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Abstract

Background: Type 2 (T2) inflammation drives airway dysfunction
in many patients with asthma; yet, we lack a comprehensive
understanding of the airway immune cell types and networks that
sustain this inflammation. Moreover, defects in the airway immune
system in patients with asthma without T2 inflammation are not
established.

Objectives: To determine the gene networks that sustain T2 airway
inflammation in T2-high asthma and to explore the gene networks
that characterize T2-low asthma.

Methods:Network analysis of sputumcell transcriptome expression
data from84 subjectswith asthmaand27healthy control subjectswas
used to identify immune cell type–enriched networks that underlie
asthma subgroups.

Results: Sputum T2 gene expression was characterized by an
immune cell network derived from multiple innate immune cells,
including eosinophils, mast cells/basophils, and inflammatory

dendritic cells. Clustering of subjects within this network stratified
subjects into T2-high and T2-low groups, but it also revealed a
subgroup of T2-high subjects with uniformly higher expression of
the T2 network. These “T2-ultrahigh subjects” were characterized
clinically by older age and more severe airflow obstruction and
pathologically by a second T2 network derived from T2-skewed,
CD11b1/CD1032/IRF41 classical dendritic cells. Subjects with T2-
low asthma were differentiated from healthy control subjects by lower
expression of a cytotoxic CD81 T-cell network, which was negatively
correlated with body mass index and plasma IL-6 concentrations.

Conclusions: Persistent airway T2 inflammation is a complex
construct of innate and adaptive immunity gene expression
networks that are variable across individuals with asthma and
persist despite steroid treatment. Individuals with T2-low asthma
exhibit an airway deficiency in cytotoxic T cells associated with
obesity-driven inflammation.
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Of the 300 million patients with asthma
worldwide, many respond well to available
asthma treatments and experience minimal
asthma-associated morbidity (1). However,
5–10% have more severe disease that is
resistant to current asthma therapies. These
patients experience more frequent asthma
exacerbations and significant disability
(2). Various pathobiologic mechanisms
likely drive this heterogeneity in disease
severity, and increased airway type 2 (T2)
inflammation driven by the T2 cytokines

(IL-4, IL-5, and IL-13) is the most
established mechanism of asthma (3).
The majority of the understanding of the
initiation and maintenance of airway T2
inflammation comes from murine asthma
models that demonstrate epithelium-
derived cytokines, such as TSLP (thymic
stromal lymphopoietin) and IL-33, as
activators of tissue-resident immune
cells, such as type 2 innate lymphoid cells
(ILC2), to produce large amounts of the T2
cytokines (3–6). Alternatively, few human
studies have investigated which airway
immune cell types underlie the persistent
production of T2 cytokines in the airways
of individuals with T2-high asthma. Thus,
very little is known regarding how airway
T2 inflammation is maintained in human
asthma. Furthermore, even less is known
regarding immune dysfunction in the
approximately 40% of individuals with
asthma who do not have T2 airway
inflammation (7).

One approach to advancing
understanding of asthma biology is to study
sputum cells, and sputum cells can be
studied at both cellular and molecular levels.
Indeed, we have shown the feasibility of
extracting high-quality RNA from induced
sputum cells (8), and we have reported
that many individuals with asthma have
persistent expression of T2 cytokines
despite treatment with inhaled or systemic
corticosteroids (7). These patients with
steroid-refractory T2-high asthma are older
and have more severe disease (7), but our
prior sputum cell gene profiling work
was PCR based, and the limited number
of genes we studied did not reveal the
gene expression networks that might
explain disease severity in these patients.
Furthermore, we were unable to determine
the networks operating in patients with
T2-low asthma.

Whole-transcriptome gene expression
analyses have been conducted in sputum
cell samples from individuals with asthma,
and these studies have supported a role
for eosinophilic, neutrophilic, and
paucigranulocytic asthmatic disease
(9, 10). However, the multiple immune
cell types that compose sputum samples
have hindered a more comprehensive
understanding of sputum expression
patterns. In the present study, we used
gene expression network analysis to
decipher the immune cell types and
mechanisms that underlie both T2-high
and T2-low asthma.

