrazol-5-yl)-6,7-
dimethylquinoxalin-2(1H)-one (158d) exhibiting an antiparallel π
stacking alignment of two adjacent quinoxaline moieties, featuring in
addition a low energy antiparallel dipole dipole alignment (CCDC
932013)
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including a variety of isocyanides andN-Boc-α-amino aldehydes
(Scheme 77).
Chiral 5-substituted tetrazoles have been recognized as

efficient organocatalysts.329−333 Many methods have been
developed for the synthesis of 1,5-disubstituted tetrazoles,
including the 5-(1-hydroxyalkyl)tetrazoles. Zhu et al.334 first
reported to synthesize enantioselective 5-(1-hydroxyalkyl)-
tetrazole 186 catalyzed by a [(salen)AlIIIMe] (salen = N,N′-
bis(salicylidene)ethylenediamine dianion) through Passerini-

type reaction of aldehydes, isocyanides, and hydrazoic acid with
good-to-excellent enantioselectivity (Scheme 78). Four different
catalysts were optimized in several reaction conditions. With the
optimized conditions and stoichiometry for the reaction
(isobutyraldehyde/1-isocyano-4-methoxybenzene/HN3/cata-
lyst 1.2:1:2.5:0.1), they also examined the generality of this
catalytic enantioselective process by varying the structure of the
aldehyde and isocyanide. Linear and α-branched aliphatic
aldehydes and aliphatic and aromatic isocyanides with

Scheme 66. Synthesis of Tetrazolobenzodiazepin-2-ones 156

Scheme 67. Diversity of Bis-heterocyclic Lactam-Tetrazoles

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.8b00564
Chem. Rev. 2019, 119, 1970−2042

2014

http://dx.doi.org/10.1021/acs.chemrev.8b00564


Table 4. Use of Bifunctional Building Blocks in the UT Reaction Followed by Lactamization

Figure 33. Examples of bis-heterocyclic tetrazolo scaffolds.
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electron-donating or electronic-withdrawing groups worked
nicely. However, in the case of the sterically encumbered 2,6-
dimethylphenylisocyanide, yield and enantioselectivity both
diminished. When α-isocyanoester was used, a spontaneous
hydrolysis/lactonization sequence proceeded well. Due to the
fact that salen-Al complexes catalyze the nucleophilic addition of
azide to α,β-unsaturated imides and to α,β-unsaturated ketones,
they were tested and found also to perform a tandem Michael
addition/enantioselective P-3CR using a α,β-unsaturated
aldehyde as the carbonyl substrate. The results showed that 1-
(4′-methoxyphenyl)-5-(1′-hydroxy-3-azidopropyl)tetrazole
could be detected with good yield and enantioselectivity
(Scheme 78).
Very often, a synthetic methodology that could lead to a new

class of compounds is based on the input of a component with
different reactive functionalities in an already established MCR.
In 2012, Yanai et al.335 developed a novel four-component
reaction of aldehydes, isocyanides, TMS azide, and free aliphatic
alcohols without amines catalyzed by the Lewis acid indium(III)

triflate to give rise to α-alkoxyamides 187 in good yields (direct
O-alkylative tetrazole P-4C reaction, ATP-4CR). Aliphatic and
aromatic aldehydes both were well tolerated in this synthetic
methodology (Scheme 79, Figure 38).
Although MCR proved to be more environmentally benign

compared with the classical tetrazole synthetic methods, people
still continue to try to employ water as the reaction medium in
organic synthesis. To date, its beneficial effects on a variety of
organic transformations have been widely recognized.336−338

Scheme 68. Selective Tetrazole Formation over the Intramolecular Ugi Product

Figure 34. Crystal structure of a benzo[1,4]oxazepinone derivative
167c (CCDC 936637). It is noteworthy that there is an intramolecular
hydrogen bond (3.0 Å) between N4 andO9 and a short contact (3.3 Å)
between N3 and C10

Scheme 69. Synthesis of Tetrazole-Substituted Spirocyclic γ-Lactams 171 by One-Pot UT-Cyclization

Figure 35. Crystal structure of tetrazole-substituted spirocyclic γ-
lactams 171e,f (CCDC 918594 and 918596). It is noteworthythat it is
the antiparallel alignment of the phenyl units of two adjacent molecules
with short contacts (3.6 Å, 3.7 Å, 4.1 Å) between C (sp3) and C (sp2).
Similarly, there is also the semiantiparallel alignment of the phenyl units
and lactam ring of two adjacent molecules with short contacts (3.1 Å,
3.2 Å) between O (CO) and C (sp2).
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High cohesion energy density, hydrogen bonding-stabilized
transition state, and enhanced hydrophobic effect in the ground
vs transition state, could be the reasonable resources to explain
the reaction acceleration in aqueous media.336,337,339−344

