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Abstract

Introduction: The Ron receptor tyrosine kinase was initially discovered as a protein which 

played a critical role in regulating inflammatory responses. This effect was primarily determined 

through studies in various macrophage populations. Since its initial discovery, a role has emerged 

for Ron as a driver of cancer within epithelial cells. After numerous publications have detailed a 

role for Ron in promoting tumor initiation, growth, and metastasis, Ron has been designated as an 

emerging therapeutic option in a variety of cancers.

Areas Covered: This review discusses the current literature regarding the role of Ron in prostate 

cancer and places special emphasis on the role of Ron in both epithelial cells and macrophages. 

Whole body loss of Ron signaling initially exposed a variety of prostate cancer growth 

mechanisms regulated by Ron. With the knowledge that Ron plays an integral part in regulating 

the function of epithelial cells and macrophages, studies commenced to discern the cell type 

specific functions for Ron in prostate cancer. A novel role for Ron in promoting Castration 

Resistant Prostate Cancer has recently been uncovered, and the results of these studies are 

summarized herein. Furthermore, this review gives a summary of several currently available 

compounds which show promise at targeting Ron in both epithelial and macrophage populations.

Outlook: Sufficient evidence has been provided for the initiation of clinical trials focused on 

targeting Ron in both macrophage and epithelial compartments for the treatment of prostate 

cancer. A number of therapeutic avenues for targeting Ron in prostate cancer are currently 

available; however, special consideration will need to take place knowing that Ron signaling 

impacts multiple cell types. Further understanding of the cell type specific functions of Ron in 

prostate cancer will help inform and shape future clinical research and therapeutic strategies.

Keywords

receptor tyrosine kinase; RON receptor; prostate cancer; hepatocyte growth factor-like protein

*Address correspondence to: Susan E. Waltz, PhD, Department of Cancer Biology, Vontz Center for Molecular Studies, University of 
Cincinnati College of Medicine, 3125 Eden Ave, Cincinnati, OH 45267-0521, Tel: 513.558.8675, susan.waltz@uc.edu. 

Disclosure of potential conflicts of interest: The authors declare no conflicts of interest.

HHS Public Access
Author manuscript
EMS Cancer Sci J. Author manuscript; available in PMC 2019 February 15.

Published in final edited form as:
EMS Cancer Sci J. 2018 ; 1(1): .

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Receptor tyrosine kinases are becoming increasingly prevalent medicinal targets as new 

information is uncovered revealing their importance in multiple diseases. Specifically, in 

cancer, receptor tyrosine kinases have been implicated as drivers of disease and there has 

been success targeting these proteins, such as the use of the monoclonal antibody 

trastuzumab to target HER2 in breast cancer (1). One such receptor that is receiving 

increased attention recently due to seminal findings regarding its crucial role in multiple 

cancers, such as pancreatic, breast, and prostate, is the Ron receptor/MST1R. The Ron 

receptor is a member of the Ron and c-Met family of cell surface receptor tyrosine kinases 

and is primarily expressed on epithelial cells and macrophages, although low levels of 

expression have been detected in other cell types (2–4). Ron and c-Met are the only two 

members of this family and the two receptors share some similarities in structure and 

function. Despite these similarities, a number of specific roles have emerged between the 

two receptors.

The only known ligand for Ron is Hepatocyte Growth Factor Like protein (HGFL), named 

due to the structural similarities to the ligand for c-Met, HGF, and the two are believed to 

have evolved from a common ancestor (5). HGFL is produced primarily by hepatocytes and 

secreted in the blood in a pro-form. Following cleavage, HGFL forms a heterodimer capable 

of binding to Ron (6–8). Both the Ron receptor and HGFL have been highly associated with 

multiple cancers (9–12). Specifically, in prostate cancer Ron was highly expressed in over 

85% of primary tumors and in 100% of prostate cancer metastasis (13). The exceptionally 

high correlation with disease progression is one reason why Ron is the focus of numerous 

studies for the treatment of prostate cancer. With approximately 30,000 deaths annually in 

the United States from prostate cancer, the identification of novel targets to treat this disease 

is a crucial task that needs to be completed, and the Ron receptor is an up and coming 

therapeutic option (14).

