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Abstract

Background: Traditional drug discovery approaches focus on a limited set of target molecules 

for treatment against specific indications/diseases. However, drug absorption, dispersion, 

metabolism, and excretion (ADME) involve interactions with multiple protein systems. Drugs 

approved for particular indication(s) may be repurposed as novel therapeutics for others. The 

severely declining rate of discovery and increasing costs of new drugs illustrate the limitations of 

the traditional reductionist paradigm in drug discovery.

Methods: We developed the Computational Analysis of Novel Drug Opportunities (CANDO) 

platform based on a hypothesis that drugs function by interacting with multiple protein targets to 

create a molecular interaction signature that can be exploited for therapeutic repurposing and 

discovery. We compiled a library of compounds that are human ingestible with minimal side 

effects, followed by an ‘all-compounds’ vs ‘all-proteins’ fragment-based multitarget docking with 

dynamics screen to construct compound-proteome interaction matrices that were then analyzed to 

determine similarity of drug behavior. The proteomic signature similarity of drugs is then ranked 

to make putative drug predictions for all indications in a shotgun manner.

Results: We have previously applied this platform with success in both retrospective 

benchmarking and prospective validation, and to understand the effect of druggable protein classes 

on repurposing accuracy. Here we use the CANDO platform to analyze and determine the 

contribution of multitargeting (polypharmacology) to drug repurposing benchmarking accuracy. 

Taken together with the previous work, our results indicate that a large number of protein 

structures with diverse fold space and a specific polypharmacological interactome is necessary for 

accurate drug predictions using our proteomic and evolutionary drug discovery and repurposing 

platform.

Conclusion: These results have implications for future drug development and repurposing in the 

context of polypharmacology.
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INTRODUCTION

Traditional approaches to drug discovery focus on a limited set of interactions between 

individual protein targets and small molecule compounds. The goal generally is to target an 

essential protein responsible for pathogenesis so as to completely inhibit its function. Almost 

all current drugs have been developed by this approach. However, the number of novel drugs 

being discovered every year has been reduced to a handful. Currently less than 30 new drugs 

approved each year and most of them are analogues to other existing drugs or other patent 

workarounds (data obtained from <fda.gov>) and the estimated average total costs for 

developing a novel drug and bringing it to market can be up to $2.6 billion, according to the 

Tufts Center for the Study of Drug Development <csdd.tufts.edu>. Thus there exists severe 

limitations for novel drug development as it is typically associated with including long 

timeframes (10-15 years) and large investment outlays [1-4].

A solution is to repurpose/reposition existing drugs that are relatively benign in terms of side 

effects for new indications [3, 5-11]. We were one of the first groups to propose shotgun 

drug repurposing for malaria, using a computational multitarget docking with dynamics 

approach [9]; we have since validated our predictive models numerous times (see [3, 5-15] 

for a few examples). Drug repurposing can be made much more efficient and efficacious by 

considering variations (mutations) in proteins encoded by individual host genomes to 

identify several candidates for treatment of the same indication/disease paving the path 

towards exome-specific clinical trial groups, thereby enabling personalized/precision 

medicine. Systematic exploration of drug repurposing opportunities by sharing preclinical 

and clinical trials data is hindered by extensive competition within the pharmaceutical 

industry related to intellectual property issues. We utilize this repurposing paradigm along 

with a computational platform we have developed that evaluates relationships between 

compound-proteome interaction signatures to predict genome- and indication-specific drug 

regimens for particular individuals in a shotgun and holistic manner (i.e., against all 

indications simultaneously). To verify and improve the accuracy of our platform, we have 

been working with collaborators worldwide for preclinical and clinical validation. The 

experimental results obtained are integrated back into the modeling platform to iteratively 

improve putative drug prediction accuracy. Here, we use this platform to explore drug 

polypharmacology.

Overview of Drug Discovery

Small molecule drug discovery begins by assaying compounds for in vitro activity against 

diseases/indications of interest in a high-throughput manner with or without knowledge of 

molecular targets identified by biochemistry and molecular biology [10, 16, 17]. Compounds 

observed to be active in a phenotypic (protein or cell) assay (hits) are further tested in vivo, 

typically in animal models when available, while pharmacokinetic and pharmacodynamic 
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properties are simultaneously measured. Compounds that are successful at this stage are 

considered leads and go through further biochemical and structural optimization. Once 

toxicity and efficacy against the disease of interest is established, the candidate molecule is 

considered for testing in human patients and formally designated as a drug candidate. The 

candidate drug is then subjected to preclinical and clinical studies [18] and if successful, 

undergoes commercial production and distribution [19].

Druggable Protein Classes

Many drugs have no known mechanism of action. Even when they are efficacious, the 

reasons for side effects are not well under-stood and there is no drug without any side effects 

whatsoever at the maximal clinically approved doses in all patients. Drug discovery focuses 

on the elucidation of mechanistic interactions between small molecules and particular 

“druggable” classes of proteins. G-protein-coupled receptors (GPCRs) and protein kinases 

are among the most popular class of targets for a wide range of indications/diseases [20-25].

GPCRs constitute a large superfamily of transmembrane protein receptors unique to 

eukaryotes and are the most successful targets in modern medicine. Approximately 36% of 

marketed pharmaceuticals target GPCRs [20]. However, the endogenous ligands of 100-200 

GPCRs remain unidentified. These so-called orphan GPCRs with unidentified natural 

functions are an important source of drug targets [21].

Protein kinases constitute nearly 2% of all human genes, and play a critical role in cellular 

signaling pathways [22]. Perturbations to these pathways have been linked to cancer, 

diabetes, and other inflammatory diseases [23]. These perturbations are often due to 

mutation, translocation, or upregulation events that cause one or more kinases to become 

highly active and not respond normally to regulatory signals [24]. As a result, much of the 

effort in developing treatments for these diseases has focused on shutting down these 

aberrant kinases with targeted inhibitors [25].

Tyrosine kinase inhibitors (TKIs) in particular have shown promise as powerful therapeutics 

in the treatment of human cancers. Arguably, the biggest success story has been the 

discovery of imatinib for the treatment of chronic myeloid leukemia (CML), a white blood 

cell cancer. CML results from a fusion event that produces an active form of the ABL kinase 

in 95% of CML patients [26]. Imatinib has been highly effective with minimal toxicity in 

treating patients with CML. It is thought that these properties of imatinib is due to its high 

degree of selectivity for ABL; imatinib does not bind to the closely related SRC kinase, even 

though residues at the ABL-imatinib binding interface are nearly identical [26, 27]. 

Unfortunately, even when perceived highly selective TKIs like imatinib are available, the 

emergence of resistance mutations limits the duration of therapeutic benefit.