Meanwhile, there are only a few reports about the influence
on the selectivity of organic reactions by adding salt. Vigalok et
al.345 demonstrated that simple sodium salts addition in
Passerini reaction in aqueous media can completely reverse
the product ratios. Furthermore, the use of the “salting-in” effect
and a small excess of the nucleophile could lead to significantly
higher yields of Passerini tetrazole products 188 instead of the
Passerini adducts with different nucleophile than azide (Scheme
80).
In that direction, a sonication accelerated, catalyst free,

simple, high yielding, and efficient method for the P-3CR has
been developed.346 It comprises the reaction of an oxocompo-
nent, an isocyanide, and a TMS azide in methanol−water (1:1)
as the solvent system, giving rise to derivatives 189. The use of
sonication not only accelerated the rate of the reaction but also
provided good to quantitative yields (Scheme 81). The reaction
has a high functional group tolerance, applicable to a broad
scope of aldehydes/ketones and isocyanides, due to the very
mild reaction conditions and in addition the existence of a free

hydroxyl group allows various postmodifications; the authors
demonstrated the possibility to synthesize fused tetrazoles 191
from the tetrazole precursors 190, which are important scaffolds
as they possess a wide spectrum of activity and vast industrial
applications (Scheme 82).

3.1.4. Miscellaneous MCRs toward Monocyclic Tetra-
zole Derivatives. A microwave-accelerated, simple, efficient,
and versatile method for the construction of the 1,5-tetrazole
scaffold was developed by Dömling et al.347 Due to the fact that
the reported methods for tetrazole formation from amides face
major drawbacks, such as harsh conditions, low yields, and
missing substrate scope, an in situ amide formation from amines
and carboxylic acid derivative followed by imidoyl chloride
formation and finally tetrazole formation by azide addition as a
one-pot MCR, was proposed.
The majority of the acid chlorides gave complete conversion

to the corresponding tetrazoles 192 under the optimized
conditions in good to high yields (Scheme 83). Aromatic and
aliphatic acid chlorides proved to be equally effective in this
reaction. The conversions of aromatic and aliphatic carboxylic
acids were as effective as those of the acid chlorides, but these
substrates delivered the products in slightly lower yields.
Application of this method to esters was also successful;
however, a longer reaction time was required (25−30 min) for
the total conversion, and moderate to good yields were provided
with aliphatic and aryl esters. Bistetrazoles 193 are also
accessible and these compounds are highly important in high-
energy nitrogen-rich compounds.347

Fused tetrazole scaffolds were also described by this
methodology; the use of functionalized carboxylic acids with
amines bearing an additional functional group would allow an
anticipated domino cyclization process in one step. The reaction
of formamide, which works both as an ammonia and
formaldehyde surrogate and 2-aminobenzoic acid under the
optimized conditions led to the formation of the tetrazolo[1,5-
c]quinazoline scaffold 194 in moderate yield (Scheme 84).
The usefulness of this method was demonstrated in the

synthesis of biologically important fused tetrazole scaffolds and
the marketed drug cilostazol (196) from the halogenated
tetrazole precursor 195 (Scheme 85).
Amino acids were also successfully employed with full

stereoretention toward derivatives 197, as shown by HPLC on
a chiral stationary phase (Scheme 86).
Saiprathima et al.348 described the MCR synthesis of 3-

tetrazolyl oxindoles 198 from isatines by a facile intermolecular
[2 + 3] cycloaddition between an azide and a nitrile group
bound to quaternary center of oxindole at C3 position in water.
The straightforward preparation of these compounds is the C3
functionalization by nucleophilic addition of isatins (Scheme
87). The use of TMSCN as a nucleophile allows the synthesis of
3-cyano-3-hydroxy oxindoles and their direct conversion into
corresponding tetrazole derivatives 198 by facile [2 + 3]
cycloaddition of azides (Figure 39). The authors also observed a
one-pot four-component tetrazole formation of compound 199
using aniline as an additional component (Figure 40).
In 2011, Shaabani et al.349 reported an efficient and simple

two-step strategy for the preparation of 1,5-disubstituted
tetrazole derivatives 200 and 201 containing siloxy or
sulfonamide groups, respectively, by simply mixing isocyanides,
dialkylacetylenedicarboxylates, and triphenylsilanol in fairly
good yields. First a formal 1:1:1 addition reaction takes place
selectively, yielding ketenimines containing a siloxy group in
high yields. Next, an intermolecular cycloaddition reaction of

Scheme 70. Devised Synthetic Pathway to Tetrazolo N-
Unsubstituted γ- and δ-Lactams 173