1.1 Ron Structure and Function

The Ron receptor is located on chromosome 3p21.31 in humans and has homologs in several 

other organisms, such as rat (15), chicken (16), feline (17), mouse (15, 18), xenopus (19) and 

zebrafish (20). Structurally, the Ron receptor originates as an 185kDa precursor protein, 

which is cleaved into a 35 kDa extracellular alpha chain that is disulfide linked to a 150 kDa 

transmembrane beta chain. The extracellular portion of Ron contains a Sema-PSI domain 

required for ligand binding, while the intracellular portion possesses the kinase domain 

responsible for signal transduction (21). Ron activation results in receptor dimerization 

leading to autophosphorylation of kinase domain residues Y1238 and Y1239 and subsequent 

phosphorylation of Y1353 and Y1360, which induces the activation of multiple downstream 

signaling cascades (22). Recently, it has been discovered that the intracellular portion of Ron 

contains an acidic region of the juxtamembrane domain responsible for auto-inhibition; 

however, phosphorylation of Y1198 in the kinase domain relieves this inhibition and 

facilitates activation (23). A number of splicing and truncation variants have been identified 

for Ron, which produce differing effects on function/activation of the receptor (24). One 

isoform of Ron, known as short form Ron (sf-Ron/ RONΔ55), is heavily prevalent in 
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pancreatic cancer and is constitutively phosphorylated, has transforming activity, and is 

resistant to many therapies targeting the extracellular portion of Ron (25). Structural 

variants, such as sf-Ron, will need to be taken into consideration during the development of 

therapeutics targeting Ron signaling.

Initially the ligand for Ron, HGFL, was identified as a protein which induced changes in 

macrophage shape and spreading (26). Further work indicated that not only did HGFL 

treatment impact mechanical characteristics of the cell, but it also limited inflammatory 

responses. HGFL treatment of macrophages reduced nitric oxide production following 

treatment with a variety of stimuli (27). Shortly thereafter, crosslinking studies were 

performed to determine that HGFL was binding to Ron at the cell surface (28). Ron was 

further implicated in mediating inflammatory response as it was determined that Ron 

signaling deficient mice (TK−/−, lacking Ron tyrosine kinase domain) have a defect in the 

ability to regulate nitric oxide levels and incur greater tissue damage following inflammatory 

responses (29). The regulation of inflammatory responses through Ron signaling is a critical 

aspect of effective wound healing.

Ron has been shown to have both HGFL-dependent and HGFL-independent functions. 

Overexpression of Ron specifically in the mammary epithelium was sufficient to drive breast 

cancer, although, overexpression of Ron in the mammary epithelium of HGFL knockout 

mice produced tumors with a significant delay in mammary tumor formation (30). In this 

context, HGFL loss in the tumors altered cell signaling patterns, with decreased NF-κB 

activation and reduced β-catenin expression. It is interesting to note that genetic knockout of 

HGFL did not completely prevent tumor formation, indicating that there are HGFL 

independent functions of Ron that remain oncogenic when Ron is overexpressed. In another 

breast cancer study, HGFL independent functions of Ron were reported that enhanced cell 

spreading and survival (31). These reports suggest that Ron activation may function in the 

absence of HGFL possibly through a yet to be discovered ligand or through cross talk with 

other receptors. The ideal candidate as an alternative ligand for Ron would be HGF, 

however, despite having similar structural domains as HGFL, HGF does not appear to 

activate Ron (32). Ron activation through potential alternative ligand(s) is a current area of 

investigation. Receptor crosstalk has been reported between Ron and a number of receptors, 

such as c-Met (22), PDGFR-β (33), IGF1-R (34), Plexins (35) and EGFR (36), making 

receptor cross-talk another viable option to explain HGFL independent Ron oncogenic 

function.

