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Introduction

Osteoarthritis (OA) is one of the leading causes of disability 
in the adult population.1 OA is most often a slow progressive 
joint disorder, characterized by joint pain, cartilage degen-
eration, and decreased joint function.2 Common nonopera-
tive treatment options include nonsteroidal anti-inflammatory 
drugs (NSAIDs), intra-articular corticosteroids, and intra-
articular injections of hyaluronic acid (IA-HA).3 HA is found 
intrinsically within the knee joint providing viscoelastic 
properties to the synovial fluid, and the onset of knee OA is 
associated with reduced HA synthesis and increased HA 
degradation leading to a shift in distribution toward a lower 
average molecular weight in the synovium, synovial cavity, 
and cartilage.3

Many of the biological actions of HA are dependent on the 
molecular size of the ligand (Fig. 1). HA in its native form is 
synthesized by hyaluronic acid synthases (HAS) into long 
polymers often ranging from lower molecular weight to 
higher molecular weight HA, as high as 5 × 106 kDa.4 
Hyaluronidase-1 (Hyal-1) and hyaluronidase-2 (Hyal-2) 

enzymes are responsible for HA degradation through frag-
mentation of HA from both ends toward the center of the 
molecule, which decreases the molecular weight and creates 
HA oligosaccharide fragments within the synovial fluid.5 
Several studies have found significant differences in the 
inherent properties of high molecular weight HA (HMWHA) 
versus short HA oligosaccharide chains, and it has been pro-
posed that long polymer HA displays anti-inflammatory 
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properties, whereas short HA oligosaccharides act as ligands 
that produce a pro-inflammatory response through mediated 
receptor signaling pathways.6 The molecular weight distribu-
tion of HA products is important to consider, as there is 
potential for short oligosaccharides to potentially be included 
within an HA product if the molecular weight distribution is 
wide and around a low average molecular weight.

Intra-articular HA therapy provides therapeutic relief 
through a number of pathways, including the suppression of 
pro-inflammatory cytokines and chemokines via inhibitors 
of the signal transduction pathways from specific cell sur-
face receptors, as well as promotion of the synthesis of anti-
inflammatory mediators.7 Evidence has shown that HA 
oligosaccharides and HMWHA polymer chains bind to cell 
surface receptors such as cluster determinant 44 (CD44), 
toll-like receptor 2 (TLR-2) and 4 (TLR-4), layilin (LAYN), 
and intercellular adhesion molecule-1 (ICAM-1). Since HA 
has an established impact on inflammation in osteoarthritis, 
the purpose of this review was to summarize the evidence 

within published literature regarding the anti-inflammatory 
properties of HA in osteoarthritis. Additionally, the review 
describes the macromolecules and inflammatory-mediated 
responses associated with the cell transmembrane recep-
tors. Understanding the effects of HA on inflammation at 
the cellular level may provide further insight to into the 
clinical applications of HA treatment.

Methods

Literature Search and Article Screening

We conducted a comprehensive literature search using the 
MEDLINE (1946 to present), EMBASE (1974 to present), and 
PubMed databases on February 4, 2016. An updated literature 
search was performed on February 1, 2017. The literature 
search terms are listed in the appendix. The following inclu-
sion criteria were used to determine study eligibility: (1) arti-
cles describing the anti-inflammatory mechanism of HA 

Figure 1.  Summary of the pro-inflammatory and anti-inflammatory responses of hyaluronic acid.
CD44 = cluster determinant 44; ECM = extracellular matrix; ERKs = extracellular signal-regulated kinases; FAK = focal adhesion kinase; HA = 
hyaluronic acid; HER2 = human epidermal growth factor receptor 2; HYAL = hyaluronidase; ICAM = intercellular adhesion molecule–1; ICM = 
intracellular matrix; IL = interleukin; IRAK = interleukin-1 receptor-associated kinase; MAPK = mitogen activated protein (MAP) kinase; MMP = matrix 
metalloproteinase; MyD88 = myeloid differentiation primary response 88, NF-κB = nuclear factor kappa-light-chain-enhancer of activated B cells; 
NO = nitric oxide; PG = proteoglycan; PGE = prostaglandin E