Methods

Cell Type–Specific Marker Gene
Selection
We analyzed 12 flow-sorted immune
cell gene expression profiles from the
human Immunological Genome Project
(Gene Expression Omnibus accession no.
GSE3982) and the IRIS (Immune Response
In Silico) Project (Gene Expression
Omnibus accession no. GSE22886) (see
Tables E1 and E2 in the online supplement).
These data sets were combined using
ComBat, a batch effect correcting tool in the
sva package (11). We proceeded to perform
differential expression between each cell type
and all other cell types using the limma
software package (12). For each cell type, we
generated a random forest prediction model
to identify the most important significantly
upregulated genes that identify cell type;
all genes with an importance value greater
than 0 were kept (13, 14). Owing to high
similarity in the gene expression profiles of
several immune cell types, we combined
T cells with T-helper cells and mast cells
with basophils. This left us with gene
expression signatures for 10 purified
immune cell types (Table E2). To validate
dendritic cell subtypes, we used gene
expression data from purified murine
lung dendritic cells obtained from the
Immunological Genome Project
database (15).

Subjects and Sputum Sampling
The sputum RNA samples used in this study
were acquired from the Airway Tissue
Bank at the University of California, San
Francisco. Subject characterization, sputum
collection, and RNA extraction were
performed using standardized and uniform
protocols detailed in the online supplement
(8, 16).

RNA Sequencing
Bar-coded whole-transcriptome libraries
were generated with the Ion AmpliSeq
Transcriptome Human Gene Expression Kit
(catalogue no. A26325; Life Technologies)
according to the manufacturer’s protocol.
Sequencing data were generated with Ion
Proton Sequencer (Life Technologies) using
standard reagents and protocols. Read
mapping was performed with TMAP
(Torrent Mapping Alignment Program),
and a read count table for each gene
amplicon was generated using the Proton
AmpliSeq plugin (Life Technologies).

At a Glance Commentary

Scientific Knowledge on the
Subject: Increased airway type 2
(T2) inflammation is a key mechanism
of asthma. Murine models have
implicated multiple immune cell
types in the initiation of airway T2
inflammation, but the immune cells
and mechanisms that result in chronic
activation of T2 inflammation in
human T2-high asthma is unclear.
Furthermore, airway immune system
abnormalities in T2-low asthma are
poorly understood.

What This Study Adds to the
Field: We demonstrate how gene
expression network analysis can be
applied to sputum cell samples to
identify abnormalities of immune
function in asthma. In T2-high asthma,
we show that the gene network at
the core of persistent T2 airway
inflammation is derived from innate
immune cells that include eosinophils,
mast cells/basophils, and inflammatory
dendritic cells. Expression of this
T2 gene network is variable across
individuals with T2-high asthma,
and a subgroup of individuals with
T2-high asthma exhibit very high
expression of genes in this network.
These individuals with “T2-ultrahigh”
asthma are characterized by older
age and high expression of a gene
signature specific for CD11b1/CD1032/
IRF41 classical dendritic cells. In
T2-low asthma, we show that the
gene expression profiles reveal a
deficiency in airway cytotoxic CD81

T cells and that this deficiency is
associated with obesity-related systemic
inflammation.
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Sample sequencing depth was 10–14
million reads.

Statistical Methods
Using DESeq2 (17), gene expression data
were variance stabilizing transformation
normalized. Multidimensional scaling
analysis of the top 500 most variant genes
(12) removed 10 outlier samples (Figure
E1). Genes with fewer than 10 counts
in 15% of samples were excluded from
downstream analyses. This approach
resulted in a final analysis dataset of 13,536
genes across 84 subjects with asthma and
27 healthy control subjects. Weighted
gene coexpression analysis (WGCNA) was
performed using a soft-threshold power of
12 and a deep-split metric of 3, and we
obtained 24 coexpression networks (Table
E3). Eigengenes were calculated using the
first principal component of all genes within
each network. Using Spearman’s correlation,
we determined the association of these gene
network eigengene values with each other
and with other clinical traits.