2. Ron in Prostate Cancer

2.1 Ron-Dependent Signaling Mechanisms in Prostate Cancer

Numerous studies within the past decade have expanded upon the role of the Ron receptor in 

prostate cancer. Our group was the first to demonstrate that Ron is critical for prostate tumor 

growth (13, 37). We showed that whole-body genetic ablation of Ron signaling in the 

Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mouse model leads to decreased 

prostate tumor growth (37). Accompanying this research was the discovery of several tumor 

cell-intrinsic processes regulated by Ron to promote prostate cancer. Prostate tumors 

isolated from Ron-deficient TRAMP mice exhibited markedly increased tumor apoptosis 
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and decreased microvessel density compared with controls (37). Similarly, loss of HGFL in 

TRAMP mice led to increased prostate tumor cell death, and this was at least in part due to 

down regulation of a Ron-STAT3-Bcl2-dependent pro-survival mechanism (38). Thus, Ron 

signaling provides a survival advantage to prostate tumor cells. Interestingly, neither loss of 

Ron nor HGFL in TRAMP mice led to changes in tumor cell proliferation, whereas loss of 

Ron in the polyoma middle T antigen model of breast cancer led to a significant decrease in 

cellular proliferation (37–39). These studies suggest that Ron provides different oncogenic 

functions across cancers from different tissues.

Ron has also been identified as an important regulator of tumor-associated macrophages (30, 

38, 40, 41). Whole-body loss of Ron signaling in mouse models of breast and prostate 

cancer leads to increased localization of F4/80-positive macrophages within tumors coupled 

with altered expression of macrophage activation markers (30, 38). This suggests Ron 

regulates macrophage recruitment and activation within the tumor microenvironment to 

promote cancer. As these in vivo studies cannot differentiate the contributions of Ron 

signaling in individual cell compartments to modulation of tumor-associated macrophages, 

further investigation into cell type-specific mechanisms is necessary to gain a full 

understanding of the complex roles of Ron in maintaining a pro-tumorigenic 

microenvironment.

2.2 Epithelial-Specific Roles for Ron in Prostate Cancer

Many studies have demonstrated the importance of epithelial-specific Ron signaling in 

supporting tumorigenesis in a variety of epithelial cancers. Loss of Ron signaling diminishes 

tumorigenic activities of several established and primary thyroid (42), colorectal (43–45), 

and pancreatic (46) cancer cell lines. Furthermore, epithelial-specific overexpression of Ron 

in the lung, breast, and pancreas induces adenocarcinomas with metastasis in mammary and 

pancreatic models (47–49). Recent work has similarly uncovered the functions of prostate 

cancer epithelial specific Ron signaling. Knockdown of Ron in human prostate cancer cell 

xenografts in immunodeficient mice revealed that loss of Ron in prostate tumor epithelial 

cells significantly reduces tumor growth (13). Conversely, overexpression of Ron in prostate 

epithelial cells is sufficient to induce prostate cancer in mice (50). Taken together, this work 

demonstrates that epithelial Ron expression promotes murine and human prostate tumor 

growth in vivo. Interestingly, Ron overexpression selectively within prostate epithelial cells 

was associated with changes in both cell proliferation and cell death (50). This contrast in 

phenotype between whole-body and cell type-specific modulation of Ron signaling may 

suggest Ron signaling across multiple cell types communicates within a tumor, however 

further examination is needed to delineate these mechanisms.

While the role of Ron in cancer cell metastasis has been characterized in several cancers, 

such as breast (12, 39, 49, 51–53) pancreatic (9, 34, 54), and lung (55), few studies have 

addressed the importance of Ron in prostate cancer cell migration, invasion, and metastasis. 

Initial in vitro studies have suggested an important role for epithelial Ron in regulating some 

of these phenotypes. Jiang et al. showed that inhibition of Ron activation with a neutralizing 

antibody reduced PC-3 cell migration while stimulation with recombinant HGFL increased 

cell migration (56). A second study revealed consistent results with these findings by 
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demonstrating that knockdown of Ron in PC-3 and DU-145 cells attenuates cell migration 

and invasion. Moreover, treatment with HGFL was sufficient to induce migration and 

invasion. In these models, ERK1/2 was shown to mediate HGFL-induced cell migration and 

invasion, suggesting this pathway plays a key role in Ron-mediated prostate cancer cell 

metastasis (57). These data suggest that epithelial Ron signaling is an important promoter of 

prostate cancer cell migration and invasion; however additional studies are needed to test the 

role of Ron in prostate cancer metastasis in vivo and expand upon the mediating 

mechanisms.