2
; TAK1 = transforming growth factor-β (TGF-β)-activated kinase; TAL1 = T-cell acute 

lymphocytic leukemia protein 1; TIMP = tissue inhibitor of metalloproteinases; TLR = toll like receptor; TNF = tumor necrosis factor; TRAF6 = TNF 
receptor associated factors.
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treatment for OA, (2) primary nonclinical basic science arti-
cles, and (3) articles with full text published in English. Studies 
must have focused on the inflammatory processes of osteoar-
thritis using HA derivatives to elucidate the anti-inflammatory 
mechanisms. Studies focusing on the general treatment of 
osteoarthritis using hyaluronic acid were excluded. Nonclinical 
basic science articles included experimental studies in vivo 
and/or in vitro, and excluded experimental studies conducted 
on human participants. Article screening was done in 3 stages: 
titles were screened for relevance, followed by abstract screen-
ing, and finally full text screening to determine eligibility.

Data Abstraction

After article screening, included articles were categorized 
based on the primary anti-inflammatory responses described 
within them based on a review of the material. Sections were 
derived by the immediate cell surface receptor protein dis-
cussed within the article, or based on the primary theme of the 
article. The inflammatory response categories used in the data 
abstraction process were the following: HA-CD44 receptor 
response, HA-TLR-4 receptor response, HA-LAYN receptor 
response, and HA-ICAM-1 receptor response. The key find-
ings and conclusions from included articles were summarized 
in aggregate with studies of the same categorical assignment.

Results

Search Strategy

The literature search identified 1604 articles; 1074 of these 
articles were deemed relevant for screening (Fig. 2). Of 
these, 37 articles met the predefined inclusion criteria and 
10 additional articles were identified from our review of the 
reference lists of relevant articles. Therefore, 47 articles 
were included in this systematic review.8-54 The updated lit-
erature search identified one additional article.55

Study Characteristics and Area of Focus

The studies included in this review were published between 
1985 and 2016 (Table 1). Approximately half of the studies 
were published within the past decade. The majority of 
studies were conducted in Asia (43.8%), North America 
(25%), and Europe (27.1%). Multiple different factors 
involved in the anti-inflammatory process of HA were eval-
uated (Table 2), with the majority of articles focusing on 
general anti-inflammatory effects of HA (33.3%), fragmen-
tized HA versus HMWHA (22.9%), CD-44 receptor bind-
ing (14.6%) and pro-inflammatory macromolecules 
respective influences in inflammation (14.6%).

General Anti-Inflammatory Effects of HA

Several studies focused on the general effects of HA, such 
as its ability to inhibit inflammation, impede advances of 

osteoarthritis progression8,29,56 and its effect on the produc-
tion of nitric oxide.47 Fraser et al.21 observed that mild acute 
inflammation resulted in large changes in the metabolic 
turnover of synovial HA. Additionally, pro-inflammatory 
cytokines (IL-1b, TNF-a, or IFN-y) can regulate hyaluronic 
acid synthase (HAS) expression17,19,48 and therefore affect 
the distribution of higher to lower molecular weight HA in 
the synovium.

Role of HA–CD44 Receptor Binding

The primary receptor of the HA ligand is the CD44 receptor. 
Activation of CD44 receptors initiates a signaling cascade 
associated with p185 human epidermal growth factor recep-
tor 2 (HER2) and proto-oncogene c-Src kinase tyrosine 
kinase pathways.57 The affinity of HA to CD44 receptors is 
dependent on the molecular size of HA; increased avidity of 
HA binding to CD44 is correlated with an increase in the 
size of the polysaccharide chain, as larger HA oligosaccha-
rides are capable of decreasing dissociation through diva-
lent binding.58 Expression of the CD44 receptor is 
responsible for the maintenance of cartilage homeostasis, 
and the principal function of CD44 is to bind and internalize 
exogenous HA.18 Several T-cells and cytokines can assist in 
regulating HA-CD44 receptor binding, primarily through 
tumor necrosis factor–α (TNF-α) regulation.33 Kawana 
et al.31 conducted experiments on CD44 −/− mice and wild-
type counterparts (CD44 +/+ mice) to assess the effects of 
HA on cytokine production. They determined that HA–
CD44 binding suppressed in vivo pro-inflammatory cyto-
kine production mediated by TLRs via nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) 
activation. An early and pivotal study conducted by Noble 
et al.35 examined the effects of higher molecular weight HA 
and lower molecular weight HA fragments on NF-κB acti-
vation in mouse macrophages. Only the smaller HA frag-
ments were found to activate NF-κB DNA binding activity, 
suggesting that small HA oligosaccharide fragments elicit a 
pro-inflammatory response.