Results

Specific Immune Cell Type–enriched
Gene Sets
Gene expression data derived from
induced sputum cells are a composite of
expression from multiple immune cell types
in the sample. To determine whether gene
expression patterns identified from induced
sputum are representative of changes in
immune cell composition, we identified sets
of genes enriched for specific immune cell
types. These gene sets were developed by
performing a combination of differential
expression and feature selection analyses on
published gene expression data (18) for 12
purified human immune cell types (Tables
E1–E2) (19). Analysis of these gene sets
by t-Distributed Stochastic Neighbor
Embedding and plotting cells using two
t-Distributed Stochastic Neighbor
Embedding dimensions resulted in cell-type
separation (Figure 1A). Moreover, ordering
by cell types showed cellular specificity in
gene expression profiles (Figure 1B).

Sputum RNA-Sequencing Networks
Reflect Airway Immune Cell Diversity
Whole-transcriptome sequencing
performed on the induced sputum samples
from 27 healthy control subjects and 84
subjects with asthma identified 13,536

expressed genes (Table E4). To identify
coexpression networks, we performed
WGCNA analysis on the subject–gene
expression matrix, which identified 24
networks that we randomly assigned color
labels (Figure 2A). Enrichment analysis for
immune cell–type gene sets revealed that
at least 1 network was enriched for each of
the 10 immune cell–type signatures tested,
and 9 of the 24 sputum networks were
significantly enriched for at least 1 cell-type
signature (Figure 2B). For example, the
turquoise network was highly enriched in
genes specific for neutrophils (Figure 2B),
and the dark green network was highly
enriched in genes specific for eosinophils,
basophils/mast cells, and monocyte-derived
dendritic cells (Figure 2B).

To validate that our enrichment
analyses correctly assigned cell types to their
respective enriched networks, we correlated
subject network expression with subject
sputum cytospin cell counts. For example,
we found strong correlations between
the dark green network expression and
eosinophil cell counts (r = 0.77), turquoise
network expression and neutrophil cell
counts (r = 0.746), and green network
expression and macrophage cell counts
(r = 0.669) (Figure 2C). These results reveal
the diversity of immune cell types in the
human airway and the utility of sputum
gene expression network analysis to identify
and quantify these immune cells.

A Sputum Network Identifies
Patients with T2-High Asthma and
a New Subgroup of Patients with
T2-UltraHigh Asthma
We tested each network’s expression for
association with asthma status and asthma-
related demographic variables (Figure E2).
The dark green network was most strongly
associated with asthma, and expression
levels of this network were 2.42-fold higher
among subjects with asthma (P = 9.823
1029) (Figure 3A). Moreover, dark green
network expression negatively correlated
with FEV1 percent predicted (r =20.35;
P = 2.43 1023) (Figure 3B) and positively
correlated with biomarkers of airway T2
inflammation, including blood eosinophil
cell counts (r = 0.67; P = 93 10215) and
fractional exhaled nitric oxide (FENO)
concentrations (r = 0.52; P = 53 1028)
(Figure E2). We found that all three T2
cytokine genes—IL4, IL5, and IL13—were
present in this network and that the T2
cytokine gene mean (8) strongly correlated