Prostate cancer epithelial-specific Ron expression has also been established as a key 

regulator of the tumor microenvironment. Ron in human prostate cancer cells positively 

regulates production of angiogenic chemokines through activation of NF-κB (13). 

Furthermore, Ron expression in these cells was deemed necessary for endothelial cell 

recruitment and prostate tumor vascularization. Studies performed using TRAMP mice 

support the role of Ron signaling in angiogenesis, as loss of Ron or HGFL leads to 

decreased prostate tumor microvessel density as measured by CD31 staining (37, 38).

2.3 Macrophage-Specific Roles for Ron in Prostate Cancer

Continuing the investigation into cell type specific functions for Ron has led to multiple 

discoveries regarding the role of Ron in macrophages to promote prostate cancer. Research 

has uncovered that Ron is expressed primarily on tissue resident macrophages and 

terminally differentiated macrophages, but Ron expression is markedly lower in circulatory 

monocytes (4, 58–61). This observation was also supported in prostate tumor tissue with 

Ron expression detected in tumor resident macrophages in an orthotopic model of prostate 

cancer (41). Using a model of breast cancer, Ron expression was connected specifically to a 

subset of tumor associated macrophages that express Tie2 (62). The significance of 

macrophage specific Ron expression for prostate tumor growth was first directly examined 

when mice harboring a myeloid specific deletion of the Ron tyrosine kinase domain 

(LysMCre TKf/f) were orthotopically injected with syngeneic murine C2RE3 prostate 

cancer cells. In this model, mice with a myeloid specific Ron loss developed significantly 

smaller prostate tumors and exhibited increased tumor cell apoptosis compared to 

transplantation into Ron proficient counterparts (41). Interestingly, prostate tumors in Lys-

M-Cre TKf/f mice had an increase in the number of tumor-infiltrated macrophages. This 

observation was consistent with whole body loss of Ron signaling in both prostate and breast 

cancer murine models (30, 38), suggesting that macrophage-specific Ron expression is at 

least partly responsible for regulate macrophage tumor infiltration.

Research regarding Ron expression in macrophages has established that Ron is capable of 

promoting a M2 macrophage phenotype, as Ron expression promotes arginase expression 

and inhibits inducible nitric oxide synthase (iNOS) expression (30, 41, 62–64). Macrophage 

activation can be characterized as a continuum between M1 and M2, with M1 traditionally 

being inhibitory toward tumor growth and M2 being tumor promoting (65). M2 

macrophages are anti-inflammatory in nature and are known to promote angiogenesis and 

matrix remodeling in cancer (65, 66). Thus, loss of Ron in macrophages suppresses the M2 
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phenotype and produces a macrophage that is capable of infiltrating tumors and suppressing 

tumor growth.

Macrophages are known to impact the function of other cells within the tumor 

microenvironment. Given that Ron in macrophages has been shown to suppress 

inflammatory responses in several injury and infection models, macrophage Ron signaling 

may play a crucial role in regulating the tumor microenvironment (7, 60, 67–70). Moreover, 

Ron activation in macrophages suppresses TLR4 signaling, which could limit the activation 

of neighboring immune cells within the tumor thereby suppressing tumor immune 

surveillance (71). Indeed, myeloid specific loss of Ron resulted in reduced cytotoxic T-cell 

function in prostate tumors (41). This result is consistent with what was observed in a 

murine model of breast cancer, where T-cells isolated from Ron signaling deficient mice had 

increased proliferation rates, increased expression of T-cell activation markers, and increased 

in vitro cytotoxicity when co-cultured with breast cancer cells. Furthermore, the increased 

cytotoxic T cell response seen in tumor-bearing Ron deficient mice was correlated with 

reduced tumor growth and metastasis (30). Taken together, these studies implicate Ron 

signaling in macrophages as a key regulator of the antitumor immune response.