Several studies have further demonstrated that fragmen-
tized HA produces a pro-inflammatory response and 
HMWHA produces an anti-inflammatory response in osteo-
arthritis.12,13,16,32,39,42,45,49,51 Treatment of normal mouse 
synovial fibroblasts with HA fragments significantly 
increased expression of TLR-4 and CD44 receptors, along 
with increased expression of inflammatory cytokines IL-18 
and IL-33.13,14

HMWHA can occupy multiple binding sites of CD44 
and promote anti-inflammatory effects within the cell, 
while small HA fragments bind suboptimally to a limited 
number of CD44 sites. HA oligosaccharides smaller than 
10 units are suggested to not optimally occupy the CD44 
binding site, while HA oligosaccharides of at least 20 units 
are required for divalent binding to multiple CD44 recep-
tors.58 Through this action, higher molecular weight HA 
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suppresses pro-inflammatory cyotokines,11,23,30,46 sup-
presses matrix metalloproteinase, proteoglycans,43 and 
prostaglandin E

2
 (PGE

2
) syntheses24,27,37,38,51 and produc-

tion.26,52,54 HMWHA suppresses PGE
2
 production via 

CD44 through the downregulation of NF-κB.51 HMWHA 
also decreases levels of matrix metalloproteinase levels by 
increasing levels of tissue inhibitor of metalloproteinase–1 
(TIMP-1).53

Campos et al.11 investigated the effects of inhibiting HA 
degradation on the inflammatory response in synovial 
fibroblasts in mice. Inhibition of HA degradation via small 
interference RNA (siRNAs) targeted for hyaluronidase 

enzymes HYAL1, HYAL2, and HYAL3 reduced TLR-4 and 
CD44 activation by HA fragments, suggesting that inhibi-
tion of HA degradation may contribute to reducing TLR-4 
and CD44 activation and the corresponding inflammatory 
mediator response.11

Role of HA–TLR Receptor Binding

TLRs are highly conserved proteins that coordinate the 
defense against common bacteria and viruses within the 
immune system.4 TLRs can be activated by pathogen-associ-
ated molecular patterns (PAMPs) along with various 

Figure 2. L iterature Search.
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endogenous molecules called damage-associated molecular 
patterns (DAMPs), which include extracellular matrix break-
down products such as low molecular weight HA fragments.4 
Scheibner et al.40 demonstrated that fragmentized HA acti-
vates the innate immune response via TLR-2 through the 
myeloid differentiation primary response protein (MyD88)-, 
IL-1R-associated kinase-, TNFR-associated factor–6-, pro-
tein kinase C

5
-, and NF-κB-dependent pathways. 

Furthermore, Scheibner et al.40 found that higher molecular 
weight HA can inhibit TLR-2 signaling, demonstrating the 
anti-inflammatory ability of HMWHA therapy. A similar 
study was conducted by Campos et al.10 to investigate the 
influence of HMWHA at different concentrations on TLR-4 
and TLR-2 modulation in collagen-induced arthritis (CIA) 
in mice. HA treatment significantly limited CIA incidence 
and decreased TNF-α, interleukin-1β (IL-1β), interleukin-17 
(IL-17), matrix metalloprotease-13 (MMP-13), and induc-
ible nitric oxide synthase (iNOS) levels that were initially 
upregulated by CIA.

