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Abstract

Forecasting stock prices plays an important role in setting a trading strategy or determining

the appropriate timing for buying or selling a stock. We propose a model, called the feature

fusion long short-term memory-convolutional neural network (LSTM-CNN) model, that com-

bines features learned from different representations of the same data, namely, stock time

series and stock chart images, to predict stock prices. The proposed model is composed of

LSTM and a CNN, which are utilized for extracting temporal features and image features.

We measure the performance of the proposed model relative to those of single models

(CNN and LSTM) using SPDR S&P 500 ETF data. Our feature fusion LSTM-CNN model

outperforms the single models in predicting stock prices. In addition, we discover that a can-

dlestick chart is the most appropriate stock chart image to use to forecast stock prices.

Thus, this study shows that prediction error can be efficiently reduced by using a combina-

tion of temporal and image features from the same data rather than using these features

separately.

Introduction

Forecasting stock prices is an attractive pursuit for investors and researchers who want to beat

the stock market. However, forecasting stock prices is difficult. Cowles [1] showed that no

skills existed to predict the stock market. Fama [2] proposed efficient market theory, which

states that a stock price already reflects all new information related to the stock and implies

that no one can beat the market because stock prices are already set fairly. Contrary to this the-

ory, many attempts have been made to predict stock prices to obtain profits using various tech-

niques [3, 4, 5, 6] since determining the market timing for buying or selling a stock at a certain

price is an important part of a trading strategy [7].

Taking an econometric approach, Keim et al. [6] showed that predicting stock returns with

statistical significance was partially possible using a model with several predetermined vari-

ables. French et al. [8] proposed using the generalized autoregressive conditional heteroscedas-

ticity (GARCH) model to predict stock prices using the relationship between a stock’s
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volatility and its return. Fama and French [9] proposed two-factor models using size and

book-to-market equity, both of which are related to a company’s fundamental information, to

predict stock prices. Jeantheau [10] suggested that under stationary conditions, the autoregres-

sive conditional heteroskedastic model could be applied to predict stock prices. Ariyo et al.

[11] proposed a predictive model for stock prices using the autoregressive integrated moving

average model. They found that this model had the potential to predict short-term future stock

prices on the New York Stock Exchange and the Nigeria Stock Exchange.

When using an econometric method, it is advantageous to have explanatory power because

this power derives the results given the theoretical background. However, the assumptions

used in econometric models do not necessarily hold in the real world. Artificial neural net-

works (ANNs), by contrast, are not limited by these assumptions and can detect nonlinear

relationships in the characteristics of data. Thus, many scholars have been studying the predic-

tion of stock prices based on these models. Kimoto et al. [12] proposed a prediction system for

forecasting stocks listed on the Tokyo Stock Exchange using a system of ANNs and achieved

excellent profits using the prediction system in a simulation exercise. Kim et al. [13] used a

genetic algorithms approach to optimize thresholds for feature discretization and connection

weights between layers to forecast a stock price index. The results indicated that this approach

outperformed conventional neural networks. Tsang et al. [4] proposed a buying and selling

alert system using ANNs to forecast Hong Kong stock prices. This system showed that the

overall hit ratio was over 70%. Yudong et al. [14] suggested a forecasting model using

improved bacterial chemotaxis optimization and a back propagation ANN. They showed that

the proposed model was superior to traditional back propagation ANNs for predicting the

S&P 500 index. Wang et al. [15] proposed a wavelet denoising-based back propagation neural

network to predict the Shanghai Composite Index. The denoising process was executed on the

input data to remove noise. This model achieved more accuracy than did a conventional back

propagation neural network based on statistical tests such as mean absolute error, root mean-

square error, and mean absolute percentage error.

For time series data, such as text, signals, stock prices, and so on, a long short-term memory

(LSTM) is superior for learning temporal patterns in deep neural networks (DNNs). A LSTM

overcomes a vanishing gradient problem in a recurrent neural network (RNN) to learn long-

term dependencies in time series data using memory cells and gates. Attempts have been made

to forecast stock prices using this network. Chen et al. [16] tried to predict stock returns in

China using an LSTM. They showed that the prediction accuracy improved as the number of

inputs increased. Nelson et al. [17] utilized LSTMs to predict future trends in stock prices

using stock price and technical analysis indicators. Experimental results showed that their pro-

posed LSTM was more accurate than other machine learning models, such as random forest,

multilayer perceptron, and pseudo-random models. Bao et al. [3] used a three-stage process to

predict six market index futures. First, they used a wavelet transformation to reduce high

dimensionality stock data to low dimensionality signal data. Second, these data were repro-

duced using a stacked autoencoder. Finally, they used an LSTM to predict stock prices. They

confirmed that the performance of the proposed model was better than those of other models,

such as RNN, LSTM, and wavelet-LSTM omitted second-stage models.

Financial time series data can be used not only as numeric data but also as image data that

is transformed in predicting stock prices. Technical analysis uses chart images to predict stock

prices [18, 19, 20, 21]. This method involves finding patterns in chart images using technical

indicators such as moving averages, Bollinger bands, stochastic oscillators, and so on [6, 22].

DNNs, especially convolutional neural networks (CNNs), can learn or extract these features

themselves. CNNs have been outstanding for deep learning techniques in the computer vision

field, object detection, segmentation, and so on. Through the ImageNet challenge, one of the

A feature fusion LSTM-CNN model for forecasting stock prices
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biggest challenges in the computer vision field, many models, such as AlexNet [23] (Kriz-

hevsky et al., 2012), VGGNet [24] (Simonyan and Zisserman, 2014), GoogLeNet [25] (Szegedy

et al., 2015), and ResNet [26] (He et al., 2016), have distinguished themselves and are still used

frequently. Recent attempts have tried to apply stock chart images to CNNs. Chen et al. [27]

used not only CNNs but also data visualization methods, such as Gramian angular fields, mov-

ing average mapping, and double moving average mapping, for the purpose of transforming

stock price data into image data to eliminate noise. They showed that the proposed model was

more accurate than a candlestick chart without the data visualization methods applied. Hu

et al. [28] proposed a three-stage investment decision strategy to construct a low-risk and

high-return portfolio. First, they used the convolutional autoencoder method as a tool to

extract nonlinear features of the candlestick chart. Second, they clustered the features in a hid-

den weight layer in the autoencoder. Finally, they constructed a portfolio based on the Sharpe

ratio from each cluster. The performance of this method was better than that of the Financial

Times Stock Exchange 100 Index.