to dark green network expression (r = 0.86;
P = 53 10233) (Figure 3C). Therefore, we
used the 92 genes in the dark green network
to hierarchically cluster subjects into
T2-high and T2-low asthma subgroups
(Figure 3D). T2-high and T2-low clusters
were identified on the basis of the first
branching point in the dendrogram
(Figure 3D). The T2-high cluster consisted
of predominately subjects with asthma
(n = 49) and few healthy control subjects
(n = 2). The T2-low cluster consisted of
nearly equal numbers of subjects with
asthma (n = 35) and healthy control subjects
(n = 25). Subjects with T2-high asthma
had higher blood and sputum eosinophil
concentrations, IgE concentrations, and
FENO concentrations, validating the cluster-
based T2 status assignment (Table 1).
Hierarchical clustering also identified a
subgroup of subjects with T2-high asthma
with uniformly higher expression of genes in
the T2 network (Figure 3D); we classified
them as subjects with “T2-ultrahigh” asthma
(n = 15) (Figure 3D). This T2-ultrahigh
subcluster was characterized by higher blood
and sputum eosinophil concentrations,
FENO concentrations, and T2 cytokine
expression, but their IgE concentrations
were not especially high (Table 1 and Figure
3E). Furthermore, we found that subjects
with T2-ultrahigh asthma were older
(Table 1 and Figure 3F) and had more severe
airflow obstruction (Table 1), despite the
majority (11 of 15 [73%]) receiving inhaled
corticosteroids (Table 1).

Sputum T2 Inflammation Is
Characterized by the Activity of
Multiple Innate Immune Cells
Our immune cell enrichment analysis
indicated that the sputum T2 network is
derived from multiple innate immune cells,
including eosinophils, mast cells/basophils,
and monocyte-derived dendritic cells.
To better understand the mechanisms
underlying the genes in these immune cell
enrichments, we examined the connectivity
of the 92 T2 network genes using the
WGCNA topological overlap matrix.
Hierarchical clustering of these genes
identified three highly correlated subsets
of genes (labeled subnetworks 1–3) within
the T2 network (Figure 4). Subnetwork 1
contained all three T2 cytokine genes
(IL4, IL5, IL13), together with three genes
highly specific to mast cells/basophils
(CPA3 [carboxypeptidase A3], HDC
[histidine decarboxylase],MS4A2 [membrane
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spanning 4-domains A2]) and GATA2
(GATA-binding protein 2), a critical
transcription factor in basophil and mast
cell differentiation (20, 21). We also
observed three genes—NTRK1 (neurotrophic
receptor tyrosine kinase 1), CST1 (cystatin
SN), and CLCA1 (chloride channel accessory
1)—highly induced from airway epithelial
cells by IL-13 stimulation (21, 22).

Subnetwork 2 contained the
most interconnected genes in the T2
network (Figure 4). CEBPE (CCAAT
enhancer–binding protein epsilon) and
GATA1, two genes with critical roles in
eosinophil differentiation and maturation,
were within this network (23). Moreover,
17 of the 26 genes in this network

were upregulated in sputum eosinophils
after allergen challenge (P = 3.653 10221)
(24). In addition, a hub gene in this
network was IL1RL1 (IL-1 receptor-like 1),
encoding the ST2 receptor for IL-33
cytokine signaling, a key signaling mechanism
in T2 inflammation (25).

Consistent with our enrichment,
the genes in subnetwork 3 were highly
representative of inflammatory dendritic
cells (IDECs), including CD1A, CD1B,
CD1C, CD1E, RAMP1 (receptor activity
modifying protein 1), CD207, and F13A1
(coagulation factor XIII A chain) (Figure 4).
We also noted the presence of other IDEC
markers in this subnetwork, such as the T2
chemokine CCL17 (C-C motif chemokine

ligand 17) and FCER1A (Fc fragment of IgE
receptor Ia) subunit of the high-affinity IgE
receptor. Collectively, these data suggest that
the T2 cytokine signal in the airways of
patients with T2-high asthma is derived
from the interaction of multiple innate
immune cells, including eosinophils, mast
cells/basophils, and IDECs.

