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Background: Polymyxin B and E (colistin) have been pivotal in the treatment of XDR Gram-negative bacterial
infections; however, resistance has emerged. A structurally related lipopeptide, octapeptin C4, has shown signifi-
cant potency against XDR bacteria, including polymyxin-resistant strains, but its mode of action remains
undefined.

Objectives: We sought to compare and contrast the acquisition of resistance in an XDR Klebsiella pneumoniae
(ST258) clinical isolate in vitro with all three lipopeptides to potentially unveil variations in their mode of action.

Methods: The isolate was exposed to increasing concentrations of polymyxins and octapeptin C4 over 20 days.
Day 20 strains underwent WGS, complementation assays, antimicrobial susceptibility testing and lipid A analysis.

Results: Twenty days of exposure to the polymyxins resulted in a 1000-fold increase in the MIC, whereas for
octapeptin C4 a 4-fold increase was observed. There was no cross-resistance observed between the polymyxin-
and octapeptin-resistant strains. Sequencing of polymyxin-resistant isolates revealed mutations in previously
known resistance-associated genes, including crrB, mgrB, pmrB, phoPQ and yciM, along with novel mutations in
qseC. Octapeptin C4-resistant isolates had mutations in mlaDF and pqiB, genes related to phospholipid transport.
These genetic variations were reflected in distinct phenotypic changes to lipid A. Polymyxin-resistant isolates
increased 4-amino-4-deoxyarabinose fortification of lipid A phosphate groups, whereas the lipid A of octapeptin
C4-resistant strains harboured a higher abundance of hydroxymyristate and palmitoylate.

Conclusions: Octapeptin C4 has a distinct mode of action compared with the polymyxins, highlighting its poten-
tial as a future therapeutic agent to combat the increasing threat of XDR bacteria.

Introduction

Infections by XDR bacteria are an increasing concern due to the
lack of effective antibiotics, thereby resulting in high mortality.1,2

Common therapeutic interventions include fosfomycin, tigecycline
and polymyxins; however, resistance has emerged.2–9 Few new
antibiotics or combinations are clinically available to combat XDR
infections, hence it is desirable to discover novel classes.10

Octapeptins are structurally similar to the polymyxins, with
both lipopeptide classes consisting of a cyclic heptapeptide ring
and linear tail capped with a fatty acid, containing multiple posi-
tively charged diaminobutyric acid (Dab) residues (Figure 1).11–13

These Dab residues are critical for interactions of the polymyxins
with the basal component of LPS, lipid A. Their mode of action
involves the initial binding to lipid A, displacement of magnesium
(Mg2!) and calcium (Ca2!), outer membrane permeabilization,

leakage of cytoplasmic contents and subsequent cell death; how-
ever, the exact mechanism is yet to be discerned.14,15 Polymyxin
resistance leads to modification of the phosphate groups on lipid A
with 4-amino-4-deoxyarabinose (Ara4N) and/or phosphoethanol-
amine (pEtN). This reduces polymyxin binding by removing the
negative phosphate that attracts the cationic Dab residues, stabi-
lizing the outer membrane and negating the infiltration of this
antibiotic class.16,17 Constitutive up-regulation of this pathway is
achieved through chromosomal variations in the two-component
regulatory systems (TCSs) crrAB, pmrAB and phoPQ and the nega-
tive regulator mgrB in Klebsiella pneumoniae.8,9,18 The structurally
similar octapeptins retain most of the key binding motifs and
might be expected to employ a similar mode of action. The most
significant structural difference between the polymyxins and octa-
peptins is a truncated linear exocyclic peptide (one residue instead
of three) linked to a b-hydroxy-fatty acid (instead of an alkyl fatty
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acid, a critical component in polymyxin activity19) in the octapep-
tins.11–13 More minor variations include L-Dab to D-Dab and L-Thr to
L-Leu substitutions. Despite their similarity, prior research has
revealed that octapeptins retain the ability to kill polymyxin-
resistant (Pmx-R) bacteria and several exhibit broad-spectrum ac-
tivity (against Gram-positive bacteria, fungi and protozoa).11,20,21

Interestingly, several octapeptin in vivo mouse studies have shown
activity against Pmx-R infections and less toxicity compared with
polymyxins.13,22–24