Figure 36. (A) Crystal structure of a tetrazole fused γ-lactam 173a
(CCDC 961190). It is worth mentioning that there is a pair wise
hydrogen bonding with a neighbor lactam in short contacts (2.9 Å)
between N6, O1 and N6′, O1′. (B) Alignment of several PDB
structures (3D23, 3EWJ, 3QZR, 3RHK, 3TNT, 3UR9, 3DPM, 1H0V,
3JUC, and 3Q3Y) showing the polar interactions for 10 γ-lactam
containing ligands.
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the siloxy ketenimines with TMS azide yields the corresponding
1,5-disubstituted tetrazoles 200 and 201 (Scheme 88, Figure
41).
The reaction ofN-halo succinimide, sodium azide, and phenyl

isocyanide in chloroformwith a phase transfer catalyst yielded 5-
halo-1-phenyltetrazoles 202 in a three-component reac-
tion.350−352 5-Halo-1-substituted tetrazoles might be interested
building blocks, e.g., in Pd catalyzed C−C couplings (Scheme
89). For example, the synthesis of tetrazolyl β-lactam systems

205 was described using 5-halo-1-benzyltetrazole 204 and the
azetidinone 203 as a coupling building block.353

In 2012, Kazemizadeh et al.354 first disclosed a three-
component reaction of isocyanides, carbodiimide, and TMS
azide in 1:1:1 ratio, leading to 1,5-disubstituted 1H-tetrazole
derivatives 206. The reaction proceeded smoothly in methanol,
affording the targeted products without the need of any further
purification. The mechanism is similar to the classical UT-4CR.
Here, carbodiimide reacted similar to a Schiff base and was
attacked by the nucleophilic addition of isocyanide. Then, the
protonation of the resulting adduct led to the nitrilium
intermediate, which subsequently was attacked by the azide
anion to form the adduct followed by ring closure (Scheme 90).

3.2. Bicyclic Tetrazole Derivatives

3.2.1. UT-4CR toward Fused Tetrazolopyrazine De-
rivatives. In 1998, Bienayme ́ et al.355 rigidified the basic UT-
4CR scaffold of α-alkylaminotetrazole to result in the 7,8-
dihydrotetrazolo[1,5-a]pyrazine scaffold. In this procedure, they
mixed an oxo component, a primary amine, methyl-β-(N,N-
methylamino)-α-isocyanoacrylate (Schöllkopf’s isocyanide),356

and TMS azide in a ratio of 1:1:1:1.4 at ambient temperature in
methanol to give an intermediate UT-4CR adduct. Subsequent
treatment with diluted acid catalyzes the secondary amine attack
and dimethylamine substitution under ring formation to form
the final bicyclic products 207. This constitutes a sequence of an
Ugi four-component reaction (U-4CR), forming an α-amino
tetrazole containing a secondary amine, followed by a ring
closing reaction with the dimethyl amine from the former
isocyanide acting as a leaving group with overall yields fair to
good (Scheme 91).
In 2000, Hulme et al.357 disclosed an efficient one-step

protocol involving an Ugi reaction followed by a postcondensa-
tion reaction to access tetrazolopiperazines 209 with three

Scheme 71. (A) Acidic Hydrolysis of Erythromycin Yields Desosamine Which Is Subsequently Transforms into 1-
Isocyanodesosamine; (B) Synthesis of Disubstituted α-Aminomethyl Tetrazoles 174 Based on Desosamine with UT-4CR

Scheme 72. (A) Leuckart−Wallach Approach to Sugar
Isocyanides; (B) Synthesis of 1,5-Disubstituted Tetrazoles
175 Using Glycosyl Isocyanide and Arabinosyl Isocyanide
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potential diversity points. α-Amino acid derived isocyano esters
208 react in the UT-4CR, and the secondary amine of the side
chain spontaneously undergoes a lactamization. A range of
commercially available aldehydes and aliphatic or aromatic
substituted primary amines were investigated, and it was shown
that more sterically hindered groups in the aldehydes or amines
would largely decrease both yields (Scheme 92).
Dömling et al.358 replaced the amine component with

ammonia which provided tetrazolopyrazinones 210 in good to
high yields in one-pot fashion. After quite some optimization,
ammonium chloride proved to be the best ammonia source
followed by treatment with catalytic amount (0.1 equiv) of
ammonium hydroxide as a base at 50 °C for 18 h, giving the
cyclized adducts (Scheme 93, Figure 42).
Hiller et al.359 in 2004 employed a synthetic methodology

whereby cyclization to the tetrazolopiperazine system occurs in
situ via a toluolsulfonate group. It is noteworthy, that the
cyclization step could proceed at rt without the addition of acid
or refluxing. Simply following a classical UT-4CR procedure
mixing aldehydes, primary amines, TMS azide, and 2-
isocyanoethyl sulfonate in a ratio of 1:1:1.5:1.5 led to the
expected fused tetrazoles 211. The 2-isocyanoethyltoluolsulfo-
nate building block that was employed in this versatile reaction
can be synthesized in two steps from ethanolamine via selective
N-formylation followed by O-tosylation and dehydration using
tosyl chloride. The final products could be synthesized rapidly
with two points of potential diversity (Scheme 94).
Dömling et al.159 discovered three new different heterocyclic