Campos et al.13 investigated the influence of short HA oli-
gosaccharides and HMWHA on the inflammatory response 
in normal mouse chondrocytes. HA fragment treatment pro-
duced a significant upregulation of TLR-4, TNF-a, IL-1b, 
IL-6, and IL-18. HMWHA did not exert any activity in 
untreated cells, although it was able to reduce the effects of 
HA fragments significantly. TLR-4 was confirmed as the tar-
get of HA action through TLR-4 small interference RNA 
experiments. Therefore, HMWHA can attenuate the inflam-
matory process induced by small HA fragments through 
TLR-4 receptor binding.

Role of HA–ICAM Receptor Binding

ICAM-1 is another cell surface receptor for HA. Upregulation 
in the expression of ICAM receptors has been observed  

in inflamed and malignant tissues.59 The NF-κB/I-κB tran-
scriptional regulatory system is a critical component of the 
host inflammatory response, induced by activation of the 
aforementioned cell surface receptors. This system has an 
essential role in transducing signals leading to the expres-
sion of numerous genes involved in the inflammatory 
response, including the induction of the expression of pro-
inflammatory cytokines such as IL-1β, IL-6, and IL-8, as 
well as TNF-α.4 Shao et  al.41 evaluated the impact of 
ICAM-1 in HA therapy in an experimental rat model of 
severe non-bacterial cystitis. Elevated ICAM-1, TNF-α, and 
IL-6 levels were observed in the inflammation model. After 
treatment with HA, a significant decrease in ICAM-1 was 
observed, suggesting that a reduction of ICAM-1 may play a 
role in the anti-inflammatory effect of HA. Yasuda et al.50 
examined the effects of HMWHA within the physiological 
levels on pro-inflammatory cytokine production by lipo-
polysaccharide (LPS)-stimulated U937 macrophages. HA 
was added to U937 macrophage cultures in the presence of 
LPS, with or without pretreatment with anti-ICAM-1 anti-
body. LPS stimulated production of TNFα, IL-1β, and IL-6. 
HMWHA inhibited LPS-induced cytokine production, 
whereas fragmentized HA provided no effect. Anti-ICAM-1 
antibody blocked the effects of HA on the LPS actions on 
U937 cells, suggesting an intrinsic role of ICAM-1 receptors 
in the anti-inflammatory action of HA. LPS activated NF-κB 
and mitogen-activated protein kinases (MAPK) pathways, 
whereas HA downregulated p65 NF-κB and I-κBα phos-
phorylation by LPS without affecting MAPKs. Inhibition 
studies revealed the requirement of NF-κB for LPS-
stimulated cytokine production. HMWHA suppresses LPS-
stimulated production of pro-inflammatory cytokines via 
ICAM-1 through downregulation of NF-κB and I-κB.

Role of HA–Layilin Receptor Binding

LAYN’s ability to bind HA illustrates a parallel between the 
LAYN and CD44, as they both bind to cytoskeleton-mem-
brane linker proteins through their cytoplasmic domains 
and to HA through their extracellular domains.60 Murata 
et al.34 examined the expression and potential function of 
LAYN in human articular chondrocytes and synoviocytes. 
LAYN was constitutively expressed in human articular 
chondrocytes and synoviocytes and it was shown that IL-1β 
significantly suppressed the expression of LAYN in these 
cells. HMWHA repressed IL-1β-induced MMP-1 and 
MMP-13 production in chondrocytes, but this was signifi-
cantly abrogated in chondrocytes transfected with siRNA 
against LAYN, suggesting that LAYN may contribute to the 
regulation of HA functions in the arthritic condition.

Discussion
HA has multiple effects on inflammatory mediators involved 
in the osteoarthritic disease state. In vitro and animal studies 

Table 1.  Study Characteristics.