Studies have looked at improving the accuracy of predicting target values by fusing data

from different data types or other resources rather than learning from one representation of

the data. Ba et al. [29] proposed a deep multimodal neural network using a CNN and a multi-

layer perceptron to classify the dataset. They used Caltech-USCD bird and flower data and

Wikipedia articles corresponding to the image data, and they extracted features of encyclope-

dia articles to complement the image data features to predict unseen image classes. The empiri-

cal results of this study indicated that their proposed model had a better performance than that

of a single model. Ma et al. [30] achieved significant results in matching bidirectional images

and sentences using a multimodal CNN with image data and sentence data. Wang et al. [31]

used an ensemble CNN with an RNN to classify multi-label images. The RNN was used to

learn the features of the label dependency of the image data. This model performed better than

did state-of-the-art models, such as K-nearest neighbor search models, softmax prediction

models, metric learning models, and so on. Donahue et al. [32] proposed a long-term recur-

rent convolutional network comprised of a convolutional network and LSTM for a video rec-

ognition task. They replaced fully connected layers with LSTM in the CNN to learn sequential

vision features. Attempts have been made to construct feature fusion-based forecasting models

for financial time series. Guo et al. [33] used three feature selection techniques, specifically,

independent component analysis, canonical correlation analysis, and the support vector

machine technique, to preprocess raw data and remove noise. The proposed model, which

fused three feature selection techniques, had a better performance than those of other models

that combined two feature selection techniques. However, this study used only one representa-

tion for the financial time series data.

An optimal architecture constructed from different representations will learn duplicate fea-

tures but will also learn the different characteristics of each architecture, which can improve

the prediction accuracy. From this motivation, in this study, we propose a feature fusion

model that integrates a CNN and LSTM to fuse features of different representations from

financial time series data to improve accuracy in predicting stock prices. We call this proposed

model a feature fusion LSTM-CNN model. This model learns the patterns of chart images and

reflects the temporal characteristics contained in the financial time series data. Before building

a feature fusion LSTM-CNN model, we have to construct each model optimized for this partic-

ular data representation. To construct a CNN that is optimized for stock chart images, we use

residual learning and bottleneck architecture to extract hidden patterns in the stock chart

images [26]. We call this model a stock chart CNN (SC-CNN). Next, we design the optimal

LSTM model using temporal information on close prices and trading volumes. We call this

model a stock time series LSTM (ST-LSTM). Finally, we construct the feature fusion

A feature fusion LSTM-CNN model for forecasting stock prices
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LSTM-CNN model by combining the SC-CNN and ST-LSTM models by taking the character-

istics of both the chart image data and the time series data. We call the proposed model a fea-

ture fusion LSTM-CNN model. When we train the feature fusion LSTM-CNN model, we use

joint training to reflect each model training procedure simultaneously to improve the effi-

ciency of the proposed model. In this study, we use minute-by-minute SPDR S&P 500 ETF

Trust (SPY) ticker data as the financial time series data because it has the largest trading vol-

ume among ETF markets. Using this data, we create different representations to fit our mod-

els. We create four stock chart images to check which image is the most appropriate for

predicting stock prices. Then, using early fusion, we create three fusion chart images that com-

bine stock chart images with volume information to incorporate more information. As inputs

of the ST-LSTM model, we use the returns of close prices and trading volume data. Using

these representations, we verify that the feature fusion LSTM-CNN model performs better

than the single models (SC-CNN and ST-LSTM) do.

The remainder of the paper consists of four sections. Section 2 explains the materials and

methods included in our suggested model. Section 3 details our experimental procedure. The

experimental results and discussion are described in Section 4. Finally, Section 5 provides our

conclusions of this study.

Materials and methods

Data representation

In this study, we use minute-by-minute SPY ticker data, which has the largest trading volume

among ETF markets. We collect trade high, low, open, and close price and volume data, which

cover 97,474 data points running from October 14, 2016 to October 16, 2017, from the Thom-

son Reuter Database. Using this financial time series data, we create different representations

to match the input types of each model to extract features from the CNN and LSTM.

Fig 1 shows how we set the training, validation, and testing dataset. We use the 68,800 data

points from October 14, 2016, to June 20, 2017, as training data; 10,000 data points from June

21, 2017, to July 31, 2017 as validation data; and 19,474 data points until October 16, 2017, as

testing data.

In Fig 2, we set the window length to 30 minutes, rolling window to 1 minute, and predict

term to 5 minutes. It means we will predict the stock price after five minutes by looking at the

data for the previous 30 minutes based on a minute-by-minute current time point. These set-

tings are applicable for each representation since we combine the CNN with LSTM.

Fig 1. Setting training, validation and testing dataset during the whole sample period.

https://doi.org/10.1371/journal.pone.0212320.g001

Fig 2. Setting window length, predict length and rolling window during the whole sample period.

https://doi.org/10.1371/journal.pone.0212320.g002
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Stock chart images. Using the financial time series data, we create four stock chart images

as inputs for the CNN, as shown in Fig 3. All of the stock chart images use RGB colors. Fig 3a is

a candlestick chart that is comprised of high, low, open, and close prices. Candlestick charts

have often been used to identify patterns [34–36]. Fig 3b is a line chart that is comprised of high

and low prices. Siripurapu [37] tried to predict stock prices using a line chart, but the experi-

ment failed because of the lack of information in the chart image. To create the model in this

experiment, we incorporate a middle price by averaging the high and low prices, and we then

fill the colors between the prices to provide more information to the CNN. We call this chart a

filled line chart (f-line chart), which is shown in Fig 3c. In addition to stock price data, trading

volume data plays an important role in predicting stock prices [5, 38]. Based on this notion, we

Fig 3. Four stock chart images using SPY data. The time interval is between t − 30 and t. (a) Candlestick chart, (b) Line chart, (c) F-line chart, and (d) Bar

chart.

https://doi.org/10.1371/journal.pone.0212320.g003
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construct bar charts of the trading volume data to determine whether this data, reconstructed as

an image, serves as a key feature to predict stock prices. Fig 3d is a bar chart of trading volume

data. To input the data into the CNN, we resize and crop these images to be 112x112 pixels.