scaffolds easily accessible from isocyanoacetaldehyde dimethy-
lacetal by MCRs. The initial UT-4CR with isocyanoacetalde-
hyde dimethylacetal yields an intermediate (212), which can
undergo a range of condensation reactions, e.g., Pictet−Spengler
(see also Schemes 103 and 104). The 7,8-dihydrotetrazolo[1,5-
a]pyrazine scaffold 213 is formed from aliphatic or aromatic
aldehyde and aliphatic amine components which cannot
undergo a subsequent Pictet−Spengler reaction (Scheme 95,
Figure 43). The cyclization simply runs in neat methanesulfonic
acid, giving generally good to excellent yields of the 7,8-
dihydrotetrazolo[1,5-a]pyrazines 213.
Dömling et al.360 also developed an effective procedure for the

novel syntheses of highly substituted tetrazole-fused ketopiper-
azines 216 through UT/deprotection and U-4CR. First, they
synthesized the N-unsubstituted α-aminotetrazoles 214 by
using an UT-4CR; second, the N-unsubstituted α-amino-
tetrazoles 215 were then employed in a second intramolecular
U-4CR to afford the desired products 216 in moderate to good
yields. TheUT synthesis was initially performed under Ugi azide
conditions with tritylamine (TrtNH2) as the amine component,
various aldehydes and isocyanides derived from α-amino acids,
and TMS azide (Scheme 96, Figure 44). These scaffolds are

Scheme 73. Synthesis of Tetrazole-Based Spirostan Saponin Analogues 176

Scheme 74. Synthesis of Calixarene Dihydrazide 178 via UT-
4CR

Figure 37. Crystal structure of calixarene dihydrazide 178d (CCDC
1025095). Four hydrophobic interactions of two molecules were
observed asO (CO) andmethyl, N(2), andmethyl of calixarene ring.
Six hydrophilic interactions consist of four interactions between N(4)
of tetrazole andN of hydrazine, two interactions between hydroxyls and
O of calixarene ring.
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structurally related to the clinically investigated oxytocin reactor
antagonists Epelsiban and Retosiban.361

The employment of hydrazine in UT-4CR was also reported
toward the synthesis of bicyclic fused tetrazole derivatives
(Scheme 97).362 N-Boc protected hydrazine reacted with α-
amino acid derived isocyanides in the UT reaction in a one-pot
fashion and it was post cyclized under both acidic and basic
conditions, affording 7-aminotetrazolopyrazinone (218) and
tetrazolotriazepinone (219) cyclic products. The post cycliza-
tion of the isolated UT adduct 217 under basic condition could
selectively afford the Boc-protected 7-aminotetrazolopyrazi-
none derivatives 220 in yields of 38−87%, which can be easily
obtained as hydrochloric salt 221 (Scheme 97). Crystal
structures of the postcyclized adducts were also obtained
(Figure 45).

3.2.2. UT-4CR toward Fused Azepine-Tetrazole De-
rivatives. Hulme et al.363 also described the synthesis of fused
azepine-tetrazole libraries 222 in high yields via the UT-4CR
(Scheme 98). Compared with their previous work leading to the
tetrazolopyrazine system, they employed secondary amines
together with Boc protected amino acid derived aldehydes
components to enlarge the fused ring by one carbon to form
azepine-tetrazoles. The first tetrazole formation was particularly
well-suited for the solution phase reaction of methyl-isocyano
acetate, N-Boc-aminoaldehydes, TMS azide, and secondary
amines and generally proceeded with high yields. The
subsequent Boc-deprotection was carried out with 10%
trifluoroacetic acid in dichloromethane to free the amine
nucleophile for the next cycloamidation step. The lactamization
was promoted by proton scavenging with PS-diisopropylethyl-
amine and reflux for 24 h. Final compound purities were

Scheme 75. UT-3CR with Trifluoroalkyl Cyclic Imines and Synthesis of N-Unsubstituted Tetrazoles 180

Scheme 76. Synthesis of Tetrahydroisoquinoline Tetrazoles 182
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Scheme 77. Passerini Reaction Towards Tetrazole Derivatives 185

Scheme 78. Catalytic Enantioselective Synthesis of 5-(1-
Hydroxyalkyl)tetrazole 186 by Three-Component Passerini
Reaction (P-3CR)

Scheme 79. Synthesis of Alkoxylated 1H-Tetrazole
Derivatives 187

Figure 38. Crystal structure of (E)-1-(tert-butyl)-5-(1-(cyclopenty-
loxy)-3-phenylallyl)-1H-tetrazole 187d (CCDC 862990).

