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Abstract

Principal Component Analysis (PCA) is a classical method for reducing the dimensionality of data 

by projecting them onto a subspace that captures most of their variation. Effective use of PCA in 

modern applications requires understanding its performance for data that are both high-

dimensional and heteroscedastic. This paper analyzes the statistical performance of PCA in this 

setting, i.e., for high-dimensional data drawn from a low-dimensional subspace and degraded by 

heteroscedastic noise. We provide simplified expressions for the asymptotic PCA recovery of the 

underlying subspace, subspace amplitudes and subspace coefficients; the expressions enable both 

easy and efficient calculation and reasoning about the performance of PCA. We exploit the 

structure of these expressions to show that, for a fixed average noise variance, the asymptotic 

recovery of PCA for heteroscedastic data is always worse than that for homoscedastic data (i.e., 

for noise variances that are equal across samples). Hence, while average noise variance is often a 

practically convenient measure for the overall quality of data, it gives an overly optimistic estimate 

of the performance of PCA for heteroscedastic data.
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1. Introduction

Principal Component Analysis (PCA) is a classical method for reducing the dimensionality 

of data by representing them in terms of a new set of variables, called principal components, 

where variation in the data is largely captured by the first few principal components [23]. 

This paper analyzes the asymptotic performance of PCA for data with heteroscedastic noise. 

In particular, we consider the classical and commonly employed unweighted form of PCA 
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that treats all samples equally and remains a natural choice in applications where estimates 

of the noise variances are unavailable or one hopes the noise is “close enough” to being 

homoscedastic. Our analysis uncovers several practical new insights for this setting; the 

findings both broaden our understanding of PCA and also precisely characterize the impact 

of heteroscedasticity.

Given zero-mean sample vectors y1, …, yn ∈ ℂd, the first k principal components 

u1, …, uk ∈ ℂd and corresponding squared PCA amplitudes θ1
2, …, θk

2 ∈ ℝ+ are the first k 

eigenvectors and eigenvalues, respectively, of the sample covariance matrix 

y1y1
H + ⋯ + ynyn

H n. The associated score vectors z 1 , …, z k ∈ ℂn are standardized 

projections given, for each i ∈ {1,…,k}, by z i = 1 θ i ui
H y1, …, yn

H
. The principal 

components u1, …, uk, PCA amplitudes θ1, …, θk and score vectors z 1 , …, z k  are efficiently 

obtained from the data matrix y1, …, yn ∈ ℂd × n as its left singular vectors, (scaled) singular 

values and (scaled) right singular vectors, respectively.

A natural setting for PCA is when data are noisy measurements of points drawn from a 

subspace. In this case, the first few principal components u1, …, uk form an estimated basis 

for the underlying subspace; if they recover the underlying subspace accurately then the low-

dimensional scores z 1 , …, z k  will largely capture the meaningful variation in the data. This 

paper analyzes how well the first k principal components u1, …, uk, PCA amplitudes 

θ1, …, θk and score vectors z 1 , …, z k  recover their underlying counterparts when the data 

are heteroscedastic, that is, when the noise in the data has non-uniform variance across 

samples.

1.1. High-dimensional, heteroscedastic data

Dimensionality reduction is a fundamental task, so PCA has been applied in a broad variety 

of both traditional and modern settings. See [23] for a thorough review of PCA and some of 

its important traditional applications. A sample of modern application areas include medical 

imaging [2, 33], classification for cancer data 35], anomaly detection on computer networks 

[24], environmental monitoring [31, 39] and genetics [25], to name just a few.

It is common in modern applications in particular for the data to be high-dimensional (i.e., 

the number of variables measured is comparable with or larger than the number of samples), 

which has motivated the development of new techniques and theory for this regime [22]. It is 

also common for modern data sets to have heteroscedastic noise. For example, Cochran and 

Horne [11] apply a PCA variant to spectrophotometric data from the study of chemical 

reaction kinetics. The spectrophotometric data are absorptions at various wavelengths over 

time, and measurements are averaged over increasing windows of time causing the amount 

of noise to vary across time. Another example is given in [36], where data are astronomical 

measurements of stars taken at various times; here changing atmospheric effects cause the 

amount of noise to vary across time. More generally, in the era of big data where inference is 

made using numerous data samples drawn from a myriad of different sources, one can 
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expect that both high-dimensionality and heteroscedasticity will be the norm. It is important 

to understand the performance of PCA in such settings.