Fusion chart images. In the case of supervised learning, each piece of data should have a

corresponding label. However, similar data, such as video data, multi-label image data, and so

on, may correspond to one label. By extracting the features of these data and expressing them

as one data type, the amount of information can be increased, making learning more efficient.

Li et al. [39] described an image fusion method using a wavelet transform-based approach.

They showed that this method provided significant results when using image fusion. Snoek

et al. [40] compared the performance of early fusion with that of late fusion methods. Early

fusion methods are used to combine components of video data, such as visual features, audi-

tory features, and textual features, before executing a trading algorithm. In contrast, late fusion

methods combine these input features after executing trading algorithms separately. Snoek

et al. [37] also defined early fusion that integrates unimodal features before learning concepts.

In this study, we will fuse stock charts with the bar chart shown in Fig 3 using the early fusion

method since the bar chart is used as an important factor in sharing the label with the stock

charts to predict stock prices. We call the resulting image a fusion chart image. We create three

fusion chart images that combine the stock price charts (i.e., the candlestick chart, line chart,

f-line chart, and bar chart) to check whether or not the fusion chart images perform better.

Fig 4 shows three fusion chart images using the early fusion method. Fig 4a is a combination

of a candlestick chart and a bar chart that we call a candlebar chart. Fig 4b is a combination of

a line chart and bar chart that we call a linebar chart. Fig 4c is a combination of an f-line chart

and bar chart that we call an f-linebar chart. The sizes of these images are the same as those of

the stock chart images, as described in section 2.1.1.

Stock time series data. The data used in the LSTM should be time series data to extract

the sequential features of the data. In this study, we choose adjusted close price and trading

volume data as inputs to the LSTM. Fig 5 shows the preprocess of stock time series data.

As making an input data, we take adjusted close price and volume data based on window

length, its dimension could be 30x2. We transformed this dataset into logarithmic returns to

reduce noise using (Eq 1). Dimensions of the data is 29x2. As making an output data, since our

goal is to predict stock prices, we take adjusted close price only. Based on the last sequence of

the input data, we take this value and adjusted close price which takes the predict length into

account. For example, in Fig 5, we have sequences of adjusted close price and volume data.

Based on window length, we transformed Pt−1, Pt, � � �, Pt+28 and Vt−1, Vt, � � �, Vt+28 into

Fig 4. Three fusion chart images using early fusion. The time interval is between t − 30 and t. (a) Candlebar chart, (b) Linebar chart, and (c) F-linebar chart.

https://doi.org/10.1371/journal.pone.0212320.g004
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log Pt
Pt� 1

; log Ptþ1

Pt
; � � � ; log Ptþ28

Ptþ27
and log Vt

Vt� 1
; log Vtþ1

Vt
; � � � ; log Vtþ28

Vtþ27
where Pt−1, Vt−1 are stock price

and trading volume at time t − 1 using (Eq 1). The corresponding value of output is log Ptþ33

Ptþ28

which is based on five minutes predict length. We will apply these output data equally to the

output of the chart image because the data representations are made from different but identi-

cal input data.

Logarithmic return : Rt ¼ log
Pt
Pt� 1

ð1Þ

where Pt−1 and Pt are the prices at times t − 1 and t, respectively, and Rt is the logarithmic return.

Performance measure

We select three performance measures, the root mean square error (RMSE), the root mean

absolute error (RMAE), and the MAPE, to evaluate the predictive power of our proposed mod-

els. When we train models, we use RMSE as a loss function, which means that the model is

trained to reduce RMSE. RMSE is a good measure for revealing relatively large forecast errors

[41], RMAE is useful for revealing the systematic bias of the model, and MAPE is a measure of

the accuracy of predictions in statistics. These equations are as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i ¼ 1
ðx1;i � x2;iÞ

2

r

ð2Þ

RMAE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i ¼ 1
jx1;i � x2;ij

r

ð3Þ

MAPE ¼
100

N

XN

i ¼ 1

�
�
�
�
x2;i � x1;i

x1;i

�
�
�
� ð4Þ

where N is the number of data points, x1,i is a predicted value, and x2,i is a real value.

Fig 5. Preprocessing stock time series data using logarithmic return based on the window length and predict

length.

https://doi.org/10.1371/journal.pone.0212320.g005
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Stock chart CNN

The performance of the network can be improved by deepening the network. This method has

complicated feature representation capacity by using a complex function that increases the

non-linearity in extracting features, improving the performance of the network. However, due

to the network deepening, not only can overfitting occur because of the vanishing gradient

problem but also a degradation problem, through which the training loss increases despite the

deepening of the network, may arise [26]. Therefore, using a method to prevent overfitting

and the degradation problem while keeping the network deep becomes important. ResNet has

overcome this problem by using residual learning and bottleneck methods [26]. We will use

these methods to create a CNN that is optimized for stock chart images.

Residual learning and bottleneck structure. Fig 6a shows a common method to extract

features of input X by passing through existing weight layers.

A degradation problem may occur even if the network is deeply piled up. To solve this

problem, He et al. [26] used a shortcut connection for residual learning, as shown in Fig 6b. In

the case of a shortcut connection, the input X is mapped to the feature F(X) through the activa-

tion function without going through the weight layer.