We have recently reported the first syntheses of octapeptin
C411 and A3,22 followed by detailed biological characterization of
octapeptin C4 that demonstrates its potential as a new ‘last-resort’
antibiotic.23 In view of the limited understanding of the mechan-
ism by which octapeptins target bacteria, and to help advance
their preclinical development, we sought to investigate the differ-
ences driving development of octapeptin C4 and polymyxin resist-
ance at a genetic level. Two studies have previously investigated
the acquisition of resistance to octapeptins. One was performed
using EM49 (a mixture of octapeptin classes A and B), which
exhibited no increase in resistance after 10 passages for
Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus
and Candida albicans.25 The other investigated lipid A modifica-
tions in octapeptin C4-resistant P. aeruginosa isolates obtained
from a subculture surviving a single overnight treatment at 2 or
32 mg/L.23

The ST258 lineage of K. pneumoniae is commonly involved in
outbreaks as it frequently harbours carbapenem resistance.26–30

We have previously used WGS to investigate the acquisition of
polymyxin resistance in an epidemic lineage of K. pneumoniae
ST258 isolated from a Greek hospital.26 An XDR polymyxin-
susceptible isolate, 20_GR_12, was selected from this cohort and
represents a strain in which a ‘last-resort’ antibiotic is employed.
This isolate was passaged with an increasing concentration of pol-
ymyxins or octapeptin C4 for 20 days followed by antimicrobial

susceptibility testing, WGS, complementation assays and analysis
of lipid A composition to elucidate the potential mode of action.

Materials and methods

Bacterial strains and growth conditions

The clinical polymyxin-susceptible XDR K. pneumoniae ST258 (closely
related to the NJST258_2 clade) isolate, 20_GR_12, was sourced through
Hygeia General Hospital, Athens, Greece as previously described.26 Cultures
were grown in LB and, for single colony isolation, cultures were grown on ei-
ther LB or nutrient agar (NA) plates.

Antimicrobial susceptibility testing
MIC was determined by the broth microdilution method according to CLSI
guidelines.31 Cultures were grown in CAMHB and, to assess cross-resistance
of day 20 isolates, broth was supplemented with the concentration of anti-
biotic tolerated at that timepoint (Table S1, available as Supplementary
data at JAC Online). Clinical breakpoints were determined in accordance
with CLSI guidelines32 and, for tigecycline, as per EUCAST (Version 8.0,
2018) (see http://www.eucast.org). As no clinical breakpoint has been
reported for octapeptin C4, an MIC�32 mg/L was defined as resistant.

Selection of resistance
A single colony of 20_GR_12 was selected and grown overnight at 37�C,
shaking at 220 rpm. This culture was grown to log phase (OD600"0.4–0.6)
and plated into three separate 96-well polystyrene, non-treated plates
(Sigma–Aldrich) with colistin, polymyxin B or octapeptin C4 (n"6).
Following overnight incubation, the well that harboured the densest growth
(OD600�1) underwent a 1:1000 dilution and was transferred to a new plate
with the concentration range adjusted accordingly. The highest concentra-
tion used for the polymyxins was 128 mg/L, and 32 mg/L for octapeptin C4.
This process was performed for 20 days with the following 5 days of no anti-
biotic exposure. At day 20, the culture was further diluted (1:1000) and
placed in non-supplemented broth to be incubated overnight, followed by

Colistin (A) and polymyxin B (B) differ by one amino acid [polymyxin B: phenylalanine and colistin: leucine (R1)]. One defining feature of

octapeptin C4 (C) is that it contains 8 amino acids rather than 10 in polymyxins. In addition, a leucine residue replaces threonine within

the ring (R2), the exocyclic Dab residue is the D-enantiomer and the fatty acid tail contains a 3-hydroxy group (R3).

Figure 1. Structural comparison between the three lipopeptide antibiotics used in this study. This figure appears in colour in the online version of JAC
and in black and white in the print version of JAC.
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an MIC test to evaluate resistance stability. Fold-change significance was
determined via GraphPad Prism 7 with a one-way ANOVA with a Tukey’s
multiple comparisons test where significance was P , 0.05.

Lipid A modifications
Lipid A was extracted using the ammonium hydroxide–isobutyric acid
protocol as previously described.33 Day 20 cultures were grown overnight in
LB supplemented with antibiotic (Table S1). Overnight inocula were subcul-
tured (1:100) into 100 mL of LB broth and grown to an OD600"0.8–1.
Cultures were pelleted (15008 g, 20 min, 4�C), washed with 1% PBS
(15008 g, 15 min, 4�C) and freeze-dried.33 Ten milligrams of lyophilized
cells was suspended in isobutyric acid:ammonium hydroxide (5:3 v/v) at
100�C for 4 h, supernatants isolated by centrifugation (12470 g, 15 min),
diluted with water (1:1 v/v) and lyophilized. Extracts then underwent two
methanol washes (1180 g, 15 min) and extracted lipid A (1 mg/L) was solu-
bilized in methanol (5 mM ammonium acetate). Samples were infused at a
low rate of 5 lL/min into a QSTAR Elite (Applied Biosystems) hybrid quadru-
pole Time-of-Flight (TOF) mass spectrometer. Data were exported from
Analyst (SCIEX), normalized to the highest mass intensity and graphed in
GraphPad Prism 7.