An Activated T2-skewed
CD11b1IRF41CD1032 Dendritic Cell
Network Is Increased in T2-High
Asthma
The T2 network (dark green) results showed
the centrality of innate immune cells in
persistent airway T2 inflammation, but we
also found a strong correlation between the
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black network and the T2 gene network (r =
0.67; P = 1.33 10215) (Figure 3D). Notably,
the black network contained CD11B (a
dendritic cell marker), ZBTB46 (zinc finger
and BTB domain containing 46) (26), and
FLT3 (fms-related tyrosine kinase 3), three
genes highly selective for classical dendritic
cells (cDCs) (27, 28). In fact, expression of
ZBTB46 and FLT3 was highly correlated
with black network expression (Figure 5A).
Prior work in mouse lungs has established
CD11b1/CD1032 and CD11b2/CD1031

subpopulations of cDCs (6, 29) driven
by IRF4 (IFN-regulatory factor 4) and
IRF8 (30), respectively. Both CD11B and
IRF4 are part of the black network, and
expression of these genes was highly
correlated with black network expression
(Figure 5B). In contrast, neither CD103 nor
IRF8 was part of the black network, and
expression of both genes was negatively
correlated with black network expression
(Figure 5C). To confirm these findings
in a global analysis, we examined

transcriptome-wide expression data for
purified mouse lung CD11b1/CD1032

and CD11b2/CD1031 dendritic cell
populations. These murine gene sets were
obtained from the Immunological Genome
Project database (30). Using gene set
enrichment analysis (31), we found that
black network genes were strongly enriched
among the genes most highly expressed
in CD11b1/CD1032, as compared with
CD11b2/CD1031 cells (P, 1.03 1025)
(Figure 5D).
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Functional enrichment analyses
(32, 33) of black network genes identified
Gene Ontology categories involved in
LPS-mediated signaling and its primary
activation target, NF-kB (nuclear factor kB)
(Figure E3). In fact, all five NF-kB family
members were located in the black network.
LPS is a strong maturation stimulus for
dendritic cells, and NF-kB signaling is
required for dendritic cell development
(34). Enrichment analysis of black network
genes also identified positive regulation
of IL-2 production. IL-2 is produced by
mature dendritic cells and stimulates T-cell
expansion (35). Taken together, our data
suggest that this black network is tracking
mature CD11b1/CD1032/IRF41 dendritic
cell stimulation of T cells. This conclusion
is further supported by the observation
that the OX40 ligand (TNFSF4 [TNF
superfamily member 4]) and the OX40
receptor (TNFRSF4 [TNF receptor
superfamily member 4]) genes are in this
network. The OX40 receptor is expressed
only on activated rather than naive T cells,
and likewise, OX40L is expressed only by
activated dendritic cells (36). Moreover,
OX40L is expressed by a specific type
of dendritic cell driving T-helper type 2
cell (Th2) differentiation (37). This
complements recent data showing that
CD11b1/IRF41 dendritic cells drive T2

inflammation in the mouse lung (6, 30).
Furthermore, the CRLF2 (cytokine receptor
like factor 2) gene, which serves as the
coreceptor for the master T2 cytokine TSLP,
and CCL22, a T2 chemokine produced by
dendritic cells, were both present in the
black network. Taken together, our data
support a role for CD11b1/CD1032/IRF41

and CD1031/CD11b2/IRF81 dendritic cell
populations in the human airway that are
increased and decreased, respectively, in
individuals with T2-high asthma. Moreover,
our data support a role for CD11b1/
CD1032/IRF41 dendritic cells as key
activators of T cells in a T2-skewed
manner to drive persistent airway T2
inflammation.

Sputum CD81 Cytotoxic T-Cell
Network Is Decreased in T2-Low
Asthma and Negatively Associates
with Obesity
To identify immune mechanisms of T2-low
asthma, we compared eigengene expression
of each of the immune cell–enriched
WGCNA networks between subjects with
T2-low asthma (n = 35) and healthy control
subjects (n = 27). We found that expression
of the royal blue network was robustly
lower in subjects with T2-low asthma than
in healthy control subjects (false discovery
rate, 0.03) (Table E5). Immune cell–type

enrichment analysis identified the royal
blue network as enriched for T-cell and
natural killer cell genes (Figure 2B). Because
CD81 cytotoxic T cells (CD81 T cells)
express many of the same genes as natural
killer cells, we analyzed the expression data
for CD81 T-cell genes. Of the CD81 cell
surface markers, we found that CD3E,
CD3G, CD3D, CD8A, and CD8B (38) were
all within the royal blue network and that
their expression was strongly correlated with
royal blue network expression (Figure 6A
and Table E3). Furthermore, many CD81

