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Abstract
Objectives: To formally identify and contrast the most commonly-employed quantifications of response time inconsistency 
(RTI) and elucidate their utility for understanding within-person (WP) and between-person (BP) variation in cognitive func-
tion with increasing age.
Method: Using two measurement burst studies of cognitive aging, we systematically identified and computed five RTI 
quantifications from select disciplines to examine: (a) correlations among RTI quantifications; (b) the distribution of BP and 
WP variation in RTI; and (c) the comparability of RTI quantifications for predicting attention switching.
Results: Comparable patterns were observed across studies. There was significant variation in RTI BP as well as WP across 
sessions and bursts. Correlations among RTI quantifications were generally strong and positive both WP and BP, except for 
the coefficient of variation. Independent prediction models indicated that slower mean response time (RT) and greater RTI 
were associated with slower attention switching both WP and BP. For selecting simultaneous prediction models, collinearity 
resulted in inflated standard errors and unstable model estimates.
Discussion: RTI reflects a novel dimension of performance that is a robust and theoretically informative predictor of BP 
and WP variation in cognitive function. Among the plenitude of RTI quantifications, not all are interchangeable, nor of 
comparable predictive utility.
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Intraindividual variability (IIV) is an approach for examin-
ing dynamic fluctuations in performance that confer mean-
ing beyond estimates of central tendency (MacDonald & 
Stawski, 2015; Ram & Gerstorf, 2009; Stawski, Smith, & 
MacDonald, 2015). This approach holds promise for fur-
thering our understanding of dynamic processes underlying 
adult development and aging (c.f., Benson, Ram, Almeida, 
Zautra, & Ong, 2017; Diehl, Hooker, & Sliwinski, 2015; 

Nesselroade & Salthouse, 2004). Trial-to-trial fluctuations 
on response time (RT) tasks, or response time inconsist-
ency (RTI), is one particular instantiation of IIV that has 
been linked with deleterious age-related outcomes ranging 
from relatively transient lapses of attention (West, Murphy, 
Armilio, Craik, & Stuss, 2002) and neural deficiency 
in attentional control (Weissman, Roberts, Visscher, & 
Woldorff, 2006) to more durable and insidious correlates 
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including normal and pathological cognitive decline, mild 
cognitive impairment, dementia, and compromised neu-
ral function (see Graveson, Bauermeister, McKeown, & 
Bunce, 2016; MacDonald & Stawski, 2015 for overviews). 
Thus, RTI represents a theoretically-valid indicator, emerg-
ing from the IIV tradition, with considerable promise for 
advancing our understanding of psychological function in 
general, and cognitive health in particular (MacDonald & 
Stawski, 2015; Stawski et al., 2015).

Although RTI has emerged as a potentially important 
behavioral indicator of cognitive status and function, 
several notable shortcomings obfuscate its meaning and 
practical utility. One critical shortcoming pertains to how 
best to operationalize RTI. Multiple quantifications are 
represented in the extant literature including: raw intrain-
dividual standard deviation (ISD), coefficient of variation 
(CV), residualized ISD that attempts to control for select 
confounds (e.g., mean RT, time-based trends), variability 
for select portions of the RT distribution (e.g., based on 
percentiles for the fast vs slow tails), and mathematical 
models (e.g., ex-Gaussian distribution). The rationale, 
however, for the use of particular quantifications across 
studies is unclear, as is their comparability and predic-
tive utility for theoretically-relevant outcomes. Without 
systematic examination of (a)symmetry in associations 
across multiple oft-used RTI quantifications, their compa-
rability, interchangeability, meaning, and utility remains 
unclear.

A second critical issue pertains to the mismatch between 
theoretical and conceptual accounts of what RTI reflects, 
and the research designs employed to empirically study 
RTI. While RTI has been argued to reflect relatively labile 
phenomena such as lapses of attention (West et al., 2002) 
as well as more durable phenomena including mild cog-
nitive impairment, dementia, and central nervous system 
(CNS) integrity, most research has focused on RTI as a 
between-person (BP) differences indicator. This, however, 
precludes an understanding of whether variation in RTI 
reflects an individual differences characteristic (e.g., hav-
ing relatively poorer CNS integrity), a more labile char-
acteristic attributable to proximal influences (e.g., daily 
variations in sleep or affect), or both (c.f., Hultsch, Strauss, 
Hunter, & MacDonald, 2008). Measurement burst 
designs (Nesselroade, 1991; Sliwinski, 2008; Stawski, 
MacDonald, & Sliwinski, 2016) facilitate the examination 
of such issues by allowing for the intensive assessment of 
RTI over shorter periods of time (e.g., days); repeating that 
intensive assessment protocol across longer intervals (e.g., 
semiannually, annually), for multiple persons. Thus, BP 
variability (i.e., individual differences) and short(er)-term 
variability within-persons (WP) over time can be distin-
guished. Applying measurement burst designs to the study 
of RTI will provide for a more nuanced understanding 
of RTI—one that more optimally matches a given study 
design to the phenomena under study (Neupert, Stawski, 
& Almeida, 2008).