Characteristic Total (%) (N = 48)

Year of publication
  1985-1989 1 (2.1)
  1990-1994 4 (8.3)
  1995-1999 4 (8.3)
  2000-2004 8 (16.7)
  2005-2009 9 (18.8)
  2010-2014 19 (39.6)
  2015-2017 3 (6.3)
Study location
 A sia 21 (43.8)
  North America 12 (25)
 E urope 13 (27.1)
 A ustralia 2 (4.2)
  South America 0 (0.0)
 A frica 0 (0.0)
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have shown that HA interacts with different cell surface 
receptors in a molecular weight– and dose-dependent man-
ner. The size of HA strongly influences receptor affinity, 
receptor activation, and downstream signaling.61 However, 
the distinct HA ligand-receptor relationships with CD44, 
TLR-2 and TLR-4 remain to be fully elucidated. Recent evi-
dence suggests signal transduction by HA is dependent on 

the ability of HA to cluster the receptors on the cell mem-
brane. For example, the amount of HA binding to CD44 
receptors increases as a function of HA size. HMWHA pos-
sess multivalent sites for CD44 binding while short oligo-
saccharides of HA have only 1 or 2 binding sites.62 Reversible 
binding of HA to CD44 receptors occur with short HA oligo-
saccharides, and this interaction is essentially irreversible 

Table 2.  Primary Focus of the Included Studies. 

Primary Focus Number of Studies Reference

General anti-inflammatory effects of 
hyaluronic acid (HA)

16 Abatangelo et al., 1989
Yasui et al., 1992
Fraser et al., 1993
Noble et al., 1996
Takahashi et al., 2001
Tanimoto et al., 2001
Jean et al., 2006
Wang et al., 2006
Hashizume and Mihara, 2009
Brun et al., 2012
Smith et al., 2013
Chen et al., 2014
Yoshioka et al., 2014
Sundman et al., 2014
Chan et al., 2015
Aulin et al., 2016

High molecular weight HA and small 
HA oligosaccharides

11 Filion and Phillips, 2001
Lajeunesse et al., 2003
Sheehan et al., 2003
Santangelo et al., 2007
Hashizume et al., 2010
Campo et al., 2012
Campo et al., 2012b
Chang et al., 2012
Galois et al., 2012
Kataoka et al., 2013
Sato et al., 2014

Pro-inflammatory macromolecules 7 Yasui et al., 1992
Shimazu et al., 1993
Goto et al., 1999
D’Souza et al., 2000
Stove et al., 2002
Greenberg et al., 2006
Oliviero et al., 2015

CD44 receptor 7 Chow et al., 1993
Kawana et al., 2008
Yasuda, 2010
Levesque et al., 1997
Sasaki et al., 2004
Hiraiwa et al., 2011
Campo et al., 2012a

TLR receptors 3 Scheibner et al., 2006
Campo et al., 2011
Campo et al., 2012c

ICAM-1 receptor 3 Hiramitsu et al., 2006
Yasuda, 2007
Shao et al., 2013

LAYN receptor 1 Murata et al., 2013
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with larger HA polymers, suggesting an antagonistic rela-
tionship between short chain oligosaccharides of HA and 
CD44 receptors. Similar molecular weight– and size-depen-
dent relationships to TLR receptors also exist, influencing 
downstream signaling cascades.56,63,64

HMWHA can bind to the sites of CD44, TLR-2, and TLR-
4, to promote anti-inflammatory effects within the cell. 
Through CD44 receptor binding, HMWHA downregulates the 
expression of IL-8, IL-33, MMPs, proteoglycans and PGE

2
 

and suppresses NF-κB activation. HMWHA also suppresses 
pro-inflammatory cytokine levels through interactions with 
ICAM-1 by downregulation of NF-κB and I-κB. Further 
research into the relationship between HA and LAYN is war-
ranted to fully understand its involvement with inflammation.

Overall, HA has a safe and tolerable profile in clinical trials 
and practice.1,2,7 Basic science evidence has progressed the 
understanding of how HA is able to inhibit the inflammatory 
response in knee OA, and the clinical efficacy of HA has been 
studied extensively and has been used in treating patients with 
symptomatic knee OA.65 Patients with knee OA suffer signifi-
cant pain and disability. HA has been used to treat these symp-
toms of OA, to restore proper knee function and manage 
pain.66 HA is not traditionally seen as an anti-inflammatory 
agent; however, HA has demonstrated, in vitro and in vivo, 
anti-inflammatory effects within the synovial fluid at the 
molecular level. Further insight into the clinical efficacy of 
IA-HA in treating inflammation in knee OA is required. 
Kaneko et al. observed a decrease in synovial fluid IL-6 and 
IL-8 levels in patients with knee OA after being treated with 
sodium hyaluronate.67 Segzin et  al.68 observed a significant 
decrease in IL-6 levels in patients receiving both hyaluronan 
and placebo in a randomized controlled trial; however, IL-8 
and TNF-α levels did not change. A recent pilot study investi-
gated the use of viscosupplementation on synovial fluid 
inflammation by examining changes in synovial fluid levels of 
cytokines and oxidative stress, and reductions in TNF-α and 