2.4 Ron in Castration Resistant Prostate Cancer

Ron signaling had been established as a critical player in prostate cancer growth and 

development, but until recently the role of this signaling pathway had not been evaluated in 

the most deadly form of prostate cancer, Castration Resistant Prostate Cancer (CRPC). Ron 

mRNA and protein expression in patients was determined to be elevated in hormone 

refractory prostate cancer samples relative to hormone naïve samples (72, 73). Further, 

recent data from our laboratory has shown that Ron is functionally important for the 

development of castration resistance in several murine allograft and human xenograft mouse 

models (73). The ability of Ron to promote castration resistance is, at least in part, 

dependent on activation of β-catenin, NF-κB, and the androgen receptor. Activation of β-

catenin through Ron in prostate cancer had yet to be detected, however, in breast cancer Ron 

has been shown to activate β-catenin for promotion of growth and in the regulation of cancer 

stem cells (49, 74, 75). Under androgen deprivation, Ron activation of the androgen receptor 

appears to be dependent on β-catenin and NF-κB. Interestingly, Ron has been reported to 

have differential effects on the androgen receptor depending on the presence or absence of 

androgens. When androgens are present, the relationship between Ron and the androgen 

receptor may be inhibitory (72). However, under androgen deprived conditions the 

relationship appears to be mutually active as Ron overexpression was shown to induce 

activation of the androgen receptor (72, 73) and re-expression of the androgen receptor in 

PC-3 cells was shown to induce transcription of Ron (72).

Understanding the differential effects of Ron on the androgen receptor is critical for the 

treatment of patients with CRPC, because the majority CRPCs have low levels of androgens 

due to treatment with androgen deprivation therapy. Additionally, several androgen receptor 

variants have been uncovered which play pivotal roles in prostate cancer, most notably AR-

variant 7 (76). Further studies should focus on determining if Ron expression alters 

androgen receptor variant expression, and if so under what conditions. Moreover, reports 
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have shown that macrophage androgen receptor expression plays an important role in the 

development/initiation of prostate cancer (77). With this information, understanding the 

impact that Ron inhibition may have on macrophage function and on androgen receptor 

signaling in during the treatment of CRPC patients may prove to be crucial. CRPC is a 

devastating disease with limited treatment options and these initial studies established the 

scientific underpinnings for targeting Ron in CRPC.

3 Available Therapeutic Options for RON

3.1 Small Molecules

Possessing an intracellular kinase domain has made targeting Ron with a small molecule 

inhibitor (SMI) a realistic possibility. As such, several inhibitors have been developed that 

show efficacy against Ron. Specifically, Foretinib (EXEL-2880) is a SMI with high 

specificity against Ron, c-Met, and VEGF and was shown to reduce proliferation in cancer 

cells (78). A clinical trial with Foretinib has yet to be completed for prostate cancer; 

however, a phase II clinical trial was completed in Triple Negative Breast Cancer showing a 

clinical benefit rate of 46% (79). Recent pre-clinical work in prostate cancer cell lines 

indicates that Foretinib treatment may be beneficial in prostate cancer as treatment 

suppressed metastasis and reversed epithelial to mesenchymal transition (57).

Another intriguing SMI is the compound known as ASLAN002/BMS-777607. ASLAN002 

is a dual Ron/c-Met tyrosine kinase inhibitor, but is one of the few compounds available that 

has preferential action against Ron over c-Met (80). A phase 1 clinical trial of ASLAN002 

recently completed in patients with metastatic solid cancers and showed that the inhibitor is 

well tolerated and suggested that a phase 2 clinical trial begin with the treatment of 300mg 

twice daily (81). Recently, preclinical work from our laboratory with ASLAN002 illustrated 

that treatment in combination with castration therapy for castration resistant prostate tumors 

in a murine model of CRPC inhibits tumor growth (73). Additionally, bone metastases are 

frequent occurrences in metastatic prostate cancer patients and work by Andrade et al 
showed that treatment with ASLAN002 limits cancer-mediated bone destruction in murine 

models (82). The numerous reports demonstrating that ASLAN002 is safe and possibly 

effective at treating prostate cancer warrants further clinical study regarding use of this 

compound in prostate cancer patients.

A more recently developed inhibitor for Ron/c-Met is Merestinib/LY2801653 (83). 

Preclinical work with this compound showed its ability to inhibit cancer cell proliferation 

and cell scattering, and showed potent in vivo antitumor effects in xenograft mouse models 

(83). Merestinib recently completed a phase 1 clinical trial to determine tolerability in 

humans and the results have yet to be released (trial I3O-MC-JSBA, NCT01285037). Each 

of these SMI compounds targeting Ron has the potential to benefit prostate cancer patients. 