Competing Quantifications of RTI
Clear theoretical or methodological rationale for selecting 
a specific RTI operationalization are lacking in many pub-
lished studies of RTI and cognitive aging. To formally assess 
the extent of heterogeneity of RTI definitions employed 
within this field, we conducted a literature search with the 
goal of (a) identifying the most commonly employed RTI 
operationalizations, and (b) quantifying how frequently 
these definitions are employed. A  search of the literature 
since 2000 in PubMed and PSYCInfo yielded 465 arti-
cles based upon key search terms (e.g., IIV, reaction time, 
response time, cognition, age). Of these, 186 empirical arti-
cles utilized one or more quantifications of RTI (222 total 
uses). The most prevalent RTI quantifications included the 
CV (30% of total uses), residualized ISD (29%), raw ISD 
(24%), and ex-Gaussian models (7%). For the remaining 
RTI quantifications, no single definition was used more 
than 3.6% of the time, with infrequently employed defini-
tions including percentile approaches, log linear variance 
models, individual range and amplitude approaches, sta-
tistical (log-linear variance prediction) and mathematical 
(i.e., diffusion model, Weibull distribution) models, and 
raw between-group variability.

These frequencies underscore clear heterogeneity in 
RTI quantification, and unequivocally identify raw ISD, 
coefficient of variation, residualized ISD, and Ex-Gaussian 
models as the most frequently utilized quantifications in 
empirical work spanning the last 17 years. Although easy 
to compute, a raw ISD fails to control for mean RT, mak-
ing it difficult to discern whether individual differences in 
variability (e.g., due to age) are an important phenomenon 
or merely an artifact of differences in mean RT. To address 
the concern of mean confounds, the CV is often derived to 
index RTI. However, the CV is a ratio of ISD to intraindi-
vidual mean, and use of such an interaction term makes it 
difficult to determine whether any observed effects reflect 
associations attributable to increased variability, mean 
slowing, or both (Hultsch et al., 2008). The residualized 
ISD controls for systematic between- (e.g., group differ-
ences in mean RT) and within-subject (e.g., polynomial 
time effects) confounds in the raw data (Hultsch et  al., 
2008). Finally, fitting explicit mathematical functions such 
as the ex-Gaussian distribution to raw RT data yields two 
parameter estimates: mean (mu) and SD (sigma) of the 
normally-distributed portion of the RT distribution, and a 
third parameter (tau) reflecting the M and SD of the posi-
tively skewed tail of the distribution. Although not solely 
a measure of RTI, larger estimates of tau are putatively 
driven by increased fluctuations in executive control pro-
cesses (e.g., West et al., 2002). Notably, few studies report 
more than a single quantification of RTI (e.g., Deary & 
Der, 2005; Myerson, Robertson, & Hale, 2007), with 
seemingly no comparison of results across these compet-
ing definitions. As such, the comparability of RTI indices 
remains unknown.
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The Present Study
We focus on several key research objectives using data from 
two measurement burst studies of cognitive aging. First, 
using the most commonly employed RTI quantifications 
(raw ISD, CV, residualized ISD, and ex-Gaussian) that vary 
in approach for addressing confounding influences, we com-
pute corresponding RTI estimates for a similar RT measure 
from each study. We also include a fifth indicator of RTI, the 
mean squared successive difference (MSSD; von Neumann, 
Kent, Bellinson, & Hart, 1941), given its close computa-
tional association with the residualized ISD approach, and 
its use in neuroscience for minimizing the effect of within-
subject trends by deriving RTI estimates from differences 
among successive adjacent trials. Second, given the advan-
tages of measurement burst designs for studying RTI, we 
decompose the variability in RTI into BP and WP sources, 
and then systematically compare associations across the five 
RTI quantifications at each level of analysis. Specific ques-
tions addressed include: (a) What proportion of the varia-
tion for each RTI quantification is BP versus WP?, (b) Is a 
high degree of association observed across RTI quantifica-
tions both BP and WP?, and (c) Do the RTI quantifications 
share similar predictive associations for attention switch-
ing performance? Answers to these questions will inform 
the central issue of whether the disparate RTI quantifica-
tions are interchangeable. Finally, through parallel analyses 
across the two burst-design studies, an ancillary objective 
will address the generalizability of the individual RTI quan-
tifications across measurement and sample.

Method
To address the research aims, the present study employs 
data from two measurement-burst studies—Project Mental 
Inconsistency in Normals and Demented (MIND) and the 
Cognition Health and Aging Project (CHAP).

Participants and Design

Project MIND
At baseline, 304 community-dwelling adults participated: 
68.4% women, mean age  =  74.02  years (SD  =  5.95, 
range  =  64–93), mean years of education  =  15.15 
(SD = 3.14). Exclusionary criteria included a diagnosis of 
dementia by a physician or Mini-Mental State Examination 
score <24, a history of significant head injury (defined as 
loss of consciousness for more than 5 min), other neuro-
logical or major medical illnesses (e.g., Parkinson’s disease, 
heart disease, cancer), severe sensory impairment (e.g., dif-
ficulty reading newspaper-size print, difficulty hearing a 
normal conversation), drug or alcohol abuse, current psy-
chiatric diagnoses, psychotropic drug use, or lack of fluency 
in English.

Annually, participants completed a burst evaluation 
consisting of five individual testing sessions at year 1, with 
four sessions completed in years 2, 3, and 4. Each session 

was scheduled approximately 2 weeks apart, with partici-
pants completing a broad battery of RT tasks designed to 
assess short-term fluctuations in response speed. For each 
annual wave, the burst RT measures were identical and the 
order of presentation invariant. Up to four annual measure-
ment occasions with burst data were available, and 76.9% 
(n = 242) of participants completed all four bursts.