DNA extractions and library preparation
Glycerol stocks from day 20 isolates were grown on NA plates. Single colo-
nies were grown in antibiotic supplemented broth (Table S1), incubated
overnight and DNA was extracted using the DNeasy Blood and Tissue Kit
(QIAGEN) according to the manufacturer’s guidelines. Two colonies were

selected from day 0 and four colonies from four replicates per treatment
group. Quantification of DNA was acquired using QubitVR 3.0 (Thermo Fisher
Scientific) and 1 ng of DNA underwent library preparation with the Nextera
XT kit (Illumina) as per the manufacturer’s instructions. Quality control was
checked with a 2100 Bioanalyzer (Agilent Technologies) and LabChip GX
(PerkinElmer).

Sequencing and analysis
Libraries were sequenced on an Illumina NextSeq with 150 bp paired-end
sequencing reads with�95% coverage with the exception of CST_2 (colony
1) (48%). Trimmomatic34 was used to trim paired-end reads and SPAdes
v3.10.1 implemented for assembly.35 Annotation of assembled genomes
was accomplished using the Rapid Annotation using Subsystem
Technology (RAST).36 The Centre for Genomic Epidemiology (CGE) tools
were implemented to delineate laterally acquired resistance genes
(ResFinder 3.0)37 and plasmids (PlasmidFinder 1.3).38 Reads were aligned
using BWA-MEM39, analysed through FreeBayes40 and impact of change
determined through SnpEff.41 Nucleotide sequences have been deposited
under NCBI BioProject PRJNA415530 (www.ncbi.nlm.nih.gov/bioproject/
415530).

Complementation assays
Genes speculated to cause resistance underwent complementation as pre-
viously described.26,42 Briefly, genes harbouring a potential variation contri-
buting to resistance were amplified using the 2X Phusion HF master mix
(Thermo Fisher) with the primers listed in Table S2. The gene was cloned

Table 1. MICs of several antibiotic classes for day 20 replicates compared with the initial isolate