FðXÞ ≔ HðXÞ � X ð5Þ

Using this shortcut connection, H(X), or F(X) − X rather than F(X), is treated as an opti-

mized mapping by assuming (Eq 5), as follows, where X is an input matrix and F(X) and H(X)

are output matrices. Setting the residual to zero makes the optimization easier. This method

can solve the problem of degradation due to the deepening of the network [26].

Fig 7b represents a bottleneck structure that is designed with three weight layers. The fea-

ture of this structure is that it decreases time complexity by reducing the computed parameters

and increases the number of filters about four times, which can extract many features, by

reconstructing 3x3 64 filters as 1x1 64 filters, 3x3 64 filters, and 1x1 256 filters, which can be

compared to Fig 7a. Thus, this structure can be given a substantial amount of information.

Proposed SC-CNN model. A variety of networks use residual learning and bottleneck

architecture [42–44]. Using these methods, we construct the proposed SC-CNN model, which

is optimized for the stock. Fig 8 represents our proposed SC-CNN model.

Fig 6. Residual learning. (a) Stacked layers (b) Stacked layers using a shortcut connection.

https://doi.org/10.1371/journal.pone.0212320.g006

Fig 7. Bottleneck architecture. (a) A building block (b) A bottleneck building block.

https://doi.org/10.1371/journal.pone.0212320.g007
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In Fig 8, conv1 is a convolutional layer; res-conv1, res-conv2, and res-conv3 are constructed

using the residual learning and bottleneck methods; and the fully connected layers are abbrevi-

ated as fc1, fc2, and fc3.

We modify the ResNet-50 model to match our stock chart images. In the input stage, we

resize and crop the stock chart images so that they are 112x112 pixels, and we then fine-tune

the numbers of convolutional and fully connected layers as well as hyperparameters, such as

the dimension of convolutional layers, the number of neurons in fully connected layers, the

dropout ratio, and so on, using trial and error. The SC-CNN model is not quite as deep as the

ResNet-50 model, which has fifty layers, because stock chart images are low-dimensional data.

However, in order to extract the nonlinear characteristics of the chart images, we try to main-

tain the depth by using these methods. From this procedure, we construct four convolution

layers and three fully connected layers. Table 1 shows the architectures of the SC-CNN model

optimized for stock chart images as a result of trial and error. The experimental procedure will

be described in section 3.

Stock time-series LSTM

Long short-term memory. In addition to image data, various other data types are used in

applying deep learning technology; in particular, financial data are often time-series data.

RNNs were initially used to learn the sequential patterns of time series data. However, in the

case of RNNs, the problem of the vanishing gradient, which occurs as the network deepens,

has not been solved. The network that solved this problem was LSTM. Hochreiter and

Fig 8. Construction of the SC-CNN model using residual learning and the bottleneck method.

https://doi.org/10.1371/journal.pone.0212320.g008

Table 1. Architectures of the SC-CNN model.

Layer name Output size Kernel size Pad Stride Dropout

conv1 32x56x56 7x7 3 2

max pool 32x28x28 3x3 2

res-conv1 128x28x28 1x1 0 1

3x3 1 1

1x1 0 1

res-conv2 256x14x14 1x1 0 2

3x3 1 1

1x1 0 1

res-conv3 512x7x7 1x1 0 2

3x3 1 1

1x1 0 1

average pool 512x1x1 7x7 0

fc1 500 0.5

fc2 100 0.5

fc3 25 0.5

https://doi.org/10.1371/journal.pone.0212320.t001
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Schmidhuber [45] used gate process and memory blocks to solve the vanishing gradient prob-

lems in the RNN context. Fig 9 shows the memory block of an LSTM, and Eqs (6) to (11) show

the calculations for each gate and cell state,

ft ¼ sðWxf xt þWhf ht� 1 þ bf Þ ð6Þ

it ¼ sðWxixt þWhiht� 1 þ biÞ ð7Þ

~ct ¼ tanhðWxcxt þWhcht� 1 þ bcÞ ð8Þ

ct ¼ ft�ct� 1 þ it�~ct ð9Þ

ot ¼ sðWxoxt þWhoht� 1 þ boÞ ð10Þ

ht ¼ ot�tanhðctÞ ð11Þ

where W represents weight matrices, b is a bias term, σ(�) is a sigmoid function, and tanh(�) is

a hyperbolic tangent function. In Fig 6, the input variables xt, and ht−1 go into the four gates

labelled as ft, it, ot, ~ct. For the input and output gates, the weights corresponding to each gate

are calculated, and the sigmoid function is taken as the activation function. The sigmoid func-

tion takes a value between zero and one. If the output value is one, the corresponding value

should be kept, but if it zero, the corresponding value should be completely discarded. For the

remaining gate, the input modulate gate, tanh is used to determine how much new informa-

tion should be reflected in the cell state. Finally, the information to be reflected in ct is calcu-

lated by adding the point-wise multiplication of the previously calculated it, ~ct values and the

values calculated from the forget gate, the previous cell state value, and the point-wise multipli-

cation of ct. Finally, in order to calculate the output value ht, point-wise multiplication is per-

formed on the value calculated from the output gate and the value that is obtained by adding

tanh(�) to the calculated cell state value.

Proposed ST-LSTM model. In order to extract the sequential features of the stock time-

series data, we design the optimal LSTM model. Fig 10 shows our proposed ST-LSTM model

for stock time-series data. As mentioned in section 2.1.3 above, we use close price and volume

data, which is transformed to logarithmic returns, as input data to maintain relationships with

the fusion chart images that reconstruct stock price and trading volume data as image data.

Fig 9. Memory block of LSTM.

https://doi.org/10.1371/journal.pone.0212320.g009
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The data are generated as a stacked data type so that the data can be inputted simulta-

neously. The model is designed to predict the value at time t + 5 using values from time t − 30

to t, as in the case of the stock chart data. The structure of the model consists of two LSTM lay-

ers and three fully connected layers determined by trial and error. Fully connected layers are

configured to improve the nonlinear prediction power by constructing three layers and to fuse

this model with the features extracted from the chart data in our feature fusion LSTM-CNN

model.