While the mechanisms of some drugs are somewhat well elucidated as illustrated above, our 

work indicates that most human ingestible drugs function not only by interacting with 

multiple proteins but also that these proteins are from different druggable protein classes 

[15]. Current data suggest that protein functions are distributed unevenly across protein 

structures [28]. The most broadly populated fold families most often catalyze similar 

chemical functions, but to different substrates. The underlying structural differences can be 
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subtle as in the case of conserved binding sites that bind ATP in protein kinases. Up to 4% of 

the proteome of higher organisms such as mammals can be represented by a single fold 

family such as G-protein like receptors, each of which serves as a receptor to recognize a 

different distribution of ligands. This pattern of different molecular interactions being carried 

out by proteins with the same fold makes informatic mapping difficult. Advances in 

methodological accuracy and efficiency that enable mapping of the structural differences 

underlying these different functions are now detectable through iterative superposition of the 

corresponding domain and binding sites [29-31]. Differences between advancements in 

knowledge-based and ab initio protein structure prediction may be instructive for 

advancement by bioinformatic mapping and docking [32]. With an explosion of databases of 

biochemical and structural interactome data, the field appears ripe for system-wide 

bioinformatic mapping of compound-proteome interactions.

Drug Resistance and Multitargeting

We and others have previously explored the effect of amino acid mutations in protein 

structures in the context of drug interactions for infectious indications such as HIV and 

malaria [33-38]. With respect to neoplastic indications, drug resistance is thought to be the 

reason for treatment failure in over 90% of patients with metastatic cancer [39]. For CML, 

the observation of a large number of secondary resistance cases (where patients regressed 

after several months of effective treatment) prioritized the development of a second 

generation of specific kinase inhibitors [26, 40]. While there can be many factors for this 

resistance, 90% of CML patients who relapse after initially positive response to imatinib 

have mutations in the BCR-ABL kinase domain that disrupt imatinib binding [26, 40-42]. 

Laboratory and clinical studies suggested that these mutations are not random. Particular 

mutations were observed with high frequency, indicating a simple physical mechanism 

driving the emergence of resistance [26, 41, 42]. Furthermore, upon administration of 

second-line BCR-ABL inhibitors, the accumulation of new resistance mutations against 

these drugs was observed clinically [43]. All these observations suggest a role for underlying 

multiple pathways acting in a disease specific manner in response to a synthetic agent, like 

imatinib, to cause specific mutations for drug resistance. This so-called synthetic lethality 

may be overcome by designing drugs to work in a disease specific polypharmacological 

manner by taking into account an interactome of multiple disease pathways and drug 

interactions (Fig. 1).

Imatinib was discovered by high-throughput screening followed by lead optimization [26], a 

process that is time-consuming, expensive, and largly ineffective due to high failure rates 

[44]. Imatinib is also non-specific with imperfect selectivity, in that it also inhibits a number 

of other kinases [45, 46], and is found to be active against constitutively activated tyrosine 

kinases such as platelet-derived growth factor receptor (PDGF-R), c-Kit, and macrophage 

colony stimulating factor receptor (c-fms) [47-50]. The mechanism of action of imatinib 

appears to be multi-faceted and likely involves the inhibition of multiple kinase targets that 

regulate various pathogenic functions in distinct tissue and cell compartments (Fig. 1). 

Imatinib treatment can also impair T-cell function in CML patients [51-53]. Rapid design of 

inhibitors with desired selectivity profiles, potentially targeting multiple kinases 
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simultaneously to combat resistance [54] will require computational approaches that 

consider the affinity to the entire kinome simultaneously [55, 56].

The multitarget approach is a necessary one because every drug has to be effective at its site 

of action and also has to be readily metabolized by the body (for instance, by the 

cytochrome P450 (CYP450) enzymes, which are responsible for metabolizing the majority 

of drugs). A majority of small molecule drugs are derived from plant sources [18, 57]. Since 

these molecules are a result of a dynamic interplay of evolution between plants and other 

organisms sharing their environment, we hypothesize that interesting or functional small 

molecules that become drugs have multiple modes of action. Computational screening for 

multitarget binding and inhibition is effective because it exploits the evolutionary fact that 

protein structure is more conserved than sequence and function, and provides logical 

evidence that one compound can be an excellent initial candidate for many different protein 

targets. We have thus developed a platform that is agnostic to how individual compound-

protein interactions are determined (whether predicted or observed) but rather relies on an 

interaction signature which is either a binary or real value set of numbers that indicates how 

well a compound interacts with a library of protein structures considered representative of 

the (current) structural universe.

Enabling Multiple Drug Combinations

In many cases, no single drug is sufficiently effective in the therapeutic range to cure a 

disease, or even to reduce symptoms or recurrence effectively. Thus multiple drugs can be 

combined to strengthen the effect. Independent effects due to interaction with multiple 

targets can decrease therapeutic doses, so that less efficacious and slightly more toxic 

compounds can be used safely and synergistically to achieve the desired efficacy profile. 

Similar to the concept of synthetic lethality in cancer, pathogens often develop resistance to 

single drug therapy, but simultaneous occurrence of multiple mutations that are resistance to 

a drug cocktail are exponentially less prevalent [58, 59]. We use the concept of 

multitargeting, or polypharmacology, where a single dose interacts with more than one target 

and acts synergistically in a disease specific manner, to address these issues.

Perhaps the most successful application of intentional multitarget drug administration is the 

use of inhibitors against HIV reverse transcriptase, protease, and integrase in the fight 

against HIV/AIDS [60]. Multidosing is used in a trial-and-error manner where errors usually 

result in patient suffering and mortality. In order to avoid such situations during human 

clinical testing or clinical practice, novel approaches have emerged to model synergistic 

effects of polypharmacology. For example, combinatorial effects have been tested in vitro 
using an automated robotics and informatics pipeline. There is an effort to identify 

combinations of compounds that display synergistic effects, such as inhibiting cytokine 

storm, as well as tumor inhibition, along with low toxicity and higher efficacy. Such 

complexity is possible due to either a single protein being targeted by multiple inhibitors, or, 

more likely, inhibition of multiple proteins involved in the same physiologic process [61]. 

Such interactions can be modeled and predicted by computational approaches. To this end, 

docking protocols and methods to predict structure activity relationships (SAR) in the 
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context of multitargeting have been integrated into the drug development process, leading to 

efficiencies in cost and labor [62].

Overview of Docking

Docking refers to physical three dimensional (3D) structural interactions between a receptor 

(typically, proteins, DNA, RNA, etc.) and a ligand (small molecules, proteins, peptides, etc.) 

[3, 9, 10, 14, 63-75]. Docking methods are evaluated by measuring the correct pose/binding 

mode (using RMSD or TMScore of the coordinates of the atoms) or by measuring predicted 

affinities [10, 64, 65, 70, 71, 76]. More than 20 molecular docking software tools are 

currently in use for pharmaceutical research. Autodock Vina [77], Gold [78], and Glide [79] 

are a few examples of commonly used docking software. Each is based on a variety of 

cheminformatic, forcefield, and atomic bond flexibility algorithms in predicting poses, and 

meaningful direct comparison of efficiencies and accuracies is difficult. All have been used 

successfully in virtual high throughput screening to predict hits and leads ([3, 9, 10], are 

instances of protocols developed by us). However, the use of computational methods for 

drug discovery is still in its infancy [75, 80]. We have learnt from our previous experiences 

[81] and developed a hierarchical fragment-based docking with dynamics algorithm [82, 83] 

using a generalized all atom potential [74] that exploits evolutionary and structural 

information to predict the >180 million compound-protein interactions analyzed in this 

study.