T-cell genes involved in cytotoxic function,
including killer cell lectin-like receptors,
PRF1 (perforin 1), and the granzymes, were
identified as highly correlated members
of the royal blue network (Figures 6B and 6C
and Table E3). Finally, we identified many
additional CD81 T cell–associated genes
in the royal blue network, including the
CD81 T-cell transcription factors EOMES
(eomesodermin) and TBX21 (T-box 21) (39,
40) as well as the cell surface markers
CD40LG, CD96, NKG7 (natural killer cell
granule protein 7), CD28, and IL12RB2
(IL-12 receptor subunit b2) (Table E3
and Figure 6D). To confirm that the
royal blue module was representing CD81

T cells, we used gene set enrichment
analysis (31) to test overrepresentation of
genes from the royal blue module in the

Table 1. Clinical Characteristics of Type 2 Clusters

Characteristic

Healthy Control
Subjects
(n = 27)

T2-Low Asthma
(n = 35)

T2-High
Asthma
(n = 34)

T2-Ultrahigh
Asthma
(n = 15)

P
Value*

Age, yr 37.9 (12.1) 37.4 (12.8) 40.1 (14.3) 51.5 (18.5) 0.009
ICS, n (%) N/A 15 (43) 23 (68) 11 (73) 0.02
Female, n (%) 17 (63) 21 (60) 19 (56) 11 (73) 0.59
BMI, kg/m2 25.4 (6.5) 29.6 (6.1) 30.7(7.6) 26.0 (5.4) 0.31
FEV1, % predicted 98.0 (12.7) 83.0 (15.4) 79.3 (15.1) 73.5 (12.5) ,0.001
FVC, % predicted 98.8 (15.0) 96.6 (16.1) 94.2 (17.0) 85.9 (15.2) 0.06
Blood cell counts, 3106/L, median (IQR)
Neutrophils 3.3 (2.9–4.5) 4.2 (3.4–5.0) 3.8 (3.3–4.8) 3.6 (2.7–4.0) 0.05
Eosinophils 90 (60–170) 160 (110–250) 290 (250–350) 470 (390–550) ,0.001

Sputum cells, %, median (IQR)
Neutrophils 29 (18–36) 23 (11–31) 24 (15–35) 36 (24–48) 0.05
Eosinophils 0 (0–0.1) 0.2 (0–0.6) 2.0 (0.9–4.3) 7.3 (4.0–13.2) ,0.001

FENO
† 15.9 (11.9) 32.0 (35.1) 40.6 (29.7) 52.4 (33.2) 0.09

Blood IgE, median (IQR)‡ 16 (7–57) 65 (37–319) 318 (96–741) 113 (63–248) 0.3
T2GM 20.58 (0.33) 20.54 (0.27) 0.31 (0.43) 1.60 (1.30) ,0.001
ACT score, median (IQR)x N/A 20 (17–22) 19.5 (16–22) 18 (16–21) 0.71

Definition of abbreviations: ACT=Asthma Control Test; BMI =body mass index; FENO= fractional exhaled nitric oxide; ICS= inhaled corticosteriods; IQR=
interquartile range; N/A=not applicable; T2= type 2; T2GM= type 2 gene mean.
Data are reported as mean (SD) unless otherwise indicated.
*P values for association based on univariate ordinal logistic regression modeling in the subjects with asthma.
†FENO was available for 55 subjects with asthma.
‡Blood IgE was available for 67 subjects with asthma.
xACT score was available for 71 subjects with asthma.
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most differentially expressed genes between
flow-sorted CD81 T cells and all other
immune cell subtypes (Table E2). This
analysis confirmed that genes in the royal
blue network were strongly enriched
among the genes most highly expressed
in CD81 T cells (Figure 6E).