Scheme 80. P-3CR under the “In Water” Or “In NaOTs”
Conditions
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Scheme 81. A Green P-3CR under Sonication Conditions

Scheme 82. Post-Modification on the Corresponding
Hydroxyl Tetrazole 190 Towards the Fused Tetrazole 191

Scheme 83. Synthesis of Tetrazoles 192 and 193 from
Carbonyl Compounds, Amines, and TMSN3

Scheme 84. Synthesis of 1,5-Fused Tetrazoles 194 from
Carboxylic Acid Derivatives, Amines, and TMSN3

Scheme 85. Two-Step Synthesis of Cilostazol (192) by the
MCR Methodology

Scheme 86. Synthesis of the Amino Acid Tetrazoles 197

Scheme 87. Synthesis of 3-Tetrazolyl Oxindoles 198 by a
Facile Intermolecular [2 + 3] Cycloaddition

Figure 39. Solid-state structure of 3-hydroxy-3-(1H-tetrazol-5-yl)
indolin-2-one 198a. The oxindole-NH acts as a hydrogen bond
donor toward N1 of the tetrazole (CCDC 857953).
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substantially improved by removal of the acyclic amine and
excess aldehyde, via dissolution in THF−CH3CHCl2 addition of
polystyrol bound scavenger resins PS-NCO and PS-TsNHNH2,
producing the desired fused product.
Batra et al.367 first synthesized substituted allyl isocyanides

from primary allyl amines using the Baylis−Hillman reaction
(Scheme 99). The Baylis−Hillman reaction368−370 occurs
between the α-position of an activated alkene and an aldehyde
or generally an electrophilic carbon to form a new C−C bond
with the help of a nucleophilic catalyst as tertiary amine and
phosphine. They employed this E-configured isocyanide in an
Ugi/hydrolyze/coupling strategy (223, 224) to obtain tetrazole-
fused diazepinones 225 in good yields. After obtaining the
expected Ugi adducts at room temperature, they also
investigated a one-pot reaction combining Ugi and cyclization
process without isolating the intermediate. Two cases were
reported successfully with an amine and aldehyde bearing an
electron withdrawing group. Noteworthy, they also found that

the use of aniline instead of the primary aliphatic amines did not
lead to the formation of tetrazoles.

3.2.3. UT-4CR toward 1,5-Disubstituted Tetrazoles in
Macrocycles. Macrocycles represent a common motive in
natural products, and several of them are marketed as
drugs.371,372 Macrocycles are a fascinating and however
underrepresented class of compounds in medicinal chemistry,
as they do not behave according to drug-likeliness rules and
nevertheless can lead to oral bioavailability.373 As a result of their
large cycle, from 10 to 25 atoms, they show on the one hand
conformational restriction but on the other hand are very flexible
and can show multiple conformations.374,375 Because of their
large surface area, macrocycles are assumed to be useful to target
nontraditional protein−protein interaction targets which often
are large, flat, and featureless.371,372 Currently, protein−protein

Figure 40. Solid-state structure of 3-(phenylamino)-3-(1H-tetrazol-5-
yl)indolin-2-one 199. The oxindole-NH acts as a hydrogen bond donor
toward N1 of the tetrazole (CCDC 857954).

Scheme 88. Synthesis of the 1,5-Disubstituted Tetrazoles 200 and 201

Figure 41. Crystal structure of (3R)-di-tert-butyl-2-(1-(tert-butyl)-1H-
tetrazol-5-yl)-3-((triphenylsilyl)oxy)succinate 200d. It shows two
short intermolecular interactions, O (CO) and C (CH3 in tert-
butyl group) (CCDC 817391).
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interaction targets, in most cases, belong to the domain of
antibodies. Therefore, artificial macrocycles have recently
experienced a renaissance as scaffolds in medicinal chemistry.
Unfortunately, there are few short, diverse, and general synthetic
pathways toward this interesting class of compounds. Multi-
component reactions for accessing macrocycles was first
reported by Failli and Immer.376 In 2015 Dömling et al.377

introduced α-isocyano-ω-carboxylic acids in macrocycle syn-
thesis via Ugi reaction (U-4CR). They performed an intra-
molecular Ugi reaction (U-3CR) using a bifunctional α-

isocyano-ω-carboxylic acid, incorporating into macrocycle 229
the other two components (a primary amine and an oxo
compound), which can be widely varied. The bifunctional
component has been prepared using an Ugi-tetrazole reaction
(226−228, Scheme 100).
Adding to the toolkit of macrocyclizations by MCR, Dömling

et al.378 utilized for the first time a P-3CR to cyclize macrocycles
and thus form artificial macrocyclic depsipeptides 230379 (15−