CHAP
At baseline, 111 older adults participated: 72% female, mean 
age = 80.04 years (SD = 6.30, range = 66–95), mean years of 
education = 14.90 (SD = 2.40). All participants had confirmed 
intact mental status (i.e., fewer than 8 errors on the Blessed 
mental status exam; Blessed, Tomlinson, & Roth, 1968).

Participants completed six daily assessment occasions 
within a 14-day period, and this assessment protocol was 
repeated every 6 months for 2 years, yielding five bursts of 
data. Half of the sessions were scheduled in the morning 
(9 a.m. to 12 p.m.), and half in the afternoon (1–5 p.m.). 
Order of administration of RT measures was identical 
across sessions and bursts. Up to five bursts of data were 
available, with 78% (n = 90) completing all five bursts.

Measures

RT-based Measures of Cognition
Project MIND
Working memory was measured using a 1-back version 
of a 4-choice RT (60 trials) task. Participants indicated 
whether the current stimulus was the same or different than 
the previous stimulus. Attention switching was measured 
using a shape/color task-switching paradigm where figures 
varying in shape (square, circle) and color (red, green) were 
presented in a white frame. A cue indicating the currently 
relevant stimulus dimension (shape or color) was presented 
in random order above the stimulus, with 10 practice trials 
followed by 52 test trials. The average response time across 
correct trials was recorded. See Bielak, Hultsch, Strauss, 
MacDonald, & Hunter (2010) for additional task details.

CHAP
Working memory was measured using the 1-back version 
(60 trials) of the n-back task. Attention switching was meas-
ured using a serial counting task (Garavan, 1998), whereby 
participants maintained a running count of 2 objects simul-
taneously. Runs of 8, 10, 12, or 16 stimuli were administered, 
and performance was indexed as the average RT across runs 
where accurate counts were recorded. See Sliwinski, Smyth, 
Hofer, & Stawski (2006) for additional task details.

Quantification of RTI

Five estimates of RTI that have been used in existing empir-
ical literature were computed for the 1-back working mem-
ory tasks. These included: (a) the raw ISD computed across 
RT trials for each session and burst, and providing no 
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control for potential between- or within-subject confounds; 
(b) the residualized ISD computed across RT trials for each 
session and burst, residualizing select confounds from the 
raw data by employing linear mixed models to partial 
systematic between- (age group differences in response 
latency) and within-subject (trial, session, and burst trends) 
sources of variance, and their interactions (e.g., Hultsch 
et al., 2008); (c) CV computed as the ISD divided by the 
intraindividual mean to control for systematic between-
subject (but not within-subject) confounds; (d) MSSD that 
controls for mean trends by estimating variability from dif-
ferences among successive adjacent trials (von Neumann 
et al., 1941); and (e) tau, the exponential portion of the ex-
Gaussian distribution, derived using Quantile Maximum 
Probability Estimation (QMPE) software (Heathcote, 
Brown, & Cousineau, 2004). For each operationalization, 
only RTs from accurate responses were included. Accuracy 
rates for the 1-back tasks were 92% for both studies.

Statistical Procedure

Given the nested data structure (i.e., sessions nested within 
bursts, nested within persons), all data were modeled using 
multilevel modeling (MLM) in SAS PROC MIXED v9.4 (SAS 
Institute, 2013). We used three-level MLMs to examine RTI, 
predicting attention-switching (AS) performance across ses-
sions, bursts, and persons (Equation 1). Session- and burst-
level effects of RTI were person-mean centered such that 
the session-level RTI variable reflects only variation across 
sessions (β3jk: RTIijk–RTI..k), and the burst-level RTI variable 
reflects only variation across bursts within a person (δ02k: 
RTI.jk–RTI..k). The person-level RTI variable was centered at 
the person’s mean across all sessions and bursts (γ002: RTI..k). 
Covariates for all models included linear (β1jk) and quad-
ratic (β2jk) trends for performance across sessions, and linear 
trends across bursts (δ01k) to account for systematic trends in 
performance, as well as age at baseline (γ001). Random slopes 
for the linear session trend were included at both level 2 
(U1jk) and level 3 (V10i), to allow for variation in these trends 
across bursts and persons, respectively. A random slope for 
the linear trend across bursts was also included at level 3 
(V01i) to allow for variation across persons.
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Analogous models, using the same centering approach, 
were estimated exchanging RTI for mean RT to evalu-
ate associations between mean RT and attention switch-
ing across sessions, burst and persons, as well as models 
retaining both RTI and mean RT to evaluate their unique 
associations with attention switching. Decomposition of 
variation in RTI across session (eijk, level 1), bursts (U0jk, 
level 2), and persons (V00k, level 3) was done using an empty 
(i.e., no predictors) model based on Equation 1. All analy-
ses were conducted using full information maximum likeli-
hood estimation.

Results
First, we present variance decomposition of mean RT and 
RTI quantifications for the 1-back task. Second, we pre-
sent correlations among mean RT and RTI quantifications 
across levels of analysis. Finally, we present results from 
multilevel models examining mean RT and RTI predicting 
attention-switching performance across sessions, bursts 
and persons.

Variance Decomposition of Mean RT and 
Inconsistency

Empty multilevel models revealed significant varia-
tion in mean RT and RTI across sessions, bursts and 
persons, as well as across both studies (see Figure  1). 
With respect to mean RT, for both studies, the major-
ity of variation was between persons (~75%), with 
the remainder reflecting variation WP across sessions 
(16.6–17.2%), and across bursts (7.3–8.9%). A similar 
pattern emerged for quantifications of RTI, with most 
variation observed between persons (44.6–75.2%), in 
contrast to WP across sessions (18.2–46.8%) or bursts 
(4.9–11.4%).