Interestingly, we found that the royal
blue network was negatively associated
with body mass index (r =20.44; P =
1.583 1026) (Figure 6F), with lower
network expression levels in obese
subjects with asthma than in nonobese
subjects with asthma (P = 0.005) (Figure
E4). Obesity induces a state of chronic
low-grade inflammation characterized
by elevated plasma concentrations of
inflammatory cytokines such as IL-6,
and we recently determined that this
inflammation strongly associates with

disease severity in asthma (41). Thus,
we assessed the relationship between the
CD81 T-cell network and plasma IL-6
concentrations. We found a strong negative
correlation between plasma IL-6
concentrations and expression of the CD81

T-cell network (Figure 6F). As a sensitivity
analysis to determine if this observation
was secondary to inhaled corticosteroids,
we stratified subjects into those receiving
or not receiving inhaled corticosteroids.
We found that subjects with asthma who
were not receiving inhaled corticosteroids
demonstrated a similar negative correlation
between CD81 T-cell gene expression and
body mass index (Figure E5). In concert,
these findings suggest that expression of
the CD81 cytotoxic T-cell network is
decreased in individuals with T2-low
asthma compared with healthy control

individuals and that this decrease
tracks with obesity and systemic
IL-6 inflammation.

Discussion

The mechanism by which the airway
immune system sustains persistent T2
cytokine production is poorly understood,
and limited data exists for whether this
inflammatory process is heterogeneous
across individuals with T2-high asthma. To
address this deficiency, we performed a
complete characterization of the airway
immune system by analysis of whole-
transcriptome gene expression patterns
generated from the sputum cell pellets of
subjects with asthma and healthy control
subjects. We found that the core T2
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inflammation network exhibited gene
expression profiles characteristic of multiple
innate immune cells, including mast
cells/basophils, eosinophils, and IDECs.
Further dissecting this network into
subnetworks, we found that one such
subnetwork was clearly derived from the
gene expression of eosinophils, reaffirming
the centrality of eosinophils to airway T2
inflammation and the dependence of airway
eosinophilia on T2 cytokines. Interestingly,
the subnetwork containing IL4, IL5, and
IL13 also contained canonical mast cell/
basophil genes, suggesting these cells
as candidate cellular sources of T2 cytokines
in the airways. In support of this possibility,
we recently reported that ex vivo IL-33
stimulation of sputum cell samples
resulted in IL13 and IL5 expression only in
sputum samples that had a strong mast
cell/basophil gene signature before
stimulation (21). Most surprisingly, a third
subnetwork was observed that contained
genes characteristic of IDECs. Although this
is one of the first reports, to our knowledge,
of an IDEC gene signature in airway T2
inflammation, these cells are a dominant
feature in skin tissue in atopic dermatitis (42,
43). The IDEC signature includes the CD1
family genes that are involved in antigen
presentation and the FCER1A gene subunit
for the high-affinity IgE receptor, suggesting
roles for these cells in both adaptive immune
and IgE responses.

Our workflow of sputum collection
and RNA sequencing, coupled with
unsupervised clustering of our core T2
network, represents a robust and unbiased
method for classifying individuals with
asthma as “T2 high” and “T2 low.”
Expression of these T2 network genes
varied widely among the T2-high subgroup,
and we found a subgroup of subjects with
nearly uniformly high expression of all T2
network genes. These subjects with “T2-
ultrahigh” asthma were older and had more
severe airflow obstruction (7) despite the
fact that they were usually receiving inhaled
corticosteroids. These data suggest that
not all airway T2 inflammation responds
to inhaled corticosteroids, a finding that
is consistent with our recent report of
individuals with T2-high asthma who are

older and whose asthma is nonresponsive
to intramuscular triamcinolone (7). Our
findings for a distinct T2-ultrahigh
subgroup require confirmation in future
studies of airway T2 inflammation and
severe asthma.