Scheme 89. 3-CR of N-Halo Succinimide, Sodium Azide, and
Phenylisocyanide

Scheme 90. Synthesis of 1,5-Disubstituted 1H-Tetrazole
Derivatives

Scheme 91. Synthesis of 7,8-Dihydrotetrazolo[1,5-
a]pyrazines 207

Scheme 92. UT-4CR and Post-Condensation to Form the
Tetrazolopiperazines 209

Scheme 93. Ammonia Promoted One-Pot
Tetrazolopiperidinone 210 Synthesis by UT-4CR

Figure 42. Crystal structure of the tetrazolopiperidinone 210f. A
hydrogen bond exhibits between the piperidinone-NH and the N-5 of a
tetrazole moiety of an adjacent molecule.
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20 membered). The overall sequence, which again combines
two MCRs, has high diversity and broad reaction scope; it
introduced different ring sizes and side chain variations in just
four steps using readily available starting materials (Scheme
100). Some representative crystal structures are disclosed on
Figures 46 and 47.
Moreover, bifunctional α-isocyano-ω-amines 231, derived by

a chemoselective amidation of amino acid derived isocyano
carboxylic acid esters with unprotected symmetrical diamines,
were employed in a concise two-step synthesis of tetrazole
containing macrocycles 232.380 A short access to 11−19-
membered macrocycles in which substituents can be independ-

ently varied at three different positions was allowed (Scheme
101, Figure 48).

3.3. Tricyclic and Polycyclic Tetrazole Derivatives

Annulated polyheterocyclic structures are interesting to the
medicinal chemist due to their rigidity and often good blood−
brain barrier penetration to target neurological diseases.
Therefore, strategies to reduce the number of synthetic and
purification steps to prepare suitably modified compounds are of
special interest in medicinal/combinatorial chemistry. As it was
previously described (see Scheme 95), the UT-4CR with
isocyanoacetaldehyde dimethylacetal yields the intermediate

212, which can undergo a range of condensation reactions
toward 233 and 234 (Scheme 102).159

The 11H-benzo[d]tetrazolo[1,5-a]azepin-11-amine scaffold
233 can be accessed from activated electron rich benzaldehydes,

Scheme 94. Synthesis of Tetrazolopiperazines 211

Scheme 95. Designed Synthetic Pathway to Tetrazolo
Piperazine Derivatives 213

Figure 43. Crystal structures of 208d with the cyclohexyl moiety
forming a short T-shaped interaction with the adjacent phenyl group
(CCDC 1017121).

Figure 44.Crystal structures of 214d (CCDC 986844) (top) and 216e
(CCDC 986845) (bottom). The tetrazole-fused ketopiperazine
undergo three hydrogen-bonds.

Figure 45. Crystal structures of 219b (CCDC 1507441) and 221b
(CCDC 1507440). (A) Two intermolecular hydrogen bonds of 2.0 Å
are observed between the NH and the carbonyl moiety. (B) Hydrogen
bond of 2.5 Å is observed between NH2 and the N4 of the tetrazole.
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primary or secondary amines, and isocyanoacetaldehyde
dimethylacetal. The reaction sequence involves an UT-4CR
(212d−f) followed by a condensation. The cyclization runs
smoothly under methanesulfonic acid (MSA) in neat conditions
in good to excellent yields (Scheme 103).
When using electron-rich substituted (hetero)phenylethyl

amines, polyfused tetrazoles 234 can be accessed in great
diversity (Scheme 104). The intermediate UT-4CR product
(212g−i) can undergo a Pictet−Spengler type condensation
under MSA room temperature conditions, in decent to excellent
yields.279 The reaction involves an acid induced dimethylacetal
deprotection, followed by a imine formation and attack onto the
nucleophilic (hetero)aromatic ring. Phenylethyl amines and
tryptamines lead to the alkaloid-type scaffolds of isoquinolines
and ibogaine, respectively. Libraries of >1000 compounds per
scaffold have been synthesized and are part of the screening
collection of the European Lead Factory.
The 3D structures and other physicochemical properties of

each of the aforementioned scaffolds 233 and 234 were also

Scheme 96. Two-Step Synthesis of N-Unsubstituted ω-Carboxyl α-Aminotetrazoles 216

Scheme 97. Employment of Hydrazine in UT-4CR and Its
Post-Cyclization

Scheme 98. Synthesis of the Azepine-Tetrazoles 222
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Scheme 99. Synthesis of Tetrazole-Fused Diazepinones 224