Correlations Among Mean RT and Inconsistency

Table 1 shows correlations among mean RT and RTI across 
sessions, bursts, and persons for each study. A few general 
patterns emerged. First, all correlations were positive and 
statistically significant, indicating that slower mean RT was 
associated with greater RTI. Second, correlations among 
RTI quantifications were positive, indicating rank-order 
stability. Third, correlations among mean RT and RTI, 
as well as across quantifications of RTI, tended to (a) be 
weakest WP across sessions, (b) increase in magnitude WP 
across longer intervals (semiannual or annual), and (c) be 
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strongest BP. Finally, the CV exhibited weaker correlations 
with mean RT and other quantifications of RTI, regardless 
of study or level of association.

Associations Among Mean RT, RT Inconsistency, 
and Attention-Switching Performance

Independent prediction models
Initially, we examined the effects of mean RT and each 
RTI quantification in separate models. Mean RT was 
associated with attention-switching performance across 
sessions, bursts and persons in both MIND and CHAP 
(see Table  2). Participants’ attention switching was 
slower during sessions (MIND: Estimate  =  0.05; CHAP: 
Estimate  =  0.11) and bursts (MIND: Estimate  =  0.06; 
CHAP: Estimate  = 0.16) when their 1-back performance 
was slower than usual. Furthermore, across persons, indi-
viduals’ whose 1-back performance was slower also exhib-
ited slower attention switching (MIND: Estimate = 0.20; 
CHAP: Estimate = 0.57).

RTI was also associated with attention switching across 
sessions, bursts, and persons. In MIND, during sessions 
when a person’s 1-back RTI was greater than usual, their 
attention switching was slower than usual. This was true 
for RTI quantified by the raw ISD (Estimate = 0.07), residu-
alized ISD (Estimate = 4.65), MSSD (Estimate = 0.04), and 
tau (Estimate = 0.07), but not CV. Similarly, across bursts 
when a person’s RTI was greater than usual, their atten-
tion performance was slower than usual. This was true 
for RTI defined by the raw ISD (Estimate = 0.08), resid-
ualized ISD (Estimate  =  6.31), MSSD (Estimate  =  0.05), 
and tau (Estimate = 0.06), but not CV. Lastly, across per-
sons, individuals who exhibited greater RTI on average 
also exhibited slower attention switching performance, 
and this was true for all quantifications of RTI: raw ISD 
(Estimate  =  0.35), residualized ISD (Estimate  =  29.08), 
CV (Estimate = 425.55), MSSD (Estimate = 0.24), and tau 
(Estimate = 0.37).

Parallel analyses from CHAP revealed similar pat-
terns. During sessions where a person’s 1-back RTI was 
greater than usual, their attention switching was slower. 
This was true for RTI quantified using the raw ISD 
(Estimate  =  0.08), residualized ISD (Estimate  =  2.79), 
MSSD (Estimate  =  0.05), and tau (Estimate  =  0.04), but 
not CV. Similarly, across bursts, when a person’s RTI was 
greater than usual, their attention switching was slower 
than usual. Again, this was true when RTI was quantified 
using the raw ISD (Estimate = 0.22), and residualized ISD 
(Estimate  =  9.79), tau (Estimate  =  0.14), and marginally 
for MSSD (Estimate  =  0.13), but not CV. Lastly, across 
persons, individuals exhibiting greater RTI on average 
also exhibited slower attention switching performance, 
and this was true for all RTI quantifications: raw ISD 
(Estimate = 1.05), residualized ISD (Estimate = 43.20), CV 
(Estimate = 1,045.86), MSSD (Estimate = 0.72), and tau 
(Estimate = 0.71).

Simultaneous prediction models
Given concerns about mean and inconsistency reflecting 
similar sources of variance, we simultaneously modeled 
mean RT and RTI as predictors of attention switching to 
examine their unique effects, statistically adjusting for the 
other. For each RTI quantification, session-, burst-, and 
person-level effects of mean RT and inconsistency were 
examined.

For MIND, the simultaneous estimation patterns were 
largely similar to the univariate prediction models (see 
Supplementary Table 1). Across all models, mean RT was 
associated with attention-switching performance WP 
across session (Estimate  =  0.03–0.05), WP across bursts 
(Estimate = 0.07–0.11) and across persons (Estimate = 0.11–
0.19); attention switching was significantly slower on sessions 
and bursts for individuals who were slower than average. With 
respect to RTI, quantified as the raw ISD, attention switch-
ing was significantly slower on sessions (Estimate  =  0.03) 
and for bursts (Estimate = 0.07) when RTI was greater than 
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Figure 1. Variance decomposition of 1-back mean RT and inconsistency 
in Project MIND (top panel) and CHAP (bottom panel). CV = Coefficient 
of variation; ISD  =  Intraindividual standard deviation; MSSD  =  Mean 
squared successive difference; Res ISD = Residualized intraindividual 
standard deviation; RT = Response time.
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usual, and for individuals who exhibited greater RTI on 
average (Estimate = 0.17). Similar patterns emerged when 
RTI was quantified using the residualized ISD or MSSD, 
such that attention switching was slower during sessions 
(residualized ISD: Estimate = 1.86; MSSD: Estimate = 0.03) 
and bursts (residualized ISD: Estimate  =  5.58; MSSD: 
Estimate = 0.05) when RTI was greater than usual, and for 
individuals who exhibited greater average RTI (residualized 
ISD: Estimate = 14.31; MSSD: Estimate = 0.11). RTI quan-
tified as tau was not significantly associated with attention 
switching WP across bursts; however, attention switching 
was slower during sessions (Estimate = 0.04) when tau was 
greater than usual, and for individuals who exhibited greater 
average tau (Estimate = 0.19). In contrast, RTI quantified as 
CV was not significantly associated with attention switch-
ing WP across sessions or bursts; however, persons exhibit-
ing greater RTI on average also exhibited slower attention 
switching performance (Estimate = 212.62).