Leveraging Docking for Drug Discovery: The CANDO Platform

Docking methods are primarily designed to predict conformational accuracy. In the context 

of drug discovery (and in our personal experience at translational research), predicting the 

conformation accurately is not as important as predicting the binding affinity or, more 

importantly, functional inhibition. These factors are generally not well considered by 

traditional docking methods [62]. Further, evaluating global effects of a single compound (or 

a cocktail) on the proteome is necessary to translate the utility of docking methods to 

medicine.

The Computational Analysis of Novel Drug Opportunities (CANDO) platform (Fig. 2) 

predicts the rough poses of compound-proteome interactions bioinformatically and 

hierarchically refines them using fragment-based docking with dynamics simulations of all 

the atoms in the system, which we have demonstrated is necessary for accurate calculation 

of binding energies [81]. Also, we have demonstrated that all-atom knowledge-based force 

fields are much more accurate and consistent than using classical models of physics based 

force fields for both protein structure prediction and docking [84-90]. We have shown that 

using docking with dynamics in a multitargeting manner leads to improved hit rates for 

finding inhibitors of pathogens compared to conventional approaches [9, 10].

Our CANDO platform evaluates how all (currently 3,733, as of 20 March 2014) FDA 

approved and other human ingestible drugs (such as dietary supplements) interact with all 

(currently 48,278, as of 20 March 2014) protein structures from multiple species as a 

representative of the protein universe (46,784 of which were used in this study). These 

compound-proteome interaction signatures were generated using a fragment-based docking 
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with dynamics protocol combined with bio- and chem-informatics approaches. The platform 

then uses similarity of compound-proteome interaction signatures as indicative of similar 

functional behavior; nonsimilar signatures (or regions of signatures) are indicative of off- 

and anti-target [91] interactions, in effect inferring homology of compound/drug behavior at 

a proteomic level. Similarity can be determined using several metrics, from straightforward 

summations of identical yes/no interaction predictions and (root mean squared) deviations of 

interactions scores to sophisticated graph theoretic comparisons that consider the similarity 

of the underlying (actual or predicted) protein-protein interactions compiled from different 

publicly available methods and databases [92-95] as well as using methods previously 

developed by us [96-98]. In an evolutionary context, detecting similarity of interaction 

signatures enables inferring homology of drug behavior, and our proposed metrics analyze 

compound targeting behavior in the context of biologically relevant pathways [92, 93, 99]. 

The signatures are used to rank compounds for all indications. The platform provides an 

optimized and enriched set of predicted compound-protein interactions, a comprehensive list 

of indications and compounds that may be readily repurposed, as well as mechanistic 

understanding of drug behavior at an atomic level. We have successfully used in this 

approach to validate potential clinical leads for ten indications over twelve studies, including 

infectious, autoimmune, oncological, neurological and genetic diseases [11, 100-102] and to 

understand the contribution of druggable protein classes to benchmarking accuracy [15]. The 

goal of this study is to determine the contribution of multitargeting/polypharmacology to the 

accuracy of the CANDO platform.

APPROACH

We first describe how compound-proteome interaction signatures are computed and used to 

rank compounds in an indication-specific manner. We then describe how we retrospectively 

benchmark drug discovery (as opposed to docking) and repurposing platforms, which is 

necessary for the machine learning approach to optimize parameters and to make predictions 

of putative drugs. We finally end with a description of how the CANDO platform was used 

to analyze and assess the extent to which multitargeting or polypharmacology plays a role in 

benchmarking (repurposing) accuracy. Our goal is not only to provide a description of the 

CANDO platform and its accuracy but also to determine contributions to drug behavior in 

the context of polypharmacology and how that information can be leveraged to develop 

better drug discovery and repurposing platforms and eventually lead to making more 

accurate predictions that can be translated to the clinic.

CANDO Platform and Pipeline

The CANDO platform is comprised of a unique computational multitarget fragment-based 

docking with dynamics protocol to implement a comprehensive and efficient drug discovery 

pipeline with higher efficiency, lowered cost, and increased success rates, compared to 

current approaches (Fig. 2). The project is funded by 2010 NIH Director’s Pioneer Award 

and builds upon on our extensive work on drug discovery [3, 9-11, 13, 14, 33-36, 74, 81, 

103-105], but now applied at the level of the whole proteome/interactome. We completed the 

first version (v1) of the CANDO platform on 20 March 2014 that resulted in compound-

protein interaction matrices representing all compounds interacting with all multiorganism 
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protein structures representative of the protein universe. The compound library used for 

screening consists of 3,733 human ingestible compounds including FDA approved drugs and 

supplements. The initial 39,553 protein structure library (total 48,278 structures) comprises 

of 14,595 human proteins (8,841 of these are high-confidence models constructed using a 

combination of one or more protein structure prediction methods including I-TASSER [106, 

107], HHBLITS [108], MODELLER [109], KobaMIN [84, 86] and Protinfo CM [110] and 

24,958 nonredundant protein structures from all organisms (other than the pathogens 

explicitly considered) obtained from the protein data bank (PDB).

Based on in-house benchmarking, we have set up a structural modeling pipeline using 

HHBLITS, I-TASSER and KobaMIN for protein modeling and use COFACTOR [29] and 

our in-house docking program for initial modeling of small molecule protein interactions. 

HHBLITS/ITASSER are used to select templates for modeling. I-TASSER iteratively refines 

the models and templates and our program KobaMIN refines the final models. Protein 

structure prediction methods are assessed in a blind fashion every two years at the Critical 

Assessment of Structure Prediction (CASP) experiments. The methods in our modeling 

pipeline have been among the top performing methods at past CASP experiments. This 

pipeline has been applied to all human proteins that can be modeled with high accuracy 

(~60% of the proteome). The benchmarking of individual components (structure prediction, 

binding site prediction and analysis, docking, potential functions) used in the CANDO 

platform has been done extensively and published by us and by others [74, 84-90, 106-132].

The pipeline initially uses a bioinformatic docking approach to predict interactions between 

all the protein structures and all the small molecule compounds. Additional proteins and 

compounds are added as needed and the CANDO v1 matrix currently consists of an 

additional 8,745 structures from 17 pathogens (≈ 20% are high confidence models) resulting 

in final dimensions of 3,733 compounds × 48,278 protein structures or a total of 

180,221,774 predicted interactions between proteins and small molecules (the actual number 

of equivalent docking calculations is greater by almost a factor of 3, representing the average 

the number of domains and binding sites per protein).