Scheme 100. UT-4CR/U-4CR/P-3CR Derived Macrocycle Synthesis Strategies
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extensively discussed. Unexpectedly, they possess very different
characteristics even though these scaffolds are all derived from
the same first UT-4CR in terms of their chemical space due to
their connectivity, substitution pattern, and ring sizes (Figure
49).
Kalinski et al.381 described an UT reaction (236) followed by

a nucleophilic aromatic substitution for the preparation of a
library of polysubstituted fused 4,5-dihydrotetrazolo[1,5-a]-

quinoxalines 237. The first synthetic step corresponds to a
classical UT-4CR, exploring 2-fluorophenylisocyanide as a new
bifunctional starting material, yielding tricyclic tetrazoles with
two points of diversity (Scheme 105). 2-Fluorophenylisocya-

Figure 46. Four X-ray structures of the macrocycles 229 of different
size involving different MCR assembly routes and different substituents
(CCDC 1408649, 1408650, 1408653, 1408654). The most occupied
interactions are included in the interactions between N of tetrazole and
C of cycles, O and C of cycles, and C and C of cycles. The
intramolecular bindings are mostly between O and N.

Figure 47.Two secondary amides form intermolecular hydrogen bonds
to a neighbor macrocycle, whereas the cis-amide bioisosteric tetrazole
moiety is not involved with hydrogen bonding. Looking into the
different modules of compound 230b (CCDC 1442896), one can
define the two amide groups, the tetrazole, and the lactone group as
rigid elements which are separated by flexible sp3 center-based C1, C3,
and C5 chain elements. These linker fragments ultimately will
determine the flexibility of the overall macrocyclic conformations in
aqueous and lipophilic environments, which will be a determinant of
the passive diffusion through cell membranes

Scheme 101. α-Isocyano-ω-amine 231 Synthesis and UT-
4CR Derived Macrocycle 232 Synthesis Pathway

Figure 48. Crystal structures of the MCR-derived 14-membered 232d
(CCDC 1548701) and 12-membered 232b (CCDC 1548704)
macrocycles in solid state featuring intermolecular hydrogen bonding
contacts of 2.3 and 2.0 Å, respectively.

Scheme 102. Diversity of Ring Fused Tetrazole Scaffolds
from the Common Precursor Building Block
Isocyanoacetaldehyde Dimethylacetal
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nide (235) allows for a subsequent nucleophilic aromatic
substitution (SNAr) in a second step, thus forming a ring. They
found that the best yield could be reached by mixing the four
components amine/aldehyde/TMS azide/isocyanide in a ratio
of 1:1:1.5:1.5 in the Ugi reaction. The nucleophilic aromatic

substitution−cyclization conditions were optimized by using
Cs2CO3 in DMF as the best conditions. They also exploited a
range of amines and aldehydes for this strategy, finding that
amines and carbonyls can be varied broadly, yielding tricyclic
tetrazoles with two potential diversity points.
A series of 18 fused tetrazolo-quinolines 238 featuring two

tetrazoles were synthesized in 21−90% yields via a novel one-pot
UT/SNAr/ring−chain azido-tautomerization process under
microwave irradiation or ultrasound and catalyst-free conditions
(Scheme 106).382 The overall procedure has a good substrate
scope and functional group tolerance.
The compound class of 1,4-benzodiazepines are among the

most widely used drugs with potent tranquilizer, muscle
relaxant, anticonvulsant, antiseizure, and sedative-hypnotic
activities.246 In 2010, Voskressensky et al.364 developed an
effective procedure for the syntheses of substituted tetrazolo-

Scheme 103. Designed Synthetic Pathway to the Polyfused
Tetrazolo Scaffolds 233

Scheme 104. Synthesis of Tetracyclic Piperazinotetrazoles
234

Figure 49. Crystal structures of 233d and 234d (CCDC 1017123 and
1017122 and some characteristic short contacts of 2.4 and 2.6 Å,
respectively).

Scheme 105. Synthesized Fused 4,5-Dihydrotetrazolo[1,5-
a]quinoxalines 237
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[1,5-a][1,4]benzodiazepines 240 via an UT reaction, followed
by an amidocyclization (Scheme 107). The tetrazolodiazepines
240 were synthesized by simply mixing ketone, sodium azide,

ammonium chloride, and the corresponding anthranilic acid
derived isocyanide 239 in aqueous methanol. After 24−48 h of
vigorous stirring at room temperature, the target products
precipitated from the reaction mixture. The reaction’s scope was
investigated, with symmetrical and unsymmetrical, cyclic and
acyclic, and sterically not hindered and very bulky (e.g.,
adamantyl ketone) ketones being good substrates. Interestingly,
all attempts to isolate the corresponding products from
aldehydes failed. Moreover, the reaction with methylamine
hydrochloride instead of ammonium chloride aiming to yield the
N-methyl substituted benzodiazepines stopped at the inter-
mediate Ugi tetrazole stage, and no cyclization was observed
under the reaction conditions.
A crystal structure showing the 3D structure of 240d in the

solid stage is shown in Figure 50, in which the overall 3D
structure comprises a butterfly shape with the cyclohexyl and
benzene rings presenting the wings. In general heterocyclic-
conjugated benzodiazepines emerged as an important class of
epigenetic drugs,364,365 as similar structures are potent inhibitors
of the BET family of proteins, e.g., JQ-1.366