For CHAP, a divergent pattern of results emerged (see 
Supplementary Table 2). Across all models, slower mean RT 
performance was associated with slower attention switching 
performance across sessions (Estimate = 0.13–0.19), bursts 
(Estimate  =  0.29–0.41) and persons (Estimate  =  0.52–
0.60). With respect to RTI, session-, burst-, and person-level 
associations changed direction and were negative, except 
for person-level CV and tau. Additionally, few effects 
remained significant. Session-level associations between 

RTI and attention performance were significant for RTI 
quantified by the raw ISD (Estimate = −0.11), residualized 
ISD (Estimate = −3.16) and MSSD (Estimate = −0.06), indi-
cating that attention switching performance was faster for 
sessions when individuals exhibited greater RTI than usual.

Quantifying collinearity
Collinearity is a concern with the simultaneous prediction 
models given stronger correlations between mean RT and 
RTI quantifications (see Table 2). Such collinearity can lead 
to inflated standard errors, unstable regression coefficients, 
and reduced power to detect reliable effects. Using methods 
described by Clark (2013), we computed multilevel vari-
ance inflation factors (MVIFs) for the effects of mean RT 
and RTI for each of the RTI quantifications (Table 3). For 
both studies, MVIFs for session- and burst-level mean RT 
and RTI effects were <3.5. However, the MVIFs for person-
level mean RT and RTI effects were very large, ranging in 
value from 6.77 to 37.56 in MIND and 15.85 to 64.73 in 
CHAP. Taken together with the magnitude of correlations, 
there are noticeable issues and impacts of collinearity when 
considering the simultaneous effects of mean RT and RTI.

Discussion
The results of this comprehensive investigation yielded 
several major findings regarding RTI among older adults. 

Table 1. Correlations Among Mean RT and RTI Across Levels of Analysis

MIND CHAP

Session 1 2 3 4 5 6 Session 1 2 3 4 5 6

1 Mean – 1 Mean –
2 ISD .78 – 2 ISD .83 –
3 rISD .49 .81 – 3 rISD .69 .93 –
4 CV .09 .59 .64 – 4 CV .37 .83 .81 –
5 MSSD .76 .96 .79 .56 – 5 MSSD .76 .96 .89 .78 –
6 Tau .72 .86 .72 .49 .85 –  6 Tau .56 .63 .56 .48 .60 –

Burst 1 2 3 4 5 6 Burst 1 2 3 4 5 6

1 Mean – 1 Mean –
2 ISD .79 – 2 ISD .84 –
3 rISD .49 .80 – 3 rISD .74 .92 –
4 CV .11 .59 .60 – 4 CV .36 .77 .76 –
5 MSSD .75 .98 .80 .60 – 5 MSSD .82 .97 .90 .73 –
6 Tau .76 .88 .69 .52 .86 –  6 Tau .72 .80 .69 .55 .79 –

Person 1 2 3 4 5 6 Person 1 2 3 4 5 6

1 Mean – 1 Mean –
2 ISD .94 – 2 ISD .90 –
3 rISD .91 .99 – 3 rISD .89 .99 –
4 CV .32 .59 .60 – 4 CV .42 .75 .77 –
5 MSSD .93 .99 .99 .59 – 5 MSSD .89 .99 .99 .76 –
6 Tau .91 .98 .97 .61 .97 – 6 Tau .89 .96 .96 .69 .94 –

Note: All correlations significant p < .05. CV = Coefficient of variation; ISD = Intraindividual standard deviation; MSSD = Mean squared successive difference; 
rISD = Residualized intraindividual standard deviation; RT = Response time; RTI = Response time inconsistency.
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First, based upon the advantages of the measurement burst 
design, we could delineate and quantify WP and BP varia-
tion in RTI. Second, correlations among five RTI quantifi-
cations, and RTI correlations with mean RT, were largely 
strong and positive, and increased in magnitude across 
levels of analysis from sessions to persons; the CV quan-
tification shared the weakest association with the other 
four. Third, greater RTI was predictive of slower atten-
tion switching performance; patterns were largely consist-
ent across RTI quantification, apart from the CV. Finally, 
results were largely consistent across two independent 
studies, underscoring the replicability of our findings.

Advantages of a Measurement Burst Design for 
Studying RTI

A unique feature of the current study is that two measure-
ment burst designs were employed to investigate RT-based 

cognitive performance. In addition to distinguishing BP and 
WP sources of variation, the measurement burst design also 
facilitates the disambiguating of WP variation sources tran-
spiring across different temporal intervals (see Figure  2). 
This latter advantage is critically important for the study 
of RTI, as theoretical accounts (for review, see Hultsch 
et  al., 2008; MacDonald & Stawski, 2015) contend that 
increased RTI can reflect both short-term (e.g., transient 
lapses of attention due to proximal influences such as stress 
or affect) and long-term (e.g., year-over-year increases in 
RTI due to chronic health conditions) processes. As shown 
in Figure 2, distinct (or shared) influences may modulate 
both short- and long-term influences on RTI, and therein 
inform underlying mechanisms.