Straina

MIC (mg/L)b

CST PMB OctC4 AMX ATM FEP CRO CHL CIP GEN MEM PIP TET TGC TMP

Initial �0.25S �0.125S 8 .64R
.64R �16R

.64R �32R
.64R �4S �32R

.64I
.64R �2S,I

.64R

CST_1 .128R
.128R �8 .64R

.64R �16R
.64R �8S �32R 4S �32R

.64I
.64R �4S,R

.64R

CST_2 .128R
.128R �4 .64R

.64R
.64R

.64R 4S �32R �4S �32R
.64I

.64R 2I
.64R

CST_3 �128R �128R �4 .64R
.64R

.64R
.64R 8S

.64R �4S
.64R

.64I
.64R �4I,R

.64R

CST_4 .128R
.128R �8 .64R

.64R
.64R

.64R �8S
.64R �4S

.64R
.64I

.64R �4I,R
.64R

CST_5 .128R
.128R 2 .64R

.64R
.64R

.64R �8S
.64R �4S

.64R
.64I

.64R �4I,R
.64R

CST_6 .128R
.128R �8 .64R

.64R
.64R

.64R 8S
.64R �4S

.64R
.64I

.64R �4R
.64R

PMB_1 128R 128R �4 .64R
.64R

.64R 32R 4S 32R �4S
.64R

.64I
.64R �4I,R

.64R

PMB_2 .128R
.128R 8 .64R

.64R �8I
.64R 4S

.64R �4S �0.25S
.64I

.64R �2S,I
.64R

PMB_3 .128R
.128R 4 .64R

.64R �32R
.64R 8S

.64R 2S �32R
.64I

.64R 2I
.64R

PMB_4 .128R
.128R 4 .64R

.64R �8I,R �32R �2S 48R 2S �8R
.64I

.64R 2I
.64R

PMB_5 .128R
.128R �8 .64R

.64R �8I,R �32R �8S
.64R �4S �2I,R

.64I
.64R �2S,I

.64R

PMB_6 .128R
.128R �8 .64R

.64R �16R
.64R 8S

.64R �4S �32R
.64I

.64R �4I,R
.64R

OctC4_1 0.25S �0.25S 32 .64R
.64R �16R

.64R 8S
.64R �2S �32R

.64I
.64R �2S,I

.64R

OctC4_2 0.25S 0.25S 32 .64R
.64R �8I,R

.64R 8S
.64R �2S �32R

.64I �2S �1S �8R

OctC4_3 �0.5S 0.25S 32 .64R
.64R �4S,I 32R 8S

.64R �4S �0.25S
.64I

.64R 2I
.64R

OctC4_4 �0.5S 0.25S
.32 .64R

.64R �4S,I 32R 8S
.64R 1S �0.25S

.64I �2S,R �2S,I �4R

OctC4_5 0.5S 0.5S 32 .64R
.64R

.64R
.64R �8S

.64R 2S
.64R

.64I
.64R 2I

.64R

OctC4_6 �0.5S �0.5S 32 .64R
.64R �4S,I �32R �16S, I

.64R 2S �0.25S
.64I

.64R 2I
.64R

Resistance determined as per CLSI guidelines, except EUCAST guideline used for tigecycline (S, susceptible; I, intermediate; R, resistant). Fluctuations in
MIC values (n"4) are displayed by two letters defining the resistance level. Grey shading indicates resistant MIC values. Resistance to octapeptin C4
defined at an MIC�32 mg/L, as no clinical breakpoint has been reported for this compound.
aThe initial polymyxin-susceptible isolate (20_GR_12) and this strain subjected to 20 days of treatment with colistin (CST), polymyxin B (PMB) or octa-
peptin C4 (OctC4) (_1, _2, _3, _4, _5 and _6 indicate replicate numbers).
bMIC determined for: CST, colistin; PMB, polymyxin B; OctC4, octapeptin C4; AMX, amoxicillin; ATM, aztreonam; FEP, cefepime; CRO, ceftriaxone; CHL,
chloramphenicol; CIP, ciprofloxacin; GEN, gentamicin; MEM, meropenem; PIP, piperacillin; TET, tetracycline; TGC, tigecycline; and TMP, trimethoprim.
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into the pCR-BluntII-TOPO using the Zero Blunt TOPO PCR cloning kit
(Invitrogen). The plasmid was transformed in electrocompetent E. coli
TOP10 via electroporation, grown on Mueller-Hinton agar (MHA) (kanamy-
cin: 50 mg/L) at 37�C and plasmids extracted using the QIAprep Spin
Miniprep Column kit (QIAGEN). Plasmids were transformed into the initial
susceptible strain (20_GR_12) and incubated on MHA (zeocin: 1500 mg/L).
Furthermore, the WT gene was amplified from the initial strain and placed
into the resistant day 20 isolates followed by MIC determination.

Results

Rapid resistance acquisition for polymyxins dissimilar to
octapeptin C4

Selected resistance over the 20 day time course revealed signifi-
cant variability between polymyxins and octapeptin C4 (Figure 2d).
Initially, an MIC of 0.125 mg/L was measured for both colistin and
polymyxin B. The majority of replicates treated with the polymyx-
ins had a clinical resistance phenotype of .2 mg/L by day 10
(Figure 2a and b). Every replicate had a rapid escalation in MIC to

.64 mg/L, generally within 5 days from the point when the MIC
reached 0.5 mg/L. In contrast, octapeptin C4 resistance progressed
steadily amongst replicates (Figure 2c) with only a 4-fold increase
(from an initial MIC of 8 mg/L) compared with a�1000-fold in-
crease for the polymyxins (Figure 2e). Although octapeptin C4 re-
sistance remained stable, the extent of growth started to diminish
during the last passages in the presence of 32 or 16 mg/L octapep-
tin C4.

Lack of cross-reactivity and reduction of resistance in
octapeptin C4-selected isolates

Day 20 isolate MICs of a broad array of antibiotic classes were
determined to evaluate whether acquired resistance conferred
cross-resistance or resulted in regained susceptibility (Table 1). No
cross-reactivity was apparent between polymyxins and octapeptin
C4. Non-susceptibility to amoxicillin, aztreonam, ceftriaxone, cipro-
floxacin, piperacillin and trimethoprim was ubiquitous amongst
treatment groups. Chloramphenicol resistance was observed in
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the initial isolate but normally diminished over the time course
across treatment groups. In some instances, cefepime susceptibil-
ity was restored (replicates OctC4_3, OctC4_4 and OctC4_6). These
replicates also regained susceptibility to meropenem, as did
PMB_2. Replicate OctC4_2 also exhibited susceptibility to tetracyc-
line and tigecycline but replicate OctC4_4 showed variability to-
wards these antibiotics, with both resistant and susceptible MICs
depending on the colonies selected.