However, knowing that Ron promotes prostate cancer through its expression in both 

epithelial cells and macrophages, further research into how treatments should be targeted in 

patients is warranted.
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3.2 Antibodies

A number of monoclonal antibodies have been generated toward the Ron receptor, with 

some making progress in clinical trials. Monoclonal antibodies against Ron can be used to 

directly target Ron signaling in cancer or they can be fused to a cytotoxic agent and used to 

guide that agent toward the tumor with Ron overexpression. Narnatumab/IMC-RON8 is a 

fully humanized monoclonal antibody that binds with high affinity to Ron, subsequently 

preventing the association of Ron with HGFL. A phase 1 clinical trial of Narnatumab has 

completed, determining that Narnatumab is well tolerated and provides limited antitumor 

activity (84). This study produced less than ideal results, however, with only 1 patient 

reaching the trough concentration at which Narnatumab produced antitumor activity in 

animal models.

A different approach to target Ron has been used by M.H. Wang’s group, where these 

investigators developed three antibodies that target the Maturation Required Sequence of 

Ron located on the extracellular domain of this receptor. These antibodies are known as 

Zt/g4, Zt/f2, and Zt/c9 and rather than preventing ligand binding, this interaction induces 

receptor internalization and degradation (45, 85, 86). The induction of receptor 

internalization has been exploited by this group as a means to transport cytotoxic 

compounds inside the cell. These antibodies have been successfully coupled to doxorubicin, 

5-fluorouracil, Gemcitabine, as well as other compounds, and have show preclinical efficacy 

(45, 85, 87). These proofs of concept studies establish the utility of Ron antibodies in cancer 

therapy, although none of these current antibodies have been tested in preclinical models for 

the treatment of prostate cancer. Furthermore, no studies have examined the impact of 

antibodies targeting Ron in the epithelial versus macrophage compartments.

4. The Outlook of Ron in Prostate Cancer

Significant progress has been made detailing the important role of Ron in prostate cancer 

since Ron was initially discovered. This progress has laid a solid groundwork for future 

studies to catapult the idea of the treatment of Ron signaling for prostate cancer into 

mainstream therapeutics. New areas of research will need to focus on the different 

possibilities for Ron to be used as a biomarker and the mechanism for directly targeting Ron 

in patients with prostate cancer. As a biomarker, plasma levels of HGFL have already been 

shown to correlate with prostate cancer progression and Ron expression shown to correlate 

with Gleason score and response to hormone therapy (72, 88). As a direct target, several 

compounds outlined previously are already available to begin testing in patients. 

Additionally, a major problem with treating prostate tumors is that they are known to have 

low immunogenicity, making many immunotherapies ineffective. Knowing that macrophage 

loss of Ron impacts macrophage infiltration and alters T-cell function provides a basis for 

changing that constraint. Although not in prostate cancer, it has recently been shown that 

Ron inhibition in breast cancer enhances response to anti-CTLA-4 immunotherapy in 

murine models (89). This suggests that Ron inhibition may be able to suppress antitumor 

immunity in prostate cancer to increase immunogenicity and sensitize tumors to 

immunotherapies.
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With the number of studies demonstrating that Ron can impact the prostate tumor 

microenvironment, it is imperative to determine what role the tumor microenvironment plays 

in regulating castration resistant prostate cancer. Specifically, Ron has been shown to alter 

endothelial cells, macrophages, and T-cells of the prostate tumor microenvironment making 

these cell types a primary focus. If Ron produces significant changes to the tumor 

microenvironment to promote CRPC, then coupling Ron to other therapies, such as 

immunomodulatory agents, may prove effective in Ron overexpressing CRPC tumors. 

Lastly, as Ron has been linked to therapeutic resistance in prostate cancer, and Ron has been 

shown to regulate stemness in breast cancer, studies should be performed which focus on the 

ability of Ron to regulate stemness in prostate cancer to drive therapeutic resistance. 

Producing research focused in these areas will enhance our ability to discern what patients 

will benefit from Ron directed therapy and what method will be best suited for targeting Ron 

in prostate cancer.
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