Proposed feature fusion LSTM-CNN model

In predicting stock prices, the fusion of the different features comprising the extracted stock

chart images and stock time series data from the same data, can improve the training model.

Fig 11 represents the architecture of our proposed feature fusion LSTM-CNN model, whose

construction is carried out through a total of three steps. The first stage takes the optimal archi-

tectures of the SC-CNN model. In this case, the SC-CNN branch is not included as only part

of the convolution layers is included. We use the same architecture as in Table 1, which is

based on our experiments with the stock chart images shown in Fig 3 using the SC-CNN

Fig 11. The architecture of proposed feature fusion LSTM-CNN model comprised of SC-CNN and ST-LSTM

models.

https://doi.org/10.1371/journal.pone.0212320.g011

Fig 10. The architecture of the ST-LSTM model.

https://doi.org/10.1371/journal.pone.0212320.g010
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model. The second step is developing the ST-LSTM model. In this case, the ST-LSTM branch

is also not included as only part of the LSTM layers is included. The final step of developing

the proposed model involves fusing the graphical features of the SC-CNN model and temporal

features of ST-LSTM model at the fully connected layer. We called this fully connected layer as

the feature fusion LSTM-CNN branch.

In training our proposed model, we applied the joint-training method, wherein we can

achieve upper-bound performances of our proposed method [46, 47]. The loss functions of the

models are defined as follows in Eqs (12) to (15):

L R̂SC
i;tþ5

; Ri;tþ5

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i ¼ 1
ðR̂sc

i;tþ5
� Ri;tþ5Þ

2

r

ð12Þ

L R̂FF
i;tþ5

; Ri;tþ5

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i ¼ 1
ðR̂ff

i;tþ5 � Ri;tþ5Þ
2

r

ð13Þ

L R̂ST
i;tþ5

; Ri;tþ5

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i ¼ 1
ðR̂st

i;tþ5
� Ri;tþ5Þ

2

r
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Total RMSE ¼ a�LðR̂SC
i;tþ5

; Ri;tþ5Þ þ b�LðR̂FF
i;tþ5

; Ri;tþ5Þ þ g�LðR̂ST
i;tþ5

; Ri;tþ5Þ ð15Þ

where N is the number of data points, R̂ is a predicted return value, and R is a target return

value. LðR̂SC
i;tþ5

; Ri;tþ5Þ is the loss function of the SC-CNN model, LðR̂FF
i;tþ5

; Ri;tþ5Þ is the loss

function of the feature fusion LSTM-CNN model, and LðR̂ST
i;tþ5

; Ri;tþ5Þ is the loss function of

the ST-LSTM model. The values of α, β, and γ are the weights of the total RMSE. These param-

eters indicate the degree of reflection of each model loss.

We take not only the fusion of image and temporal features, which come from concatenat-

ing each feature, but also each separate attribute such as image and temporal features. It is

composed of three steps. First, SC-CNN is trained to reduce SC-CNN loss in (Eq 12). This pro-

cess involves learning the graphical features of the chart image. Second, ST-LSTM is trained to

reduce ST-LSTM loss in (Eq 14). In this process, the temporal feature is learned from the stock

time series. Finally, feature fusion LSTM-CNN is trained to reduce feature fusion LSTM-CNN

loss in (Eq 13). In this process, feature fusion LSTM-CNN shares the parameters that are con-

tained in convolutional layer in SC-CNN and LSTM layer in ST-LSTM. However, the

SC-CNN, ST-LSTM, and feature fusion LSTM-CNN branches are independent. From these

three losses, we can derive the total RMSE using (Eq 15). We set β so that the feature fusion

LSTM-CNN loss is reflected more than the other loss values. For example, we set the hyper-

parameters α, β, and γ to 0.2, 1, and 0.2, respectively, to reflect the feature fusion LSTM-CNN

loss to be more than the two other losses. By taking total RMSE, feature fusion LSTM-CNN

can be trained for various features. In addition, a regularization effect can also be expected to

prevent overfitting of features of the fused feature by taking SC-CNN and ST-LSTM losses.

Experiment

We proceed with the experiment as follows. First, we construct the optimized stock chart

images for the SC-CNN model shown in Fig 3, and we then check which stock chart image is

the most appropriate for predicting stock prices. Second, we use the fusion chart images

shown in Fig 4 to check if these images have better performances than those of stock chart

images that are not fused using the SC-CNN model. The result of this experiment shows that

adding information to the chart image is meaningful in predicting stock prices. Then, we
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create the ST-LSTM model that includes time series information to build our feature fusion

LSTM-CNN model. In this case, we construct the optimal ST-LSTM model by taking 29x2

dimensional logarithmic returns of close price and volume data from time t − 30 to time t.
Finally, we describe the fusion of different representation features of the same data by con-

structing the feature fusion LSTM-CNN model that we are proposing in this study. Here, we

explain how to fuse and train the SC-CNN model to extract features using chart image data

and the ST-LSTM model to extract features from financial time series data.

Unlike the image data used in the ImageNet challenge, our chart image data come from

low-dimensional datasets and do not require as deep a CNN. If we use the ResNet architecture

without modification, overfitting is more likely to occur. Reflecting this problem, we use resid-

ual learning and the bottleneck method to capture the nonlinear features of the data by

increasing the depth of the network. Furthermore, we construct three fully connected layers to

improve the nonlinear predictive power. The dimensions of the convolutional layers and the

outputs of the fully connected layers are determined by trial and error, and these values are

shown in Table 1. In addition, we add dropout effects to the fully connected layers of 0.5 to

mitigate the overfitting problem [48], as we use the residual learning and bottleneck methods.

In Fig 3, the input data are stock chart images, and we fine-tune the hyperparameters to iden-

tify the features of the chart images. We set the learning rate, weight decay, and iteration to

0.001, 0.0005, and 60,000 trials, respectively. From this experiment, we can construct an

SC-CNN model that is optimized for stock chart images and find the optimal stock chart

images for predicting stock prices.