Indication-Specific Interaction Signature Analysis and Comparison Approach to Ranking 
Compounds

The CANDO pipeline uses similarity of interaction signatures across all proteins as 

indicative of similar functional behavior and nonsimilar signatures (or regions of signatures) 

as indicative of off-and anti-target [91] interactions, in effect inferring homology of 

compound/drug behavior at a proteomic level. The main metric to determine similarity is the 

root mean square deviation (RMSD) of the pair of real value vectors that comprise an 

interaction signature. Compound-proteome interaction signatures are compared to each other 

and ranked using protocols that are disease/indication-specific, i.e., compounds approved for 

particular indications (if available) are used to generate rankings of other compounds that 

may have similar interaction signatures. Similar compound-proteome interaction signatures 

are further clustered and protein (target, anti-target, and off-target) specific weighting is 

introduced wherever information about involvement of particular proteins whose modulation 

(typically inhibition) is implicated in pathogenesis.
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A consensus of the top-ranked indication-specific compound-proteome interaction 

signatures are evaluated in the context of additional biological information that includes all-

atom fragment-based docking with dynamics simulations using knowledge-based potentials 

developed by us [74, 84, 85, 87] as well as by others [75], the scientific literature, pathways, 

gene structure and expression data and other information. The top compounds produced by 

these integrated rankings are considered to be putative repurposed drugs for a particular 

disease/indication. The platform thus provides an optimized and enriched set of compound-

protein interactions, a complete and comprehensive list of indications and compounds that 

may be readily repurposeable, as well as a mechanistic understanding of drug behavior at 

three dimensional (3D) atomic and molecular scales.

The top ranking predictions are validated at the bench using a barrage of approaches. Based 

on our extensive experience in predicting drug hits and leads, some of which have been 

patented and are being licensed commercially <www.faqs.org/patents/app/20110112031>, 

obtaining atomic level mechanistic understanding is limited in use and approaches that 

predict functional inhibition are typically most useful in the context of drug discovery.

Machine Learning Approaches to Iteratively Refine Predictions

Our approach is to validate the predictions made and obtain bench results that will then 

iteratively feedback into our pipeline to improve successive predictions. The goal is to 

compare the results from bench validation for a given set of proteins to the predictions and 

re-parameterize our platform using machine learning. This enables us to determine which 

parameter choices have the greatest individual accuracy and also the choices that will lead to 

compounds becoming viable drugs. Machine learning approaches such as neural networks 

and support vector machines (SVMs) are capable of weighting the contribution of individual 

proteins and compounds and particular regions of the interaction signatures as needed to 

optimize predictive value. In past work, we have used both neural network and SVM 

packages written by others to develop methods to predict protein function ([121, 133, 134], 

for instance).

The benchmarking is coupled with machine learning to determine the various parameter 

weightings. Our current accuracies using the “All” protein set (48,278 structures in CANDO 

v1) range from ~12% to up to ~50% depending on the cutoff (top10 to top100) or the 

number of indications considered (i.e, all 1439 indications with two or more approved 

compounds or only those ~700 reporting a nonzero result) using only the compound-centric 

approach to prediction (i.e., all proteins weighted equally). This suggests there is significant 

room for improvement particularly in the number of indications applicable to the CANDO 

platform (i.e., the coverage). The greater the coverage, the higher the number of accurate 

predictions that can be made for all the 2030 indications associated with set of the 3,733 

compounds based on mappings obtained from the Comprehensive Toxicology Database 

<ctdbase.org>.

Benchmarking Accuracy of Drug Discovery Platforms

Benchmarking computational platforms for drug discovery is different from benchmarking 

the ability of software to correctly dock or bind small molecules to proteins. For the latter, 
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the overall accuracy is based on comparisons of predictions to different types of bench 

validation studies. For the former, however, the goal is to determine the ability of a platform 

to recognize the likelihood that any given prediction of a small molecule will be effective as 

a drug for a particular indication.

Initially, a leave-one-out benchmark experiment is performed to calibrate the machine 

learning approach for all indications with more than one approved compound (1439 such 

indications for the CANDO v1 library). The indication assignment for one of the compounds 

is “left out” and the interaction signature similarity comparison approach is used to 

determine the rank of another compound with the same indication and checking whether the 

compound without the assigned indication is among the top ranked. Each of the compounds 

is thus compared and ranked by similarity to all the other compounds in our library. The 

rank(s) of the compound(s) associated with the same indication is used to determine the 

performance of our approach. The lower the (average) rank, the better the performance. 

Similarity is determined using several metrics, such as straightforward summations of 

identical yes/no interaction predictions and (root mean squared) deviations of interactions 

scores.

The sensitivity and specificity of this approach is then evaluated using receiver operator 

characteristic [135] curves. As a computational control, fully randomized CANDO matrices 

(where all the rows and columns, representing compounds and proteins respectively, are 

moved to randomly selected locations) are used to perform the same benchmarking analysis 

to determine the type of results that could be obtained by chance. This allows us to assign a 

probability value that assesses the likelihood of obtaining any particular prediction relative 

to a random control.

This benchmark test is made more rigorous by using more sophisticated jack-knifing to 

leave out related compounds, and different variations of these bootstrapping methods are 

used to minimize overtraining and other biases inherent in the data sources or methods. In 

the end, a machine learning model based on neural networks and/or SVMs is obtained so 

that given a CANDO matrix and a compound-indication mapping table as input, the 

assignments of compounds to indications by interaction signature comparison is optimized. 

The initial best machine learning models are further iteratively optimized as prospective 

predictions are validated and the corresponding bench results are fed back into the machine 

learning process

The benchmarking described above allows us to (i) better weight the parameters used for 

various aspects of the structure modeling pipeline; (ii) determine which docking methods, 

interaction types, and indications are likely to be most accurate and enable assignment of 

confidence values to each of our predictions (as well as an overall p value); and (iii) 
optimize accuracy of the entire platform for ranking putative therapeutics. The judicious 

application of this approach while rigorously minimizing overtraining enables us to 

bootstrap a platform initially based on docking to one targeted towards drug discovery. The 

different validations for particular compound-protein interactions are coordinated to 

maximize the amount of information available for particular high-confidence subsets.
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Contribution of Multitargeting/Polypharmacology to Benchmarking Accuracy

To assess the contribution of multitargeting/polypharmacology on CANDO benchmarking 

accuracy, we compared the distributions and trends of compound-protein interactions for all 

the 3,733 human ingestible compounds in our library for different interaction score cutoffs 

and using different proteome sets (Fig. 3). Polypharmacology or multitargeting can be 

defined by multiple interactions of drugs with all known targets for an indication/disease 

and/or the interactions with multiple targets of different indications/diseases. Our CANDO 

methodology was developed to identify similarity of compound behavior using 

multiorganism compound-proteome interaction signatures as a surrogate for compound 

perturbation of biological function. Our hypothesis is that the biological functions of 

compounds/drugs are related to the identification of multitargeting profiles that includes 

target, off-target and anti-target interactions, and that this information needs to be properly 

utilized for efficient drug discovery and repurposing. The multiorganism proteome data sets 

considered are labeled ALL for all 46,784 protein structures used in this study, HUMAN for 

the 14,595 proteins obtained from a reference Homo sapiens proteome that includes 5754 

solved structures from the PDB and 8839 computationally modeled structures (described 

previously), and NRPDB for a set of 24,958 non-redundant solved PDB structures obtained 

from eukaryotic, prokaryotic, archaea and viral organismal proteomes. We then assess the 

relationship between the degree of predicted multitargeting/polypharmacology to the 

benchmarking accuracies obtained for the indications associated with the human use drugs 

(Fig. 4). Finally, we provide lists of representative indications and respective benchmarking 

accuracies corresponding to five compounds with the highest degree of predicted 

multitargeting and five with the lowest (Fig. 5).