Octapeptin C4-resistant isolates harbour an increase in
hydroxymyristate and palmitoylate dissimilar to Ara4N
lipid A modifications in Pmx-R strains

In the initial isolate, MS/MS analysis of extracted lipid A fractions
showed that the major singly charged peak was at m/z 1824.2,
which corresponded to a hexa-acylated lipid A species composed
of two phosphate groups, two glucosamines and four 3-hydroxy-
myristoyl groups (3-OH-C14), with two of these further acylated with
myristate (C14) (Figure 3a and Figure S1). This mass correlated with a
doubly charged species of m/z 911.6 with greater intensity, herein
designated as the WT lipid A. Lesser quantities of various modifica-
tions accompanied the WT lipid A, including a hydroxyl modification
of a myristate (m/z 919.6, WT!C14:OH), palmitoylation (m/z 1030.7,
WT!C16) and Ara4N (m/z 977.1, WT!Ara4N) (Figure 3b). The de-
tection of Ara4N species may indicate the initial strain is heteroresist-
ant, with a resistant subpopulation existing within a phenotypically
susceptible isolate. Pmx-R isolates showed near complete loss of WT
lipid A and fortification of Ara4N on phosphate groups, mainly in
hydroxymyristate species [m/z 985.1, WT!C14:OH!Ara4N; m/z
1042.7, WT!2(Ara4N); m/z 1050.7, WT!C14:OH!2(Ara4N)]
(Figure 3b, Figure S2 and Figure S3). The other commonly reported
resistance modification to lipid A, pEtN (m/z 973.2), was
never observed. Lipid A from the octapeptin C4-selected isolates dif-
fered from the Pmx-R isolates and was similar to the WT profile
(major peak of the hydroxymyristate derivative), but with a signifi-
cant 5-fold increase in representation of palmitoylation (Figure 3b

and Figure S4). The Ara4N modification was enhanced compared
with WT, but not to the extent seen with Pmx-R isolates.

Plasmid loss associated with octapeptin C4 resistance

To ascertain the genetic basis for resistance and subsequent
phenotypic traits, four day 20 replicates were selected from each
treatment group. Clonal expansion of genomic variations was
monitored by selecting four colonies per replicate along with two
colonies from the initial isolate. The initial isolate harboured resist-
ance genes targeting aminoglycosides, b-lactams, fosfomycin,
quinolones, sulphonamides, tetracycline and trimethoprim
(Table 2). Five plasmid replicons were identified including ColRNAI,
IncFIB(K)-Kpn3, IncFII(K), IncN and IncX3. The only replicates with
other resistance gene alterations in polymyxin-treated groups
were PMB_2 [loss of aph(30)-Ia, blaKPC-2, blaOXA-9 and IncX3 repli-
con, n"4] and PMB_3 (loss of IncX3, n"1) (Table 2). High variabil-
ity was observed for octapeptin C4-exposed replicates including
the absence of aph(30)-Ia, aph(30 0)-Ib, aph(6)-Id, blaKPC-2, blaOXA-9,
blaTEM-1B, sul2, tet(A) and dfrA14. Furthermore, plasmid replicon
loss was apparent in three of the four replicates including
IncFIB(K)-Kpn3, IncFII(K) and IncN.

Chromosomal variations in LPS pathways associated
with polymyxin resistance whilst phospholipid (PL)
transport associated with octapeptin C4 resistance

Genomic alterations identified in replicates treated with polymyxin
or octapeptin C4 differed significantly. In Pmx-R replicates,
affected genes were predominantly associated with LPS process-
ing and lipid A modifications, including crrB, hepIII, lptC, mgrB,
pmrB, phoPQ and yciM (Table 3). An additional TCS gene, qseC, was
also disrupted in PMB_3 (S8R, I283L) and PMB_4 (L40F). Although
similar genes were impacted across replicates, the mutation posi-
tions differed. Additionally, an accumulation of variations in LPS
pathways was apparent within a single replicate. Variants were
observed in all four colonies indicating clonal expansion.

(a) Modifications that were detected in WT hexa-acylated lipid A. This included hydroxylation of a myristate (R1), palmitoylation (R2)

and the addition of 4-amino-4-deoxy-arabinose (Ara4N) to either of the phosphate groups (R3 and R4). (b) Doubly charged lipid

A species detected for the initial isolate (n = 2) and treatment groups (n = 6). Values represent mean ± SD of the relative peak intensities.