The two measurement burst studies employed in the 
present investigation facilitate an optimal mapping of 
design-based sampling to the RTI phenomena under study 
(MacDonald & Stawski, 2015; Neupert et al., 2008; Ram 

Table 2. Multilevel Model Estimates for Independent Effects of Session-, Burst-, and Person-Level Mean RT and Inconsistency 
on Attention Switching

MIND CHAP

Mean Estimate SE p Mean Estimate SE p

WPS 0.05 0.01 <.01 WPS 0.11 0.02 <.01
WPB 0.06 0.02 <.01 WPB 0.16 0.06 .01
BP 0.20 0.02 <.01 BP 0.57 0.09 <.01

ISD Estimate SE p ISD Estimate SE p

WPS 0.07 0.01 <.01 WPS 0.08 0.03 <.01
WPB 0.08 0.02 <.01 WPB 0.22 0.10 .03
BP 0.35 0.03 <.01 BP 1.05 0.18 <.01

rISD Estimate SE p rISD Estimate SE p

WPS 4.65 0.77 <.01 WPS 2.79 1.02 <.01
WPB 6.31 1.84 <.01 WPB 9.79 3.99 .01
BP 29.08 7.68 <.01 BP 43.20 7.68 <.01

CV Estimate SE p CV Estimate SE p

WPS 17.62 13.74 .20 WPS 33.50 35.95 .35
WPB 33.15 37.21 .37 WPB 147.97 158.49 .35
BP 425.55 90.97 <.01 BP 1,045.86 373.59 <.01

MSSD Estimate SE p MSSD Estimate SE p

WPS 0.04 0.01 <.01 WPS 0.05 0.02 <.01
WPB 0.05 0.02 <.01 WPB 0.13 0.07 .07
BP 0.24 0.02 <.01 BP 0.72 0.13 <.01

Tau Estimate SE p Tau Estimate SE p

WPS 0.07 0.01 <.01 WPS 0.04 0.02 .01
WPB 0.06 0.02 <.01 WPB 0.14 0.06 .02
BP 0.37 0.02 <.01 BP 0.71 0.12 <.01

Note: BP  =  Between-persons; CV  =  Coefficient of variation; ISD  =  Intraindividual standard deviation; MSSD  =  Mean squared successive difference; 
rISD = Residualized intraindividual standard deviation; RT = Response time; WPB = Within-persons across bursts; WPS = Within-persons across session.
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& Gerstorf, 2009; see Figure 2). Project MIND involved 
4–5 weekly assessments with this protocol repeated annu-
ally for 4  years, whereas CHAP incorporated six assess-
ments over a 10-day period, with this protocol repeated 
every 6 months for 2.5 years—such complementary designs 
help to further our understanding of WP variation in RTI. 
Consistent with expectations, decomposition of variation 
in RTI revealed evidence of significant variability in RTI 
both WP (25%–55% of total variation), and BP (45%–
75% of total variation), suggesting that variation in RTI 
does not strictly reflect individual differences.

Parsing BP and WP variation
Partitioning variance into BP and WP sources reflects one 
definitive advantage of employing a measurement burst 
design for the study of RTI, particularly given concerns 
regarding confounds at each level of analysis. In the present 
study, RTI exhibited less BP variation and more WP varia-
tion relative to mean RT. This pattern suggests that how fast 
someone performs on average is somewhat more reflective 
of who they are, with comparatively less WP variation in 
their performance. In contrast, RTI reflects a greater mixture 
of BP and WP variation. This difference in distribution of 
variation between mean RT and RTI further supports theo-
retical contentions that mean and variability in RT reflect 
qualitatively different theoretical variation (e.g., Jensen, 
1992), and are potentially related to, and influenced by, 
both personal and contextual factors (Hultsch et al., 2008). 
We do, however, acknowledge that the larger proportion of 
WP across-session variation in RTI could reflect more meas-
urement error (Schmiedek, Lövdén, & Lindenberger, 2009).

Parsing WP sources of variation
With regard to WP variation across shorter (sessions) and 
longer (bursts of assessment) intervals (c.f., Figure 2), the 

former may reflect variation more consistent with RTI 
reflecting transient phenomena reflected over a faster-mov-
ing time scale, such as lapses of attention or mental noise 
(Robinson & Tamir, 2005; Van Gemmert & Van Galen, 
1997; West et al., 2002), whereas the latter may reflect 
more enduring processes reflected over a slower-moving 
time scale such as aging-related changes in brain and cog-
nitive function. Although both sources of WP variation 
were significant, the proportion of observed variation was 
greater for the faster compared to the slower WP timescale. 
Taken together, the results of the two measurement burst 
studies suggest that RTI varies significantly BP and WP.

Are the RTI Quantifications Comparable?

Correlations among mean RT and RTI
In general, correlations between mean RT and RTI indi-
cated that increased RTI was associated with slower mean 
RT, with largely strong and positive correlations among 
quantifications of RTI indicating rank-order stability both 
BP and WP. Two additional patterns emerged as well. First, 
BP correlations tended to be stronger than correlations WP 
across sessions or bursts. Second, the CV quantification of 
RTI exhibited markedly weaker associations with mean 
RT and the other quantifications of RTI. As suggested by 
Jensen (1992), these patterns of association among mark-
ers of central tendency and variability are consistent with 
distinct-but-related indices.