RESULTS AND DISCUSSION

Benchmarking the CANDO Platform

The individual modeling components (structure prediction, binding site prediction and 

analysis, docking, potential functions) used in the CANDO platform have been benchmarked 

extensively by us and by others (see methods). The platform itself has been benchmarked 

using a compound-centric leave-one-out procedure for all indications with at least one 

approved compound [11, 15]. Briefly summarizing: There are 749/1439 indications where 

the predictions identify a related compound with the same indication in the top 1% of the 

ranks (on average). Consistent predictions are produced regardless of the comparison 

method, metric, or matrix used. In contrast, when randomized compound-proteome matrices 

are constructed (by randomly swapping the rows and columns representing the compound-

proteome interaction signatures) and used for making predictions, only 10-20 out of 1439 

indications “work” (using the same criteria as before), with largely inconsistent sets of 

predictions.

Using fully randomized matrices as computational controls automatically accounts for 

normalization issues to account for different number of approved drugs for each indication. 

Random controls are essential as the leave-one-out benchmarking method is more likely to 

work by chance on indications with tens of approved compounds compared to those with 

only a few approved compounds. Our benchmarking results indicate higher average 
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accuracies for indications with larger number of approved drugs. Moreover, compared to 

random controls, the increase in benchmarking accuracy across all indications is much 

higher than expected by chance: The average of average accuracies obtained using matrices 

based on variations of the 48,278 proteins is 15.1% and the maximum average accuracy 

achieved (by filtering for number of compounds) is 49.8%; in contrast the best performing 

random matrix (out of a 1000) produced an average accuracy of 0.4% and the maximum 

accuracy achieved when measured as a function of the number of compounds is 0.9%. Based 

on the benchmarking, we can determine the indications for which the current version of the 

CANDO platform is most relevant, which enables us to assign confidence values to each of 

our predictions.

Multitargeting in Human Approved Drugs Using the CANDO Platform

The benchmarking accuracy is a measure of drug repurposeability. To quantify the level of 

multitargeting/polyphamacology for each compound, we use multiple cutoff scores (>1.5, 

>1.6, >1.7, >1.8, >1.9) based on our scoring scheme [15] that correspond to moderate to 

high compound-protein interaction prediction accuracies. All the 3,733 compounds are 

sorted by their degree of multitargeting based on the highest cutoff score of >1.9 and plotted 

against the number of interacting proteins (Fig. 3).

Using the ALL (46,784) proteome set we find that the most predicted multitargeting/

polypharmacological drugs interact with 464, 298, 190, 123, and 76 proteins using 

interaction score cutoffs >1.5, >1.6, >1.7, >1.8, and >1.9 respectively (Fig. 3a). If we 

consider only human proteins (Fig. 3b), the most predicted multitargeting drugs interact with 

189, 117, 73, 45, and 26 proteins with interaction scores >1.5, >1.6, >1.7, >1.8 and >1.9 

respectively. Similarly, for NRPDB (Fig. 3c), we get 263, 174, 113, 75, and 48 interacting 

proteins for the most predicted multitargeting drugs. Our results indicate that even if our 

interaction prediction method is wrong half the time, there are still a significant number of 

drugs approved for human use that are highly polypharmacological (Fig. 3). This suggests 

that this is an essential feature for a small molecule compound becoming a drug as almost all 

human approved and ingestible compounds exhibit some degree of polypharamacological 

signal. Some of the most promiscuous drugs using the interaction profile for the ALL 

proteome set include eptifibatide, a drug used during heart attack or angioplasty to avoid 

blood clots [136, 137] and belongs to the same class of drugs as aspirin, and the second most 

promiscuous drug desmopressin, a synthetic replacement for vasopressin, the hormone that 

is used to treat the symptoms of diabetes insipidus by reducing urine production, and has 

been suggested as a therapeutic for various other indications (see Fig. 5a) [138, 139].

Next, we assessed the similarity of distributions of multitargeting/polypharmacology for all 

3,733 compounds between different proteomes: ALL, HUMAN and NRPDB. Visually the 

distributions of multitargeting/polypharmacology looks very similar for the different 

proteomes (Figs. 3a,b,c). Moreover, on average, all drugs interact with a similar (~2.5-3%) 

fraction of interacting proteins relative to the proteome size (Fig. 3d). However, a two-

sample Kolmogorov-Smirnov (K-S) statistical test using a two-sided alternative hypothesis 

(which is a statistical measure of assessing similarity or difference between two distributions 

with lower p-value indicating greater difference) shows that ALL is very different from 
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NRPDB as well as from HUMAN, with p-values of 2.2e-16 for all score cutoffs shown in 

Fig. 3 with an exception of a slightly higher p-value, but still significantly different 

distribution between ALL and NRPDB for the >1.5 cutoff. Thus, we conclude that almost all 

human approved drugs are polypharmacological but the particular distributions of 

interacting proteins are selective and specific. This could be the result of an evolutionary 

feature that allows for small molecules with a fairly limited set of atoms (tens to hundreds) 

to confer selectivity and specificity in the context of whole proteomes, and in the context of 

simultaneously competing with other molecules for binding and performing their biological 

function.

Relationship Between Multitargeting and Retrospective Drug Discovery Using the CANDO 
Platform

From the results described in the previous section and Fig. (3), we concluded that most, if 

not all, human approved drugs are multitargeting, and offered an evolutionary explanation 

for how small molecule ligands (drugs or otherwise) derive selectivity and specificity in a 

proteomic context. Here we wanted to assess the degree to which multitargeting/

polypharmacology was responsible for CANDO benchmarking accuracy, i.e., whether the 

drug repurposing signal in CANDO is dominated by the corresponding polypharmacological 

signal.

Fig. (4) compares the entire distribution of average CANDO benchmarking accuracies for all 

1439 indications as a function of polypharmacology, with the order of compounds sorted by 

the degree of interactions based on the interaction score cutoff of >1.9 (i.e., same order as in 

Fig. 3). The CANDO accuracy shown is based on the top10 criterion, i.e. the accuracy of 

retrospectively identifying a known drug-indication association in a ranked list of the top 10 

predictions made by the platform. We used the most stringent criterion (top10) to evaluate 

drug-indication accuracies in a manner that makes them readily verifiable with 

straightforward bench experiments, as used by us to prospectively verify predictions for 12 

different indications.

Fig. (4a-c) shows that multitargeting/polypharmacology does not correlate with CANDO 

benchmarking accuracy for different proteome sets considered. For the sorted list of 

compounds, the average CANDO accuracy over all compounds is lower for HUMAN 

compared to NRPDB and ALL proteins set (Fig. 4d, horizontal lines). The Q-Q plot (Fig. 