Figure 3. Lipid A modifications identified after 20 days of exposure to colistin, polymyxin B or octapeptin C4. CST, colistin; PMB, polymyxin B; OctC4,
octapeptin C4. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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Complementation assays were conducted to unveil these genes’
contributions to resistance (Figure 4). Polymyxin susceptibility was
restored in CST_2 (complete deletion of mgrB), CST_3 (M1I), CST_4
(N42I), PMB_2 (W47L) and PMB_4 (D29Y) once complemented
with pTOPO-mgrB (Figure 4b–d, f and h). The PmrB (P95L) variant in
PMB_1 was validated to contribute to resistance (Figure 4e).
Alterations in CrrB (D57V), PhoP (R81C) and QseC (S8R, I283L) were
confirmed to cause resistance once these mutated genes were
introduced into the initial strain (Figure 4m). Subtle increases in
polymyxin MIC were detected for PhoQ (P420A, G434C), PhoQ
(D417N) and QseC (L40F) but did not surpass the breakpoint
MIC (Figure 4m). This confirms the presence of multiple resistance-

conferring mutations in a single isolate with several contributing to
polymyxin tolerance.

Several octapeptin C4 replicates harboured changes in mlaDF,
pqiB and traH in all four colonies. Additional genes that were
altered in two colonies per replicate included azoR, hinT and rpsA.
Strikingly, mlaF (A165P) was impacted in three different octapeptin
C4 replicates at the same position (Table 3). Complementation
assays that introduced pTOPO-mlaD, -mlaF or -pqiB into octa-
peptin C4-resistant replicates reduced the MIC by 2-fold; how-
ever, consistently only partial growth was observed at 8 mg/L
(Figure 4i–l). Introduction of WT genes into the initial isolate
revealed that the vector and gene did not influence the MIC and
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gene deletion and * is a stop codon. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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confirmed that these alterations were responsible for the resist-
ance observed (Figure 4m and n).

Discussion

Polymyxins can lead to high levels of resistance during thera-
peutic use, likely driven by suboptimal exposure in the clinic due
to the risk of nephrotoxicity.43 Resistance in K. pneumoniae
appears to be stable and incurs a minimal fitness cost.44,45

These clinical characteristics were reflected in our study where-
by once the isolate could tolerate 0.5 mg/L of either colistin or
polymyxin B, the clinical breakpoint was vastly exceeded within
48 hours, well within the duration of clinical antibiotic therapy.
This rapid progression of resistance was not observed for octa-
peptin C4, in which only comparatively minor increases in MIC
were observed. The slow progression in resistance profile could
be an advantageous characteristic of octapeptin C4 as a poten-
tial clinical intervention.

Following 20 days of increasing sublethal antibiotic exposure, no
cross-resistance was apparent between polymyxins and octapeptin
C4. Colistin and polymyxin B resulted in similar resistance profiles
with the only deviation seen in sample PMB_2, in which susceptibil-
ity to meropenem was regained. This was due to the absence of
blaKPC-2 and blaOXA-9, along with the homogeneous loss of IncX.
Clinically, meropenem is being used in combination with polymyx-
ins, and these results suggest that, in some cases, meropenem may
overcome polymyxin resistance.46,47 Furthermore, previous re-
search has identified the loss of blaKPC plasmids in Pmx-R clinical iso-
lates and suggests that this loss is due to a potential fitness cost.48

Our results also show plasmid loss in octapeptin C4-exposed repli-
cates, and this corresponded to a reduction in resistance to cefe-
pime, meropenem and tetracycline. However, these findings are
preliminary and whether this resembles a fitness cost associated
with octapeptin C4 exposure or results from repeated passaging
under no selective pressure warrants further investigation. Similarly,
chloramphenicol susceptibility was restored in day 20 isolates
exposed to polymyxins or octapeptin C4. Whether this is the result

Table 3. Genomic alterations detected in day 20 resistant isolates

Straina Gene Gene description Nt changeb Amino acid changec

CST_1 (4) crrB two-component hybrid sensor and regulator A170T D57V

CST_2 (4) hepIII LPS heptosyltransferase III A238Dfs R80Gtr

CST_2 (4) mgrB putative inner membrane protein 1-144D 1-47D
CST_3 (4) mgrB putative inner membrane protein G3A M1I