Our analysis also revealed a cDC
network that was increased in subjects with
T2-high asthma, but especially in the T2-
ultrahigh subgroup. This human airway
cDC network clearly mirrored the well-
described murine airway CD11b1/CD1032

cDC population, which was shown to
be a critical driver of the T2 immune
response in mice (6, 30, 44). Functional
enrichment analysis of genes in this network
demonstrated evidence of cDC activation
via NF-kB signaling and upregulation
of IL-2 production. Notably, the Gene
Ontology signature for production of
T cell–activating IL-2 and the presence of
the dendritic cell ligand OX40 (TNFSF4)
and the T-cell OX40 receptor (TNFRSF4)
genes in this network leads us to conclude
that this network captures key molecular
events in the dendritic cell activation of
Th2 cells (6, 30, 37). The especially high
expression of this network in the subjects
with T2-ultrahigh asthma provides a
potential mechanism underlying this severe
disease subtype and a rationale for targeting
CD11b1 cDCs and/or the associated
pathways in patients with T2-ultrahigh
asthma.

The molecular mechanisms underlying
T2-low asthma remain poorly understood.
We found decreased expression of a network
containing genes highly characteristic of
CD81 cytotoxic T cells in T2-low asthma.
A primary function of CD81 T cells is
host defense against viral infection, and
our data lead us to speculate that CD81

T-cell deficiency and an impaired immune
response to viral infections could be a
mechanism of exacerbations in T2-low
asthma. Interestingly, we found that
expression of this CD81 cytotoxic T-cell
network was strongly related to obesity
and systemic inflammation, and it is
possible that obesity-related systemic
inflammation could cause CD81 cytotoxic
T-cell dysfunction, possibly via T-cell
exhaustion (45). Supporting this hypothesis,

IL-6 concentrations were negatively
associated with expression of the CD81

T-cell network, and genes specific for
T-cell exhaustion, including PDCD1
(programmed cell death 1), LAG3
(lymphocyte-activating 3), and CTLA4
(cytotoxic T-lymphocyte–associated
protein 4) (46), were in this CD81 cytotoxic
T-cell network (Table E3). The cross-
sectional nature of our study opens the
possibility that our findings in T2-low
asthma could be driven by the treatment
effect of inhaled corticosteroids on
airway inflammation. However, the
strong negative association between body
mass index and the CD81 T-cell gene
network remained robust even in patients
not receiving inhaled corticosteroids,
suggesting that inhaled corticosteroid
treatment was not responsible for this
relationship.

We acknowledge limits to our use
of gene expression proxies to infer the
presence and quantity of specific cell types.
Specifically, other cell types that were
not represented in our analysis may
also play a role in T2-high and T2-low
disease. For example, mouse and human
studies suggest that ILC2 cells are major
producers of T2 cytokines. Using available
mouse ILC2 cell data, we were unable to
identify genes specifically enriched in ILC2
cells, preventing us from determining
their contribution to the sputum T2
inflammatory signature. Moreover, gene
profiles enriched in blood-derived immune
cells used in our study may differ from
these cells in the airway. Future studies
employing single-cell sequencing of sputum
cells will be needed to confirm and extend
our results.

In conclusion, we demonstrate how
gene coexpression network analysis in
sputum cells can reveal airway immune
cell dysfunction in asthma. Our work
advances understanding of airway immune
dysfunction in asthma and provides
mechanistic targets for drug development
in steroid-resistant T2-high and T2-low
phenotypes of asthma. n

Author disclosures are available with the text
of this article at www.atsjournals.org.

Figure 5. (Continued). transcription factor IRF8 are negatively correlated to the eigengene values of the black network. Circles represent each subject and
are shaded according to the expression of the T2 gene mean (red = high expression; blue = low expression). (D) Gene set enrichment analysis. The green
curve displays the running enrichment score for the black network genes as the analysis walks down the ranked distribution of genes ordered by fold
change in expression between CD11b1CD1032 DCs versus CD11b2C1031 DCs. Genes are represented by the vertical black bars. P, 0.001.
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