IL-1β levels were observed over a 6-month period.69 Higher 
quality studies are necessary to evaluate the anti-inflammatory 
properties of viscosupplementation treatment used in clinical 
practice, as well as delineate the differences between products 
that differ in structure from endogenous HA.

The systematic review is strengthened by the methodologi-
cal approach in identifying available nonclinical basic science 
evidence in online databases. Multiple mechanisms of action 
of HA in inflammation have been identified and comprehen-
sively reported, providing insight into the pro- and anti-
inflammatory key macromolecules identified. Moreover, an 
in vitro comparison of the different preparations of HA further 
explicates the anti-inflammatory potential of intra-articular 
HA treatment. This review is limited in that it primarily 
focused on the anti-inflammatory influence of HA in the treat-
ment of OA, and did not address the larger profile of the 
mechanism of action of HA. Other characteristics of viable 
HA treatment that should be considered include its rheologi-
cal properties, subchondral protective properties, chondropro-
tective effects, and lubrication and shock absorption features, 
which may also affect inflammatory properties.70

Conclusion

HA produces molecular weight–dependent anti-inflamma-
tory effects through a multifactorial mechanism of action via 
CD44, TLR, and I-CAM receptor signaling. HMWHA com-
bats the pro-inflammatory influences of fragmentized HA, 
such as suppressing the expression of pro-inflammatory 
cytokines, matrix metalloproteinases, prostaglandins, and 
nitric oxide. Future studies investigating the effects of HA 
on cartilage damage and inflammation in well controlled 
clinical studies may help determine whether preparations of 
intra-articular HA aid in other degenerative characteristics 
of OA, such as chondroprotection and slowing the progres-
sion of disease.

Appendix
Literature Search Strategy.

Medline: 342 Articles Embase: 426 Articles PubMed: 836 Articles

  1.  Hyaluronic acid[title]
  2.  Hylan*[title]
  3.  Hyaluronan*[title]
  4.  Viscosupplementation[title]
  5.  1 or 2 or 3 or 4
  6.  Osteoarthrit*.mp
  7. A rthrit*.mp
  8.  Joint pain.mp or arthralgia/
  9.  6 or 7 or 8
10. �A nti-inflammatory .mp or Anti-

Inflammatory Agents/
11. I nflammat*.mp
12. I nflam*.mp
13.  Swell*
14.  10 or 11 or 12 or 13
15.  5 and 9 and 14
16. L imit 15 to English language

  1.  Hyaluronic acid[title]
  2.  Hylan*[title]
  3.  Hyaluronan*[title]
  4.  Viscosupplementation[title]
  5.  1 or 2 or 3 or 4
  6.  Osteoarthrit*.mp
  7. A rthrit*.mp
  8.  Joint pain.mp or arthralgia/
  9.  6 or 7 or 8
10. �A nti-inflammatory .mp or Anti-

Inflammatory Agents/
11. I nflammat*.mp
12. I nflam*.mp
13.  Swell*
14.  10 or 11 or 12 or 13
15.  5 and 9 and 14
16. L imit 15 to English language

  1.  Hyaluronic acid.mp
  2.  Hylan*.mp
  3.  Hyaluronan*.mp
  4.  Viscosupplementation.mp
  5.  1 or 2 or 3 or 4
  6.  Osteoarthrit*.mp
  7. A rthrit*.mp
  8.  Joint pain.mp
  9.  6 or 7 or 8
10. A nti-Inflammatory.mp
11. I nflammat*.mp
12. I nflam*.mp
13.  Swell*.mp
14.  10 or 11 or 12 or 13
15.  5 and 9 and 14
16. L imit 15 to English language
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