CST_3 (4) phoQ sensor protein C1258G, G1300T P420A, G434C

CST_4 (3) epsJ glycosyltransferase T932G L310STOP

CST_4 (3) lptC LPS export system protein D498Afs N166Ktr

CST_4 (4) mgrB putative inner membrane protein G-41T, A125T N42I

CST_4 (4) phoQ sensor protein G1249A D417N

PMB_1 (4) pmrB sensor protein C284T P95L

PMB_2 (4) dnaJ chaperone protein A892C T298P

PMB_2 (4) mgrB putative inner membrane protein G140T W47L

PMB_2 (4) phoP transcriptional regulatory protein C241T R81C

PMB_2 (4) hepIII LPS heptosyltransferase III TGAAGAGACCCG153D Y51STOP

PMB_3 (4) qseC sensory histidine kinase GCCTGAGCCTGC17Dfs,

A847C

S8R, I283L

PMB_4 (4) mgrB putative inner membrane protein G85T D29Y

PMB_4 (4) qseC sensory histidine kinase CTGGATAAGCTG118Dfs L40F

PMB_4 (4) yciM LPS regulatory protein T128G V43G

OctC4_1 (4) mlaD uncharacterized ATP-binding cassette (ABC) transporter, periplasmic

component

C403T Q135STOP

OctC4_1 (4) pqiB paraquat-inducible protein B C1258T Q420STOP

OctC4_1 (4) traH conjugal transfer protein G417T M139I

OctC4_2 (4) pqiB paraquat-inducible protein B A2080C T694P

OctC4_2 (2) rpsA small subunit (SSU) ribosomal protein S1p T1031A L344Q

OctC4_3 (2) hinT YcfF/hinT protein: purine nucleoside phosphoramidase D240Cfs D81Rtr

OctC4_4 (2) azoR flavin mononucleotide (FMN)-dependent NADH-azoreductase T152A L51Q

OctC4_2 (4), OctC4_3 (4),

OctC4_4 (4)

mlaF uncharacterized ABC transporter, ATP-binding protein GCCGC493Dfs A165Ptr

aStrain represented as: treatment group (colistin, CST; polymyxin B, PMB; octapeptin C4, OctC4)_replicate number (number of colonies impacted from
the four selected).
bNt variations present in �90% of reads and �50% coverage compared with the initial strain, 20_GR_12. D symbolizes a deletion, – in front of the nt
position indicates an alteration upstream and fs represents a frameshift mutation.
cThe introduction of a truncation in the protein downstream of the alteration is noted as tr.
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of repeated passaging or a novel loss of chloramphenicol resistance
via gaining resistance to the three lipopeptides is yet to be discerned.

The mutations observed in selected Pmx-R ST258 strains can be
compared to those we have previously identified in closely related
Pmx-R clinical ST258 isolates (2_GR_12, 4_GR_12, 10_GR_13,
13_GR_14 and 14_GR_14).26 Similarly, the vast majority of resist-
ance was attributed to mgrB (60%), albeit not via an IS element
disruption. Additional mutations were identified in phoPQ accom-
panying the mgrB disruption, which was also apparent in this study
[CST_3 (mgrB: M1I, phoQ: P420A, G434C), CST_4 (mgrB: N42I,
phoQ: D417N), PMB_2 (mgrB: W47L, phoP: R81C)]. Other mutations
in crrB, mgrB, pmrB, phoPQ and yciM have previously been
described in Pmx-R strains.17,18,49 Overall, this indicates that
in vitro experiments can give rise to genomic changes similar to
those observed in the clinic. The notion that one alteration in a TCS
drives resistance, the circumstance for the majority of clinical iso-
lates, is well accepted.50 However, our findings contradict this con-
cept although the high concentration of polymyxin used for our
in vitro resistance selection could be influencing this finding.

We also identified alterations in another TCS, QseBC, which is
known to facilitate cross-talk with PmrAB in E. coli.51 In E. coli, PmrB
acts as a non-cognate partner to the QseBC TCS and has the ability
to not only phosphorylate PmrA, but also QseB. The absence of
QseC was shown to impact virulence due to the accumulation of
phosphorylated QseB and, in particular, alterations in the histidine
kinase domain attenuates its ability to dephosphorylate QseB.51,52

Furthermore, the deletion of qseC and pmrA, promoting phosphor-
ylation of QseB by PmrB, stimulated tolerance to polymyxin B.53