From the previous experiments, we obtain a SC-CNN model that is suitable for stock chart

images. Using this model, we can check whether fusion chart images are better than stock

chart images for predicting stock prices. Using the early fusion method, fusion chart images

are created by fusing bar charts with other stock chart images, as shown in Fig 4. The architec-

ture of the SC-CNN model and the hyperparameters, such as the learning ratio, weight decay,

number of iterations, and so on, are the same as in past experiments since they are already

optimized for stock chart images. Furthermore, these settings increase the reliability of our

experiment without changing the parameters. From this experiment, we can check whether

fusion chart images are better than stock chart images.

In the previous two experiments, chart image data are used as input data. In addition to the

features that can be extracted from the chart images in estimating stock prices, since stock

prices are a time series, this sequential information can help to predict stock prices if the net-

work is constructed using fusion with the features extracted from the images. In this experi-

ment, we use stock time series data, specifically, close price and trading volume data. In

forecasting stock prices, the close price has been used in the literature as an input [4, 6, 11, 15,

49] and trading volumes are also an important factor in predicting stock prices [5, 38]. We use

the log returns of the close price and trading volume data instead of the raw data to remove

noise. We also stack the data in a 29x2 form to simultaneously input these two values. Using

these input data, we construct two stacked LSTM layers and three fully connected layers. The

outputs of the LSTM layers and fully connected layers are decided by trial and error. Hyper-

parameters such as batch size, learning rate, and weight decay are set equal to their values in

the above experiments. From this experiment, we can check which features are better for pre-

dicting stock prices. Based on this result, when we fuse different features from each model, we

can determine the extent to which we will reflect each feature in the fully connected layer

stage.

We construct SC-CNN and ST-LSTM models that are suitable for stock chart images and

stock time series data. Using these two different representations made from the same data, we

can extract the corresponding features of each model. By fusing these features, if we train the
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feature fusion LSTM-CNN model, the difference between the prediction and target values can

be reduced. In addition, we adjust the joint training by reflecting the losses of the SC-CNN

and ST-LSTM models simultaneously when we train the feature fusion LSTM-CNN model.

Doing so can improve the performance of the feature fusion LSTM-CNN model. Fig 11 shows

our proposed model. The training procedure is composed of three stages. In the input phase,

the chart image and time series data, which share the same time interval, enter the SC-CNN

model and the ST-LSTM model, which are made up of the same data in the input phase,

respectively. In the first stage, the SC-CNN model is trained in the same way as in the previous

experiment. The architectures of the SC-CNN model used in the feature fusion LSTM-CNN

model are the same as those described in Table 1. The second stage is to train the ST-LSTM

model using stock time series data. This architecture is the same as that described in section

2.4.2. These procedures are part of the joint training to increase the efficiency of the feature

fusion LSTM-CNN model. The last stage is to fuse the features of the different representations

from each model. The fusion of these features is generated in the first fully connected layer.

We determine to what extent the features of each model are reflected in the feature fusion

LSTM-CNN model. These three stages of the training process are executed together.

When we test feature fusion LSTM-CNN, we do not use the SC-CNN and ST-LSTM

branches because these are used to train various features. In addition, these branches prevent

overfitting of features of the fused feature like regularization. It is not used when we predict

stock price. Therefore, we only use convolutional layers, LSTM layers and feature fusion

LSTM-CNN branch when we test our out of sample dataset. We draw connection of convolu-

tion layer with SC-CNN branch and LSTM layer with ST-LSTM branch to express when we

test out of sample dataset, these branches are removed.

Results and discussion

We check three results of this experiment. First, we determine the optimal stock chart image

to predict stock prices. Second, we show that fusion chart images perform better than stock

chart images do. Last, we need to make sure that our proposed feature fusion LSTM-CNN

model is meaningful. As we mentioned in section 2.2, we use RMSE, RMAE, and MAPE as

performance measures.

We create four stock chart images using financial time series data to find the optimal stock

chart image to predict stock prices. Table 2 shows the out-of-sample results of an experiment

with stock chart images using the SC-CNN model.

The out-of-sample results were judged based on the RMSE, RMAE, and MAPE. The test

results of candlestick chart were 0.1258 (RMSE), 0.2896 (RMAE), and 0.0338 (MAPE), which

are the lowest values among four stock chart images. Unlike line and f-line charts, candlestick

charts contain more information because the open, high, low, and close information are all

represented separately. In the case of the bar chart, the test results were 0.1278 (RMSE), 0.2933

(RMAE), 0.0347 (MAPE), which are the second lowest among the stock chart images. It can be

confirmed that the reconstruction of volume information also serves as important raw data for

Table 2. Comparison of out-of-sample results for stock chart images using the SC-CNN model.

Data RMSE RMAE MAPE

Candlestick 0.1258 0.2896 0.0338

Line 0.1800 0.3756 0.0568

F-line 0.1549 0.3427 0.0473

Bar 0.1278 0.2933 0.0347

https://doi.org/10.1371/journal.pone.0212320.t002
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stock predictions [5, 38]. Furthermore, adding information to the chart image can be signifi-

cant for predicting stock prices based on the f-line chart and line chart results. The f-line chart

results were 13.95% (RMSE), 8.75% (RMAE), 16.70% (MAPE), which are better than those of

the line chart. Thus, the performance of the model can be improved by adding information to

the input data. This result can be extended to fusion chart images since these images contain

more information than do stock chart images that are not yet fused.

Next, we check whether fusion chart images are more appropriate for predicting stock

prices as compared to stock chart images. Table 3 shows the out-of-sample results for fusion

chart images using the SC-CNN model based on the RMSE, RMAE, and MAPE.