4. TETRAZOLES IN VIRTUAL SCREENING

A pharmacophore-based virtual screening platform, ANCHOR.-
QUERY, was introduced to bring interactive virtual screening of
novel protein−protein inhibitors to the desktop (Figure
51).383,384 More than 2 billion 3D conformers of unprecedented
compounds based on one-pot MCR can be efficiently and web-
based screened against protein targets. A typical project
encompasses building of a 3D pharmacophore model based
on a PDΒ structure, query against 2 billion conformers, ranking,
synthesis of best hits, and biophysical screening. Twenty-three
different MCR scaffolds are enumerated, among them two
tetrazole backbones (e.g., compound 241, Figure 51). The
substituents are chosen based on commercial availability of the
corresponding building blocks and on previous experience to
yield the products with high confidence. In fact, the success rate
of synthesis of the virtual compounds is very high exceeding
90%.
Multiple successful applications of ANCHOR.QUERY have

been recently published.193,385,386 Among them α-amino
tetrazoles were found to be potent antagonists of the protein
protein interaction of p53-MDM2.193 The virtual screening of
very large MCR compound libraries is an interesting, fast, and
cost-effective alternative to high throughput screening.

5. CONCLUSIONS AND OUTLOOK

More than 225 tetrazole-based scaffolds have been presented in
this review which can be convergently and easily synthesized by
using multicomponent reactions. Especially the Ugi variation
UT-4CR of tetrazole synthesis is very fruitful in accessing many
different drug-like scaffolds. Thus, among of all organic
chemistry methods, clearly MCR stands out and provides the
most versatile access to this class of heterocycles. Tetrazole
derivatives will continue to be a prime class of heterocycles due
to their isosteric character to carboxylic acid and cis-amide
moieties and due to their metabolic stability and other
physicochemical properties. Efficient synthetic access to a
wide variety of derivatives is therefore the key to leverage the
potential of tetrazoles to generate lead compounds.

Scheme 106. Synthesis of the Bis-tetrazolo Quinolones 238

Scheme 107. Fused Tetrazolodiazepines 240 Synthesized by
UT

Figure 50. (A) Crystal structure of 240d (CCDC 780553). Two
hydrogen bonds of 1.9 Å are shown between the amides of the
diazepineone moieties. (B) Structures of the two JQ-1 stereoisomers.
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Alexander Dömling studied chemistry and biology at the Technische
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Ac acetyl
ADME absorption, distribution, metabolism, and excretion
BET bromodomain and extraterminal domain
Boc tert-butyloxycarbonyl protecting group
CAN ammonium nitrate
Cbz carboxybenzyl
DCC N,N′-dicyclohexylcarbodiimide
DCE dichloroethane
DCM dichloromethane
DIEA N,N-diisopropylethylamine
DMA dimethylacetamide
DMF dimethylformamide
DMPK drug metabolism and pharmacokinetic
oPDM o-phenylenodiamine
PDB Protein Data Bank
PS polystyrol
pTSIA p-toluenesulfinic acid
pTsOH p-toluenesulfonic acid
TBAF tetra-n-butylammonium fluoride
TEMPO 2,2,6,6-tetramethylpiperidin-1-yl)oxyl
Tf triflate

TFA thrifluoroacetic acid
TFE trifluoroethanol
TFP tetrafluorophenyl
THF tetrahydrofuran
TMS trimethylsilyl
tOctyl 1,1,3,3-tetramethylbutyl
Trt trityl
Ts tosyl
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Dömling, A. Versatile Protecting-Group Free Tetrazolomethane Amine
Synthesis by Ugi Reaction. ACS Comb. Sci. 2016, 18, 170−175.
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Isocyanacrylsaüreester Und Ihre Verwendung in Der Heterocyclen-
chemie. Liebigs Ann. der Chemie 1979, 1979 (9), 1444−1446.
(176) Gilley, C. B.; Buller, M. J.; Kobayashi, Y. New Entry to
Convertible Isocyanides for the Ugi Reaction and Its Application to the
Stereocontrolled Formal Total Synthesis of the Proteasome Inhibitor
Omuralide. Org. Lett. 2007, 9, 3631−3634.
(177) Mayer, J.; Umkehrer, M.; Kalinski, C.; Ross, G.; Kolb, J.;
Burdack, C.; Hiller, W. New Cleavable Isocyanides for the
Combinatorial Synthesis of α-Amino Acid Analogue Tetrazoles.
Tetrahedron Lett. 2005, 46, 7393−7396.
(178) Kroon, E.; Kurpiewska, K.; Kalinowska-Tłusćik, J.; Dömling, A.
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