1.2. Contributions of this paper

This paper provides simplified expressions for the performance of PCA from heteroscedastic 

data in the limit as both the number of samples and dimension tend to infinity. The 

expressions quantify the asymptotic recovery of an underlying subspace, subspace 

amplitudes and coefficients by the principal components, PCA amplitudes and scores, 

respectively. The asymptotic recoveries are functions of the samples per ambient dimension, 

the underlying subspace amplitudes and the distribution of noise variances. Forming the 

expressions involves first connecting several results from random matrix theory [3, 5] to 

obtain initial expressions for asymptotic recovery that are difficult to evaluate and analyze, 

and then exploiting a nontrivial structure in the expressions to obtain much simpler algebraic 

descriptions. These descriptions enable both easy and efficient calculation and reasoning 

about the asymptotic performance of PCA.

The impact of heteroscedastic noise, in particular, is not immediately obvious given results 

of prior literature. How much do a few noisy samples degrade the performance of PCA? Is 

heteroscedasticity ever beneficial for PCA? Our simplified expressions enable such 

questions to be answered. In particular, we use these expressions to show that, for a fixed 

average noise variance, the asymptotic subspace recovery, amplitude recovery and 

coefficient recovery are all worse for heteroscedastic data than for homoscedastic data (i.e., 

for noise variances that are equal across samples), confirming a conjecture in [18]. Hence, 

while average noise variance is often a practically convenient measure for the overall quality 

of data, it gives an overly optimistic estimate of PCA performance. This analysis provides a 

deeper understanding of how PCA performs in the presence of heteroscedastic noise.

1.3. Relationship to previous works

Homoscedastic noise has been well-studied, and there are many nice results characterizing 

PCA in this setting. Benaych-Georges and Nadakuditi [5] give an expression for asymptotic 

subspace recovery, also found in [21, 29, 32], in the limit as both the number of samples and 

ambient dimension tend to infinity. As argued in [21], the expression in [5] reveals that 

asymptotic subspace recovery is perfect only when the number of samples per ambient 

dimension tends to infinity, so PCA is not (asymptotically) consistent for high-dimensional 

data. Various alternatives [6, 15, 21] can regain consistency by exploiting sparsity in the 

covariance matrix or in the principal components. As discussed in [5, 29], the expression in 

[5] also exhibits a phase transition: the number of samples per ambient dimension must be 

sufficiently high to obtain non-zero subspace recovery (i.e., for any subspace recovery to 

occur). This paper generalizes the expression in [5] to heteroscedastic noise; homoscedastic 

noise is a special case and is discussed in Section 2.3. Once again, (asymptotic) consistency 

is obtained when the number of samples per ambient dimension tends to infinity, and there is 

a phase transition between zero recovery and non-zero recovery.

PCA is known to generally perform well in the presence of low to moderate homoscedastic 

noise and in the presence of missing data [10]. When the noise is standard normal, PCA 
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gives the maximum likelihood (ML) estimate of the subspace [37]. In general, [37] proposes 

finding the ML estimate via expectation maximization. Conventional PCA is not an ML 

estimate of the subspace for heteroscedastic data, but it remains a natural choice in 

applications where we might expect noise to be heteroscedastic but hope it is “close enough” 

to being homoscedastic. Even for mostly homoscedastic data, however, PCA performs 

poorly when the heteroscedasticity is due to gross errors (i.e., outliers) [13, 19, 23], which 

has motivated the development and analysis of robust variants; see [8, 9, 12, 16, 17,26, 34, 

40, 42] and their corresponding bibliographies. This paper provides expressions for 

asymptotic recovery that enable rigorous understanding of the impact of heteroscedasticity.

The generalized spiked covariance model, proposed and analyzed in [4] and [41], 

generalizes homoscedastic noise in an alternate way. It extends the Johnstone spiked 

covariance model [20, 21] (a particular homoscedastic setting) by using a population 

covariance that allows, among other things, non-uniform noise variances within each 

sample. Non-uniform noise variances within each sample may arise, for example, in 

applications where sample vectors are formed by concatenating the measurements of 

intrinsically different quantities. This paper considers data with non-uniform noise variances 

across samples instead; we model noise variances within each sample as uniform. Data with 

nonuniform noise variances across samples arise, for example, in applications where 

samples come from heterogeneous sources, some of which are better quality (i.e., lower 

noise) than others. See Section S1 of the Online Supplement for a more detailed discussion 

of connections to spiked covariance models.

Our previous work [18] analyzed the subspace recovery of PCA for heteroscedastic noise 

but was limited to real-valued data coming from a random one-dimensional subspace where 

the number of samples exceeded the data dimension. This paper extends that analysis to the 

more general setting of real- or complex-valued data coming from a deterministic low-

dimensional subspace where the number of samples no longer needs to exceed the data 

dimension. This paper also extends the analysis of [18] to include the recovery of the 

underlying subspace amplitudes and coefficients. In both works, we use the main results of 

[5] to obtain initial expressions relating asymptotic recovery to the limiting noise singular 

value distribution.