Compared with the stock chart images, the test results for the candlebar chart show 1.33%,

1.19%, and 2.35% improvements in terms of the RMSE, RMAE, and MAPE, respectively. The

linebar chart shows improvements of 6.35% (RMSE), 7.77% (RMAE), and 1.59% (MAPE) as

compared to the line chart. Finally, the f-linebar chart also shows improvements of 7.24%

(RMSE), 4.09% (RMAE), and 8.00% (MAPE) in comparison with the f-line chart. All of the

fusion chart images have better performances than those of the stock chart images that do not

incorporate fusion. This result shows that it is efficient to add more information to stock chart

images. Although the candlebar chart does not show as large of an improvement as the other

fusion charts do, it is the most appropriate of the chart images. Therefore, when we construct

the feature fusion LSTM-CNN model, we will only use fusion chart images.

Table 4 represents the out-of-sample results of the ST-LSTM model using stock time series

data.

This model has a better performance than those of the SC-CNN models using fusion chart

images and stock chart images. The test results of the ST-LSTM model are 3.49% (RMSE),

2.89% (RMAE), and 5.67% (MAPE) better than those of the candlebar chart, which exhibits

the best performance in the SC-CNN model. Thus, the temporal feature, which is included

in the stock time series data, is more important than the image data feature for predicting

stock prices. This result implies that increasing the proportion of temporal features when fea-

ture fusion occurs will be more helpful in predicting stock prices. Therefore, we construct a

proposed model to reflect this information by taking more information from the fully con-

nected layer neurons of the ST-LSTM model. We set the temporal feature proportion to 0.6

and the image feature proportion to 0.4 when we construct the feature fusion LSTM-CNN

model.

Finally, we should confirm that our proposed model is excellent at predicting stock prices

compared to the SC-CNN and ST-LSTM models alone. From previous results, we can deter-

mine that the ST-LSTM model is more powerful in predicting stock prices than SC-CNN

model is. Thus, we check whether the feature fusion LSTM-CNN model has a better

Table 3. Comparison of out-of-sample results for fusion chart images using the SC-CNN model.

Data RMSE RMAE MAPE

Candlebar 0.1241 0.2862 0.0330

Linebar 0.1685 0.3727 0.0559

F-linebar 0.1436 0.3287 0.0435

https://doi.org/10.1371/journal.pone.0212320.t003

Table 4. Comparison of out-of-sample results for stock time series data using the ST-LSTM model.

Data RMSE RMAE MAPE

Stock time series 0.1198 0.2779 0.0311

https://doi.org/10.1371/journal.pone.0212320.t004
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performance than the ST-LSTM model has. Table 5 shows the performance of the feature

fusion LSTM-CNN model.

Compared with the results of the ST-LSTM model, the out-of-sample loss of the feature

fusion LSTM-CNN model using candlebar charts and stock time series as inputs decreased by

18.18% (RMSE), 17.56% (RMAE), and 32.87% (MAPE). Experiments with other fusion chart

images and stock time series showed better performances than that of the ST-LSTM model.

Fig 12 represents the prediction errors of our three models in comparison with the

SC-CNN model, which uses stock chart images as an input. The results show that the feature

fusion LSTM-CNN model is the best model for forecasting stock prices.

We compared the accuracy with the naive model and feature fusion LSTM-CNN model.

Naive model is based on the assumption that the value at the previous time point is the same as

the value at the later time point. We found that feature fusion LSTM-CNN using fusion chart

images and stock time series has outperform the Naive model. Fig 13 shows that comparison

of accuracy between naive and feature fusion LSTM-CNN model which use candlebar and

stock time series since these data showed the best performance.

The data used here is the adjusted close price of the stock time series data. Compared with

naive model, the out of sample results for the feature fusion LSTM-CNN using candlebar and

stock time series show 11.79%, 10.82%, and 2.14% improvements in terms of the RMSE,

RMAE, and MAPE, respectively. We confirm that our proposed model, feature fusion

LSTM-CNN has more accuracy than naive model.

Table 6 shows the results of trading strategies based on five different models. We do not

consider trading cost in this experiment.

Table 5. Comparison of out-of-sample results for stock chart images and stock time series data using the feature

fusion LSTM-CNN model.

Data RMSE RMAE MAPE

Candlebar and stock time series 0.0980 0.2291 0.0209

Linebar and stock time series 0.1081 0.2354 0.0231

F-linebar and stock time series 0.1063 0.2318 0.0222

https://doi.org/10.1371/journal.pone.0212320.t005

Fig 12. Comparison of prediction errors among three models based on SC-CNN�. The input data are candlebar

charts, which are the best performing fusion chart images, and stock time series data. Note: SC-CNN� uses a

candlestick chart, which is a stock chart image only.

https://doi.org/10.1371/journal.pone.0212320.g012
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In the case of Naive model, since it is judged that Pt is the same at the time point t + 5, it

cannot be determined whether it will rise at the time point t + 5. Therefore, we assumed trad-

ing at each time point and as a result we recorded 15.48% revenue. Buy and hold strategy is a

simple trading method to buy shares at the time of starting trading and sell shares at the end of

the trading period. We confirmed that revenue was 3.09% when we implemented this strategy.

Since our model is constructed to forecast stock price, we can predict stock price at the time

point t+5 if we are at the time point t. Therefore, if predicted stock price is above present stock

price, we can earn a profit by buying stocks at time point t and selling stocks at the time point t

+5. From this point of view, we execute trading simulation in out-of-sample dataset. The

results of trading profit using SC-CNN based on candlestick and candlebar chart report

15.59% and 15.89%. Also, ST-LSTM reported 16.31% trading profit. When trading with single

models, we can see that the profitability is higher than when the strategy is implemented with

buy and hold strategy and naive model. Finally, when we use the feature fusion LSTM-CNN

model, we can confirm that it records 17.38% profits which is the highest among all strategies.

Fig 14 shows the prediction results using the out-of-sample data for the feature fusion

LSTM-CNN model using the candlebar chart, which is the best of the chart images, and stock

time series data. In the out-of-sample dataset, the time interval is from August 1, 2017, to

October 16, 2017, comprising 19,474 data points. As we see in Fig 14, it seems like the pre-

dicted prices fit actual prices. However, since we plotted all of the out-of-sample dataset in one

figure, it can be seen that predicted price follows actual price well. Thus, we divide the whole

period into 500 time steps per figure to see a more detailed movement in the predictions of the

Fig 13. Comparison of accuracy between feature fusion LSTM-CNN and naive model.

https://doi.org/10.1371/journal.pone.0212320.g013

Table 6. Comparison of out-of-sample profit of trading strategies based on five different models.