Mean RT and RTI as predictors of attention switching
In independent models, both mean RT and RTI were signif-
icantly predictive of attention-switching performance such 
that during sessions and for bursts when individuals were 
slower than usual or more inconsistent than usual, they also 
exhibited significantly slower (worse) attention-switching 

Table 3. Multilevel Variance Inflation Factors

MIND ISD rISD CV MSSD Tau

Mean RT (Session) 2.55 1.86 1.31 2.40 2.50
Mean RT (Burst) 3.01 2.60 1.55 2.72 3.03
Mean RT (Person) 37.56 29.03 6.77 33.05 30.60
RTI (Session) 2.27 1.43 1.02 2.11 2.08
RTI (Burst) 2.55 1.68 1.04 2.27 2.52
RTI (Person) 26.93 22.85 16.25 22.72 20.53

CHAP ISD rISD CV MSSD Tau

Mean RT (Session) 2.75 2.23 1.29 2.45 1.54
Mean RT (Burst) 3.44 3.21 1.42 3.20 2.14
Mean RT (Person) 64.73 57.52 15.87 56.64 56.05
RTI (Session) 2.62 2.10 1.22 2.31 1.46
RTI (Burst) 3.12 2.62 1.16 2.85 1.94
RTI (Person) 34.22 31.44 28.57 27.48 24.60

Note: CV = Coefficient of variation; ISD = Intraindividual standard deviation; MSSD = Mean squared successive difference; rISD = Residualized intraindividual 
standard deviation; RTI = Response time inconsistency; WPB = Within-persons across bursts; WPS = Within-persons across session.
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performance. Additionally, individuals who exhibited sig-
nificantly slower and more inconsistent performance also 
exhibited slower attention-switching performance. RTI 
operationalized as the CV was a notable exception to this 
pattern. Taken together, these results suggest that both WP 
fluctuations and BP differences in RTI potentially under-
mine an individual’s ability to optimally switch their focus 
of attention. Given that attention switching is an integral 
part of working memory (Basak & Verhaeghen, 2011), the 
impact of RTI on cognitive performance is both theoreti-
cally and practically relevant for understanding complex 
cognitive function.

Collinearity concerns when simultaneously modeling 
mean and RTI
Results of simultaneous prediction models were informa-
tive in terms of both methodological practice and appli-
cation. In Project MIND, all WP and BP effects of mean 
RT and RTI on attention switching remained positive 
and significant, consistent with patterns observed in the 
independent prediction models. In CHAP, the WP and BP 
mean RT effects remained positive and significant; how-
ever, nearly all RTI effects became negative in direction 
(i.e., higher RTI associated with faster attention switch-
ing), consistent with multicollinearity. To further inform 
the potential impact of multicollinearity on our prediction 
models, we computed MVIFs, which indicate the extent 
to which collinearity has resulted in high standard errors, 
unstable parameter estimates, and reduced statistical 

power (Clark, 2013). While conventions for evidence of 
high multicollinearity were not present (VIFs < 5) for WP 
effects, there was evidence of collinearity for BP effects 
(VIFs > 15). The square root of a VIF indicates how many 
times the SE for a given coefficient has been inflated (see 
Table 3), with obvious implications for the simultaneous 
modeling of RT and RTI. Given the somewhat higher 
correlations and MVIFs in CHAP, with its shorter inter-
val between bursts and session, compared to MIND, our 
observed results are consistent with a potential threat due 
to collinearity when considering both mean RT and RTI 
simultaneous predictors. This underscores yet another 
advantage of employing a measurement burst design for 
the study of RTI; specifically, many published RTI studies 
rely solely upon BP estimates, and our partitioned findings 
clearly indicate that collinearity and variance inflation are 
of greatest concern for BP (vs WP) findings. Thus, vari-
ance partitioning in the burst design could be particularly 
advantageous as it facilitates (a) an opportunity to evalu-
ate the relative impact of collinearity on BP estimates, as 
well as (b) the ability to shift the level of analysis WP, 
where the impact of variance inflation is less problem-
atic. Exploration of alternative approaches for dealing 
with simultaneous modeling of mean and variability (e.g., 
Schmiedek et  al., 2009), when these are also focal pre-
dictors of other outcomes, is an important endeavor for 
future research.

It is also important to note that estimates of mean have 
greater reliability than estimates of variability, which will 
likely threaten the predictive impact and pattern of vari-
ability more than mean when considered in a simultane-
ous model (Schmiedek et al., 2009). Conceptually, however, 
covarying for mean RT when examining the effect(s) of 
RTI (or vice versa) must be weighed. Despite their correla-
tion, mean RT and RTI reflect different phenomena (Jensen, 
1992). The mandate of simultaneous inclusion suggests that 
the validity of one only exists if it is uniquely predictive 
above and beyond the other. Placing the burden of proof 
on the maintained significance of RTI after adjusting for 
mean RT is tantamount to evaluating whether the effect of 
RTI is simply an artifact of being faster (or slower), or the 
effect of mean RT is an artifact of processing being more (or 
less) efficient (inconsistent). This, however, is not necessar-
ily consistent with theory, and addresses a different set of 
questions. Mean and variability for any variable, including 
RT-based measures, will have shared method variance as 
they are derived from the same data. Theoretically-informed 
analyses and dissociative patterns reveal the validity of RTI. 
In the context of the current study, we would expect both 
mean RT and RTI to exhibit positive associations with 
attention switching—being slower and being more incon-
sistent should be associated with worse attention-switching 
performance. The fact that these associations operate in 
the same direction does not invalidate either index, as such 
patterns are consistent with theoretical predictions. Taken 
together, we believe the current results provide strong, 