4d) shows that the distribution of average CANDO benchmarking accuracies for more 

multitargeting/polypharmacological drugs is not similar between HUMAN-NRPDB and 

HUMAN-ALL proteome sets. Furthermore, the sorted distribution of the fraction of the 

maximum number of interacting proteins for each proteome set correlates with average 

CANDO benchmarking accuracy (Fig. 4d). This suggests that drug discovery is not a simple 

function of multitargeting/polypharmacology (Fig. 4a-c) but taken together with the results 

in Fig. 4d and our prior work [11, 15] indicates that the specific distribution of 

polypharmacology is important for drug repurposing accuracy.

Our results suggest that multitargeting/polypharmacology is a necessary but not sufficient 

condition for drug discovery. Polypharmacology of approved drugs is likely a real 

phenomenon, as detailed in the introduction sections and the predictions observed in Fig. 
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(3). That is, most drugs likely work by interacting with a significant number of proteins (tens 

or hundreds): examples include multi-kinase inhibitor drugs like imatinib, among others. 

CANDO exploits this feature in the form of interaction signatures for drug discovery and 

repurposing. Furthmore, polypharmacology refers to positive interactions (binding, 

inhibition, etc.) to multiple targets, whereas the CANDO platform considers both interacting 

and non-interacting proteins to define the signature of a compound as a vector of real value 

scores that quantify strength of interactions. Our findings thus indicate that for drug efficacy, 

it is not only the significant numbers of protein interactions that are important even in the 

context of multitargeting/polypharmacology, but also the much larger number of non-

interacting proteins and their distribution. Hence, multitargeting/polypharmacology, in its 

simplest form as shown in Fig. (3) that does not consider targets, off-targets, and anti-targets, 

is not sufficient for effective drug discovery and repurposing. A complete description of the 

polypharmacological signal appears to be essential for defining when small molecules 

become drugs, how they derive specificity against an indication/disease, and how they play a 

selective and specific role in modulating metabobolic, regulatory, and signaling pathways.

A simple test of using a binary interaction matrix (interaction on or off) results in 50% lower 

accuracy compared to using the real value interaction scores for benchmarking the CANDO 

platform (holding all other conditions the same). Furthermore, the real value interaction 

scores may account for an evolutionary phenomenon where multiple small molecules 

compete in terms of binding to a single site to influence molecular function, as well as 

binding to homologous protein molecules across multi-organism proteomes cooperatively to 

influence biological function. Taken together, this suggests that quantifying the nature of 

interaction as a competitive/cooperative polypharmacological signal is a better surrogate for 

polypharmacology compared to using binary yes/no interactions of compounds with 

proteins.

Nature of Polypharmacological Interactions to Identify Drugs Efficiently Using the CANDO 
Platform

Small molecule drugs work by considering both positive and negative interactions, specific 

for the indication of interest; defined as the target, off-target and anti-target interactions in 

the context of one or more indications (Figs. 1 and 2). Thus a simple model of 

polypharmacology as multitargeting, as shown in Fig. (3), is a very rough proxy, and it is not 

sufficient for drug discovery and repurposing, as indicated by the data in Fig. (4). At the 

simplest level, two drugs binding to the same target do not necessarily work synergistically 

-- if they bind to the same site (mutually exclusively), they are additive [140] and if they 

bind to distinct sites independently (i.e., without affecting each other's binding), they should 

be synergistic. So the effects of two compounds on a given target will depend on where they 

bind, its binding affinity, and mode of action due to binding (agonist/antagonist). Moreover, 

if one compound binds to multiple proteins, it depends on where it binds, with what affinity, 

and what action is performed in the context of the indication/disease. Finally, there are many 

small molecules in a biological system exerting their influence on both molecular and 

holistic function simultaneously as well as sequentially. If polypharmacology in its simplest 

form is considered only to be the strongest positive interactions to a small number of targets, 

then its applicability for computational drug repurposing is limited. However, a holistic 
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approach that considers positive, negative, and neutral interactions across whole proteomes 

is likely to be useful, as these interactions are derived from evolutionary methods that use 

structural homology to derive interaction scores that can likely be used as a surrogate for 

binding affinity. The benchmarking results obtained using the CANDO platform indicate the 

use of real value interaction scores over binary on/off interaction scores.

A specific interaction signature for a compound that specifies binding efficacy, nature of 

interaction, and the secondary effect of neighboring interactions between interacting proteins 

themselves, defines a continuum of interactions across multiple protein classes. Such an 

interaction signature is a surrogate for polypharmacology that is useful for drug discovery 

and repurposing. These conclusions suggest a model for how a small molecule with few 

atoms derives selectivity and specificity for particular indications, and to modulate functions 

of biological systems. Our answers are obtained by exploring the evolutionary nature of the 

biomolecular interactome (interaction between and within small molecules, proteins, DNA, 

RNA, etc.). The nature of predicted polypharmacology of small molecule interactions with 

multiple proteins in the context of an indication/disease illustrates the limitations of the 

traditional model for drug discovery, and indicates that the interactome based paradigm as 

implemented by CANDO is a useful model for effective drug discovery and repurposing.

Most and Least Polypharmacological Drugs Target Different Indications

The nature of poylpharmacology as it applies to drug discovery and repurposing is complex 

and not a simple function of multitargeting as explained in the previous sections. In order to 

understand the effect of multitargeting and polypharmacology on drug repurposing, we 

examine the indications/diseases that are treated by the most and least multitargeting drugs 

and draw comparisons with imatinib, one of the few well-known polypharmacological drugs 

(Fig. 5). The five most multitargeting drugs in our study include, desmopressin, everolimus, 

goserelin, buserelin, and cephalothin, which are predicted to strongly interact with over 150 

proteins. These drugs are known to treat several complex indications/diseases with multiple 

etiologies (Fig. 5a), including reducing urine production to treat the symptoms of diabetic 

insipidus or nocturia (desmopressin), different forms of lung, kidney, breast and prostate 

cancers (everolimus, goserelin, buserelin), and grampositive microorganism infections 

(cephalothin). As an example, the anti-cancer agent everolimus has been shown to be 

effective against advanced breast cancer resistant to endocrine therapy [141, 142]; a 

successful randomized Phase III BOLERO-2 trial of adding everolimus to exemestane 

showed its effetiveness in the treatment of postmenopausal hormone receptor-positive 

advanced breast cancer [143-145]. Such examples validate the importance of multitargeting/

polypharmacology to combat synthetic lethality in cancer and provide guidance for multiple 

drug combination therapies.

The least multitargeting drugs in our study include mecobalamine (vitamin supplement), 

digoxin (treats heart problems/atrial fibrillation), pyridoxal-p (active form of vitamin B6), 

hydroxy-cobalamin (treats cyanide poisting) and riboflavin (part of vitamin B group), 

mainly used to treat vitamin and nutritional deficiency, anemia, hypertension, among other 

indications (Fig. 5b). On average, the bottom 5 (least) multitargeting drugs as predicted by 

the CANDO platform still interacts with more than 20 putative biological targets. However, 
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the least multitargeting drug, riboflavin, is a vitamin supplement and visually contributes 

lower to drug retrieval benchmarking accuracy than most multitarget drugs (Fig. 5a, 5b). 