Data Model Profit

Stock time series Naive 0.1548

Stock time series Buy and Hold 0.0309

Candle SC-CNN 0.1559

Candlebar SC-CNN 0.1589

Stock time series ST-LSTM 0.1631

Candlebar and stock time series Feature fusion LSTM-CNN 0.1738

https://doi.org/10.1371/journal.pone.0212320.t006
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feature fusion LSTM-CNN model. Therefore, we estimate the out-of-sample predictions with

500 time steps at a time and compare our proposed feature fusion LSTM-CNN model using

candlebar chart and stock time series with the naive model. We produce 39 figures since the

testing dataset has 19,474 data points. Figs 15 to 18 show an example of predicting stock prices

movements with the out-of-sample dataset between 0 to 2,000. The remaining figures are in

Supporting Information.

In this study, we make different representations of stock price data to predict stock price.

Theoretically, stock price follows a random process. According to the Markov process, Pt is

greatly influenced by Pt−1 where Pt and Pt−1 are a stock price at time t and t − 1. Therefore, the

graph shape of the data predicted at Pt+5 is affected by the data at the previous time point, Pt.

Fig 14. An example of predicting stock prices using the feature fusion LSTM-CNN model and Naive model on the

testing dataset. The input data are candlebar chart and stock time series.

https://doi.org/10.1371/journal.pone.0212320.g014

Fig 15. An example of predicting stock prices using the feature fusion LSTM-CNN model with a test dataset of

between 0 and 500 data points. The input data are candlebar chart and stock time series.

https://doi.org/10.1371/journal.pone.0212320.g015

Fig 16. An example of predicting stock prices using the feature fusion LSTM-CNN model with a test dataset of

between 500 and 1,000 data points. The input data are candlebar chart and stock time series.

https://doi.org/10.1371/journal.pone.0212320.g016
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In this study, it can be confirmed that the predicted term, Pt+5, seems to be lagged particularly

when plotted against the graph of Pt. We would like to note that the stock price data themselves

have a better predictive ability than each of the models considering the time-series characteris-

tics of the stock price data. However, this study did not prevent the phenomenon of being

lagged because only one stock price data was used. To remove this characteristic, LSTM input

was used to remove the noise by adopting the log profit rate rather than the stock price data,

but this alone is considered insufficient. If we add noise-canceling methods such as autoenco-

der or wavelet transformation, we can expect better performance. In addition, if we add macro

variables affecting SPY data to the time-series data or add technical indicators to the image, we

can reduce the lagged phenomenon and reduce the error with the target values.

Conclusion

In this study, we propose a feature fusion LSTM-CNN model for forecasting stock prices by

combining features of different representations of financial time series data. In order to create

the proposed model, we proceed as follows. First, we construct an SC-CNN model that is opti-

mized for stock chart images. We construct four stock chart images to see which chart images

perform better. We find that the candlestick chart performs the best since it has more informa-

tion compared with other stock chart images. Additionally, we confirm that bar chart images

that are reconstructed using trading volume data are important in predicting stock prices. An

F-line chart has lower predictive value compared to a line chart. Thus, including more infor-

mation in input data can improve predictive power. Second, we perform an experiment by

adding volume information to stock price information using the early fusion method. As a

Fig 17. An example of predicting stock prices using the feature fusion LSTM-CNN model with a test dataset of

between 1,000 and 1,500 data points. The input data are candlebar chart and stock time series.

https://doi.org/10.1371/journal.pone.0212320.g017

Fig 18. An example of predicting stock prices using the feature fusion LSTM-CNN model with a test dataset of

between 1,500 and 2,000 data points. The input data are candlebar chart and stock time series.

https://doi.org/10.1371/journal.pone.0212320.g018

A feature fusion LSTM-CNN model for forecasting stock prices

PLOS ONE | https://doi.org/10.1371/journal.pone.0212320 February 15, 2019 19 / 23

https://doi.org/10.1371/journal.pone.0212320.g017
https://doi.org/10.1371/journal.pone.0212320.g018
https://doi.org/10.1371/journal.pone.0212320


result, we confirm that performance measures, such as RMSE, RMAE, and MAPE, decrease

for all three fusion chart images, but their respective ranks are still maintained. Third, we con-

struct an ST-LSTM model that is optimized for a stock time series that includes the log returns

of close prices and trading volumes. We confirm that the performance of the ST-LSTM model

is better than that of the SC-CNN model. Lastly, we construct a feature fusion LSTM-CNN

model combining the SC-CNN and ST-LSTM models with both fusion chart image and time

series data. To improve the performance of the feature fusion LSTM-CNN model, we adjust

the joint training by taking three losses that are constructed by the SC-CNN, ST-LSTM, and

feature fusion LSTM-CNN models to reflect the information of each model. The performances

of the feature fusion LSTM-CNN model are 0.098 (RMSE), 0.2291 (RMAE), and 0.0209

(MAPE), which are 22.09%, 20.89%, and 38.17% less, respectively, than those of the SC-CNN

model and 18.18%, 17.56%, and 32.87% less, respectively, than those of the ST-LSTM model.

Therefore, we confirm that the feature fusion LSTM-CNN model performs better than the sin-

gle models (SC-CNN and ST-LSTM).

There is a way to further improve the performance of our proposed model. Adding techni-

cal indicators to the chart image can improve the performance of the model because more

information can then be extracted from the image. Furthermore, if we add a new representa-

tion corresponding to a financial time series, such as a news article, we can be more efficient in

predicting stock prices. The contribution of this study is that it is efficient to reduce the predic-

tion error by using a combination of temporal and image features from the same data instead

of using these features separately.
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