This signalling pathway is not well-characterized in K. pneumoniae.
We observed partial tolerance to PMB when a frameshift mutation
was apparent at nt 118; however, full resistance in PMB_4 was pro-
moted by alterations in mgrB (D29Y) and yciM (V43G), which has
recently been identified to cause resistance.49 Similarly, PMB_3
harboured a frameshift in qseC (GCCTGAGCCTGC17Dfs), although
an additional I283L change in the histidine kinase region resulted
in an MIC of 4 mg/L. This did not explain the full resistance profile
exhibited by PMB_3 and due to the presence of both alleles during
complementation the true extent of resistance cannot be

Figure 5. Proposed pathway associated with K. pneumoniae polymyxin and octapeptin C4 resistance observed in this study. (a) To facilitate resist-
ance to polymyxins, genomic variations are acquired in TCSs. These encompass CrrAB, QseBC, PmrAB and PhoPQ with MgrB acting as a negative re-
pressor. Once this pathway is activated during resistance, sensor histidine kinases (CrrB, QseC, PmrB and PhoQ) will phosphorylate response
regulators (CrrA, QseB, PmrA and PhoP) and allow for the expression of target genes [crrC, unknown (?), pmrD and pmrHFIJKLM]. Disruptions in MgrB
allow for the up-regulation of this pathway resulting in the expression of pmrHFIJKLM, which allows for Ara4N to be attached to phosphate groups on
lipid A. The pEtN lipid A modification, facilitated via the pmrCAB operon, was not observed in this study. (b) The major disruptions identified during
octapeptin C4 resistance were in the Mla and Pqi pathway. OmpC removes PLs from the outer membrane and transfers these to MlaA. PLs are trans-
ported across the periplasm via MlaC and transported to the MlaBDEF complex where the subsequent fate of PLs is unknown. An unknown porin com-
plexes with PqiC to transport metabolites and potentially PLs across the periplasm via the PqiAB complex. Mutations in these pathways elevate the
octapeptin C4 MIC and subsequently hydroxymyristate and palmitoylate are added to lipid A to potentially stabilize the outer membrane. This figure
appears in colour in the online version of JAC and in black and white in the print version of JAC.
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deduced. Considering PMB_3 still resulted in the addition of Ara4N
to lipid A, we speculate that due to the perturbation in the QseC
kinase this is increasing the accumulation of phosphorylated QseB
and allows for the up-regulation of transcriptional targets.
Subsequent transcription could be activating PmrA, similar to other
TCSs in K. pneumoniae, allowing for the expression of the
pmrHFIJKLM operon (Figure 5a).

The Mla pathway was impacted in octapeptin C4-exposed repli-
cates. These genes are responsible for PL importation from the
outer membrane.54 Removal of mlaC in E. coli was previously iden-
tified to increase the abundance of palmitoylated lipid A to stabil-
ize the outer membrane, which correlated with the phenotype in
our study. Similarly, prior research exposing P. aeruginosa to octa-
peptin C4 (32 mg/L) revealed an increase in palmitoylated lipid A.23

Literature reports have demonstrated that octapeptins have the
capacity to bind to PLs55 and it is likely that octapeptin C4 utilizes
this pathway in order to traverse to the outer membrane
(Figure 5b). The involvement of PqiB in membrane integrity has
only recently been characterized in E. coli.56 PqiB was identified to
connect to PqiC and potentially deliver substrate(s) from the outer
to inner membrane. The contribution of the Pqi and Mla pathway
appeared to be additive when evaluating the MIC reduction in
OctC4_1 and OctC4_2. Further genes impacted, though not homo-
geneously amongst the colonies, included rpsA (40S ribosomal
protein), azoR (quinone reductase), traH (plasmid conjugal transfer
protein) and hinT (purine nucleoside phosphoramidase), which
may indicate several intracellular targets.57–60 The lack of muta-
tions associated with Ara4N modifications to lipid A is consistent
with the lipid A profile of the octapeptin C4-resistant isolates. This
observation supports the hypothesis that the octapeptins work by
a different mode of action compared with the polymyxins, one
that does not require an initial binding to lipid A and explains the
lack of cross-resistance between the two classes of lipopeptides.
However, further studies are required to determine if this occurs
ubiquitously for K. pneumoniae and if the same phenomenon is
observed for other Gram-negative pathogens. The development of
resistance in in vitro experiments entails several caveats compared
with the clinical in vivo condition, including a limited regulation of
cell growth and antibiotic concentration and exposure to a con-
centration of antibiotic that may not reflect an in vivo scenario.61,62

Hence, it would be of interest to discern the development of octa-
peptin resistance in vivo. Nonetheless, the slow progression of re-
sistance, potential fitness cost if resistance develops and the
alternative mechanism of infiltration of octapeptin C4 highlight
the potential for octapeptins as future antibiotics.
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