Interestingly, imatinib, which is one of the few well-known polypharmacological drugs and 

predicted to interact with only 46 proteins, is mainly used to treat neoplastic diseases (Fig. 

5c) as with most multitargeting drugs (over 150 interacting proteins), but cannot combat 

drug resistance. Moreover, imatinib by itself displays greater drug repurposing potential, as 

it has been approved to treat over 20 indications/diseases, compared to the most and least 

multitargeting drugs taken together (Fig. 5d). This may suggest that imatinib, a multiple 

tyrosine kinase inhibitor, interacts with multiple pathways either directly or indirectly via the 

kinase-signaling cascade, and develops a continuum of interactions between targets, off-

targets and anti-targets, both within and across multiple druggable protein classes to achieve 

synergistic effects for multiple indications/diseases.

SUMMARY AND CONCLUSION

Structure-based rational drug discovery is typically limited to, and by, screening a compound 

library against one protein structure associated with a particular disease (target) to identify 

inhibitor leads that eventually will lead to drugs that treat the indication/disease. The most 

effective drugs in humans (e.g. Aspirin® or Gleevec®) inevitably interact with and bind to 

multiple proteins, a feature that traditional models based on single target drugs fail to take 

into account. Imatinib mesylate, also known as Gleevec®, is a 2-phenylaminopyrimidine 

derivate designed as a specific inhibitor of the ABL protein tyrosine kinases (v-ABL, BCR-

ABL, and c-ABL) [146, 147] but has been one of the widely used polypharmacological 

drugs. Imatinib’s activity against cells bearing the BCR-ABL translocation has yielded 

remarkable results in treating CML with minimal side-effects reported after 5 years of 

continuous administration [26, 148, 149]. In addition, imatinib was found to be active 

against other constitutively activated tyrosine kinases [47-50]. The inhibitory activity against 

c-Kit and PDGF-R has enabled the development of effective treatments for gastrointestinal 

stromal tumors [150], eosinophilic disorders and systemic mast cell disease [151, 152]. We 

present a paradigm where drug efficacy is viewed as a process, considering interactions with 

multiple biomolecules as well as the noninteractions. This interactome based drug discovery 

and repurposing paradigm is implemented by the Computational Analysis of Novel Drug 

Opportunities (CANDO) platform which not only enables predictions of novel putative 

therapeutic leads, but also aids in mechanistic analysis and virtual surgery using small 

molecules to determine the importance of druggable protein classes [15], and the 

contribution of polypharmacology (this work), to benchmarking accuracy.

The traditional process of drug discovery is focused on individual compound-protein 

interactions and requires many rounds of screening, modeling, and synthesis in a trial-and-

error approach that is costly, time-consuming, and often ineffective and unsafe in humans. 

This traditional trials approach, used to develop almost all the drugs to date, has yielded a 

95% failure rate before or during clinical use. Existing drugs with known safety profiles that 

interact with therapeutic targets can be repurposed and rapidly deployed for use in mono and 

multi-drug therapies. We developed the CANDO platform to evaluate how all approved and 

other human ingestible drugs interact with all structures representative of the protein 

universe, and use the resulting information to make predictions of drug efficacy against all 
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indications in a shotgun manner. This approach is highly efficient, producing significantly 

more drug leads per computing cycle than more conventional methodologies by taking 

advantage of statistical multiplier effects in much the same manner seen in whole genome 

shotgun sequencing. The CANDO platform uses signatures of interactions across a 

representative set of protein structures and determines similarity of compound/drug behavior 

at a proteomic level (a form of homology modeling). The signatures are used to rank 

compounds for each indication/disease and provide an optimized and enriched set of 

compound-protein interactions, a complete and comprehensive list of compounds that may 

be readily repurposed, as well as a mechanistic understanding of drug behavior at a 

proteomic level.

The CANDO platform outputs a matrix containing confidence scores measuring the strength 

of interactions between all human use drugs and a library of protein structures we have 

constructed as a representation of the protein universe. This evolutionary based drug 

discovery platform can also be used to predict the small molecule/protein interactions that 

are implicated in specific indications/diseases, as well as specific biological functions. The 

CANDO platform can also be used to identify sets of compounds that affect different 

pathways or different components in the same pathway. The interaction network information 

can also be used to determine whether different components act antagonistically or 

synergistically to guide experiments and identify multiple mechanisms of the same drug.

These structural and evolutionary models of drug discovery are largely static in nature, and 

are designed for general purpose applications. We can use network-driven methods that 

integrate heterogeneous temporal and spatial genomics data to specify predictive signatures 

that identify new candidate therapeutic targets and drugs in a dynamic fashion. This may be 

done by formulating the problem as one of statistical model selection in which subsets of 

variables are chosen to build robust models, and adopt the Bayesian paradigm to coherently 

and rigorously combine different data sources. This leads to a paradigm of disease driven 

drug discovery, where compounds are designed by accounting for interactions with targets, 

anti-targets, and off-targets, and the relevant polypharmacology in the context of particular 

indications is used to identify a drug.

Our work provides a molecular framework to contextualize drug discovery with a paradigm 

superior to hit-and-trial methodologies currently used by traditional approaches. Altogether, 

these efforts by us and others to fully quantify the nature and extent of multitargeting/

polypharmacology in the context of specific indications will hopefully be realized in 

developing new and repurposed therapies to efficiently combat diseases with multiple 

etiologies (such as cancers, infectious and autoimmune diseases).
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Fig. (1). 
Interactome based therapeutic discovery paradigm used by the CANDO platform. Humans 

typically ingest a therapeutic drug (a small molecule or a biologic agent) with the goal of 

targeting particular indications (including infectious, inherited, and neoplastic diseases). The 

schematics for drug, disease and mechanism were adapted and modified from Servier 

Medical Art under Creative Commons CC-BY license. The visualization of the network of 

interaction between imatinib and its interactome was made using the STITCH4 platform 

[153]. In terms of mechanism, a given drug works by binding to one or more target proteins 

of interest, but also binds to other proteins causing off-target (neutral) and anti-target 

(negative) side effects. The CANDO platform makes interaction predictions for "all drugs" 