Figure 2. A heuristic model of proximal (within-burst) and cumulative 
(across-burst) influences on intraindividual variability. Select modu-
lating factors (e.g., psychosocial, health) may exert both short- and 
long-term influences on intraindividual variability in cognitive func-
tion. Determining how such factors influence variability from moment-
to-moment, day-to-day, or year-to-year may further our understanding 
of potential underlying mechanisms, or how short-term processes 
map onto long-term cognitive change. Reproduced with permission. 
CNS = Central nervous system; RT = Response time.
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theoretically-informed evidence for the systematic and reli-
able predictive validity of RTI, for both BP and WP varia-
tion in attention-switching performance.

Which Quantification of RTI?

Previous literature examining RTI has utilized numerous 
different quantifications, including raw ISD, residualized 
ISD, CV, the tau parameter of the ex-Gaussian distribu-
tion, and MSSD. To our knowledge, this study is the first 
systematic and comprehensive examination that compares 
and contrasts quantifications of RTI in a theoretically-
informed fashion. Results of our analyses suggest that the 
effects of RTI on attention switching are robust to quan-
tification, except for the CV. While the CV represents a 
quantitatively-simple approach to take mean into account 
when examining the effect of RTI, the index itself is a 
ratio—an interaction (ISD multiplied by the inverse of the 
mean). Interpreting this ratio is not straightforward as any 
observed association may reflect a relationship between 
ISD, the (inverse of the) mean, or their interaction. The 
transparency of CV and its association with other indices 
of RTI, as well as criterion outcomes, is further complicated 
by nonlinear associations between mean and variability in 
age heterogenous samples (Schmiedek et  al., 2009). We 
observed marked consistency in rank-order stability and 
predictive utility of RTI across the other four quantifica-
tions, suggesting that each of these is a viable and valid 
quantification of RTI, at least with respect to our use of 
1-back working memory tasks. Furthermore, these patterns 
were notably consistent across two independent studies, 
comparable in terms of constructs, but differing in terms of 
measures, number and temporal spacing of observations—
a definitive strength clearly demonstrating the replicability 
of our findings. Taken together, the current results provide 
greater insight as to the critical question of which quantifi-
cation of RTI to employ—perhaps surprisingly, the present 
patterns do not advocate for using any single quantification 
per se, but do imply avoiding the use of CV.

Limitations and Future Directions

Despite results being largely consistent with predictions, 
there were limitations. First, we restricted our focus to 
examining the most frequently employed quantifications 
of RTI from select disciplines. Advances in methodology 
and measurement certainly allow for additional and possi-
bly superior and theoretically-informed operational defini-
tions of RTI based upon diffusion models (e.g., Schmiedek, 
Oberauer, Wilhelm, Süss, & Wittmann, 2007). Some of 
these approaches, however, require a greater number of 
trials and would require additional resources for empiri-
cal study. Second, we examined RTI in a 1-back working 
memory task as it was a common task across the inde-
pendent studies. It is unclear whether the consistency of 

results would maintain for RTI using different tasks with 
varying processing demands (e.g., simple or choice RT, and 
higher-order n-back tasks). Future research considering 
these comparatively gross quantifications of RTI with more 
sophisticated mathematical models, as well as (a)symme-
tries in patterns across different tasks and task dimensions 
will be important for understanding how best to measure 
and quantify RTI, maximizing its utility as a brief and inex-
pensive indicator of cognitive health. Finally, we focused 
on RTI as a predictor, not as an outcome. Hultsch et  al. 
(2008) discussed the need for formal examination of labile 
influences that could underlie increased RTI, including 
pain, stress, and negative affect. Little empirical research 
has directly examined the influence of such labile influences 
of RTI; most research in this area has focused on mean 
RT outcomes (see however Sliwinski et al. 2006). Similarly, 
with respect to BP variation in RTI and its association with 
attention switching, identifying person-level factors (e.g., 
chronic conditions, systematic changes in brain structure 
or function) that contribute to increased RTI would help 
understand who is at risk for compromised CNS integrity, 
cognitive and brain health, as well as potential moderators 
or supports to mitigate these individual differences (see 
Figure 2). Thus, future research aimed at understanding the 
diverse factors contributing to BP and WP variation in RTI, 
as well as employing the advantages of measurement burst 
designs for examining phenomena varying from moment-
to-moment over long periods of time and across persons, 
is warranted.

Conclusions
The present study aimed to provide the first systematic 
examination, comparing and contrasting quantifications, 
and evaluating evidence for BP and WP variation in RTI. 
Despite the variety of RTI quantifications, we have dem-
onstrated that many but not all indices are of transparent 
quantitative and qualitative utility. In addition, using two 
independent measurement-burst studies of RT-based cog-
nitive aging, we further demonstrated the utility of RTI 
for predicting poorer attention-switching performance 
among older adults, WP over shorter and longer temporal 
intervals, as well as between persons. Compared to mean 
RT-dominated research, RTI reflects a novel dimension of 
performance that represents a robust and theoretically-
informative predictor of cognitive function. These findings 
furnish a cornerstone for future research examining the 
antecedents and consequences of RTI as a behavioral indi-
cator of cognitive and brain health.
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Supplementary data is available at The Journals of 
Gerontology, Series B: Psychological Sciences and Social 
Sciences online.
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