(currently a library of 3733 human approved compounds) against "all proteins" (currently a 

library of 48,278 proteins) to determine its efficacy against whole systems of interest, 

thereby enabling it to make putative drug predictions for “all” indications (that the library of 

drugs are currently approved for) simultaneously by performing comparative analyses of 

drug-proteome interaction signatures. In contrast to traditional drug discovery approaches 

focused on single targets, our innovative paradigm inverts the traditional one by first 

compiling a library of compounds/drugs that are safe to ingest with established side effects, 

and the shotgun virtual screen against whole proteomes/interactomes enables drug 

predictions for all indications simultaneously.
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Fig. (2). 
The Computational Analysis of Novel Drug Opportunities (CANDO) platform (http://

protinfo.org/cando). The platform consists of a pipeline that generates the compound-

proteome interaction matrix and indication-specific protocols to rank compounds that may 

be repurposed for particular indications/diseases given particular proteomes. The first 

version (v1) of the platform evaluates interactions between 3,733 human ingestible 

compounds that are associated with 2030 indications and 48,278 protein structures (46,784 

of which are used in this study). Via a process of “contextualization”, where the predicted 

interactions are evaluated in the context of biomolecular data from a wide variety of sources 

including molecular docking simulation tools (including our knowledge-based fragment 

docking with dynamics algorithm), candidate interactions are ranked according to the degree 

of interaction and similarity for all indications. Predictions made using our systems-based 

multitarget drug discovery and repurposing platform are subjected to validation via in vitro 
binding, functional, and cellular assays, in vivo studies (if possible), and off-label use 

clinical studies. The resulting information is made available to a wide variety of users and 

applications via the web. The signature comparison and ranking approach used by the 

CANDO platform yielded benchmarking accuracies of 12-25% for 1439 indications with at 

least two approved compounds. 58/163 (35%) top ranking predictions had comparable or 

better activity relative to existing drugs in twelve prospective in vitro studies across ten 

indications, and represent novel repurposed therapies for indications such as dengue, dental 

caries, diabetes, herpes, lupus, malaria, and tuberculosis. Our approach can be tailored to 

Chopra and Samudrala Page 27

Curr Pharm Des. Author manuscript; available in PMC 2019 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://protinfo.org/cando
http://protinfo.org/cando


specific meta genomes by modeling all the corresponding variant (mutant) protein structures 

and making predictions of personalized/precision drug regimens for particular individuals. 

Our blinded shotgun multitarget approach to drug discovery significantly enhances its 

efficiency, reduces drug development costs, and also provides a holistic framework for 

multiscale modeling of complex biological systems with broader applications in medicine 

and engineering.
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Fig. (3). 
Extent of polypharmacology predicted by the CANDO platform. Panels (a)-(c) indicate the 

number of proteins predicted to interact with each of the 3733 human use drugs in the 

CANDO library for different universal proteome sets considered (All: 46,784 proteins; 

Human: 14,595 proteins; and NRPDB: 24,958 proteins) at different interaction score cutoffs 

(ranging from >1.5 to to >1.9; with scores ranging from 0-2.0). The data at the most 

stringest cutoffs (signifying the highest likelihood of an accurate prediction) indicate that the 

fractions of the proteome involved in strong interactions with our drug library is similar 

across all the sets considered. A two-sample Kolmogorov-Smirnov test, which compares two 

distributions with the null-hypothesis that they are not similar, was performed (the lower the 

p-value, the greater the likelihood of the null hypothesis) indicating that these distributions 

are very different at each score cutoff (All to Human p-value 2.2e-16 for all cutoffs and All 

to NRPDB p-value 2.2e-16 for cutoffs >1.9 through >1.6, and 11e-15 for the >1.5 cutoff). 

While a number of predicted interactions may be incorrect or may not be functionally 

important, the current data is what is used to obtain the benchmarking and prospective 

validation results obtained in [11, 15]. Taken together with those results, the above figures 

illustrate that a large number of protein structures with a broad distribution of the fold space 

with significant and specific predicted polypharmacology is necessary for making accurate 

predictions using our proteomic and evolutionary drug discovery and repurposing platform.
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Fig. (4). 
Average benchmarking accuracies for all indications associated with each drug using the 

CANDO platform, sorted by predicted drug multitargeting/polypharmacy. Panels (a)-(c) 

show the average accuracies for all the indications associated with each of the 3,733 drugs in 

the CANDO library shown in the same order as in Figure 3, i.e., sorted by the number of 

proteins they are predicted to strongly interact with, for each of the three proteomes 

evaluated. Panel (d) shows the average of the average accuracies for the sorted distribution 

of average top10 CANDO percent accuracy to the sorted distribution of normalized fraction 

of interacting proteins for the three proteomes. Visually and otherwise, the benchmarking 

(repurposing) accuracies obtained for each indication based on similarities of drug-proteome 

interaction signatures does not appear to correlate with the number of proteins predicted to 

strongly interact with each of the drugs. This indicates that the benchmarking accuracies 

obtained using the CANDO platform, as well as any results from prospective validation, are 

not a simple function of the degree of predicted interactions but rather rely on the specific 

score distributions within the drug-proteome interaction signatures. The above panels 

provide evidence for eliminating a source of potential bias for the CANDO benchmarking 

accuracies and for prospective validations. Further analysis is needed to tease out in detail 

why current human use drugs behave the way they do. Our initial analysis of 

polypharmacology provides a starting point to identify the most promiscuous and the most 
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specific drugs for all the indications that they are currently approved for (and any potential 

future ones), and how that plays a role in their efficacy.
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Fig. (5). 
Relationship between indication type and polypharmacology. Panels (a, b) show the top five 

most and bottom 5 least multitargeting/polypharmacological drugs predicted by the CANDO 

platform sorted by decreasing order of predicted number of protein interactions. The 

indications treated by these compounds are listed and the CANDO top10 percent accuracy 

(retrieval accuracy of the CANDO platform of known drugs for a particular indication in the 

top 10 ranked list of predictions obtained using compound-proteome signature similarity) is 

highlighted using colored tiles. There is no simple correlation between multitargeting/

polypharmacology and CANDO accuracy for all 3,733 compounds (Fig. 4) but the most 

multitargeting drugs treat diseases such as B-cell lymphoma, graft vs host disease, lung, 
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kidney, breast, and prostate cancers along with several infectious indications. In contrast, the 

least multitargeting/polypharmacological drugs are either vitamin supplements or active 

forms of Vitamin B group, and treat hypertension, vitamin deficiency, nutrition and anemic 

disorders, and visually contribute lower to drug retrieval accuracy than most multitarget 

drugs. Panel (c) shows the indications treated by imatinib, one of the few well-known 

polypharmacological drugs. Imatinib treats neoplastic diseases, most of which show higher 

CANDO drug retrieval accuracy than the least polypharmacological drugs, shown in panels 

(b, c). The black filled circles on each bar represent the number of drugs known to treat the 

indications also treated by imatinib. Panel (d) shows the relationship between the number of 

treated indications by most and least multitargeting drugs from panels (a) and (b) 

respectively, in comparison to imatinib. The bars are colored by the number of predicted 

interacting proteins that is also indicated on the top of each bar of the sorted list of 

multitargeting drugs. There seems to be no relation between the number of indications 

treated by multitargeting drugs and the extent of multitargeting, defined as the number of 

predicted protein interactions. Altogether, these results indicate the complex nature of 

polypharmacology and its contribution to drug repurposing, which extends beyond 

interaction with multiple proteins: imatinib with much lower predicted number of protein 

interactions treats neoplastic indications similar to the most multitargeting compounds and 

exhibits a greater repurposing potential based on the number of indications it is approved for 

treatment.
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