The main results of [29] provide non-asymptotic results (i.e., probabilistic approximation 

results for finite samples in finite dimension) for homoscedastic noise limited to the special 

case of one-dimensional subspaces. Signal-dependent noise was recently considered in [38], 

where they analyze the performance of PCA and propose a new generalization of PCA that 

performs better in certain regimes. A recent extension of [5] to linearly reduced data is 

presented in [14] and may be useful for analyzing weighted variants of PCA. Such analyses 

are beyond the scope of this paper, but are interesting avenues for further study.

1.4. Organization of the paper

Section 2 describes the model we consider and states the main results: simplified 

expressions for asymptotic PCA recovery and the fact that PCA performance is best (for a 

fixed average noise variance) when the noise is homoscedastic. Section 3 uses the main 

results to provide a qualitative analysis of how the model parameters (e.g., samples per 
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ambient dimension and the distribution of noise variances) affect PCA performance under 

heteroscedastic noise. Section 4 compares the asymptotic recovery with non-asymptotic (i.e., 

finite) numerical simulations. The simulations demonstrate good agreement as the ambient 

dimension and number of samples grow large; when these values are small the asymptotic 

recovery and simulation differ but have the same general behavior. Sections 5 and 6 prove 

the main results. Finally, Section 7 discusses the findings and describes avenues for future 

work.

2. Main results

2.1. Model for heteroscedastic data

We model n heteroscedastic sample vectors y1, …, yn ∈ ℂd from a k-dimensional subspace as

yi = Uϴzi
+ ηiεi = ∑

j = 1

k
θ ju j zi

j ∗ + ηiεi . (1)

The following are deterministic: U = u1, …, uk ∈ ℂd × k forms an orthonormal basis for the 

subspace, ϴ = diag θ1, …, θk ∈ ℝ+
k × k is a diagonal matrix of amplitudes, ηi ∈ {σ1,…,σL} are 

each one of L noise standard deviations σ1,…,σL, and we define n1 to be the number of 

samples with ηi = σ1, n2 to be the number of samples with ηi = σ2 and so on, where n1 + … 

+ nL = n.

The following are random and independent: zi ∈ ℂk are iid sample coefficient vectors that 

have iid entries with mean E(zij) = 0, variance E∣zij∣2 = 1, and a distribution satisfying the 

log-Sobolev inequality [1], εi ∈ ℂd are unitarily invariant iid noise vectors that have iid 

entries with mean E(εij) = 0, variance E∣εij∣2 = 1 and bounded fourth moment E∣εij∣4 < ∞, 

and we define the k (component) coefficient vectors z 1 , …, z k ∈ ℂn such that the ith entry 

of z(j) is zi
j = zi j

∗
, the complex conjugate of the jth entry of zi. Defining the coefficient 

vectors in this way is convenient for stating and proving the results that follow, as they more 

naturally correspond to right singular vectors of the data matrix formed by concatenating y1,

…,yn as columns.

The model extends the Johnstone spiked covariance model [20, 21] by incorporating 

heteroscedasticity (see Section S1 of the Online Supplement for a detailed discussion). We 

also allow complex-valued data, as it is of interest in important signal processing 

applications such as medical imaging; for example, data obtained in magnetic resonance 

imaging are complex-valued.

Remark 1. By unitarily invariant, we mean that left multiplication of εi by any unitary 

matrix does not change the joint distribution of its entries. As in our previous work [18], this 

assumption can be dropped if instead the subspace U is randomly drawn according to either 
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the “orthonormalized model” or “iid model” of [5]. Under these models, the subspace U is 

randomly chosen in an isotropic manner.

Remark 2. The above conditions are satisfied, for example, when the entries zij and εij are 

circularly symmetric complex normal 𝒞𝒩 0, 1  or real-valued normal 𝒩 0, 1 . Rademacher 

random variables (i.e., ±1 with equal probability) are another choice for coefficient entries 

zij; see Section 2.3.2 of [1] for discussion of the log-Sobolev inequality. We are unaware of 

non-Gaussian distributions satisfying all conditions for noise entries εij, but as noted in 

Remark 1, unitary invariance can be dropped if we assume the subspace is randomly drawn 

as in [5].

Remark 3. The assumption that noise entries εij are identically distributed with bounded 

fourth moment can be relaxed when they are real-valued as long as an aggregate of their tails 

still decays sufficiently quickly, i.e., as long as they satisfy Condition 1.3 from [30]. In this 

setting, the results of [30] replace those of [3] in the proof.

2.2. Simplified expressions for asymptotic recovery

The following theorem describes how well the PCA estimates u1, …, uk, θ1, …, θk and 

z 1 , …, z k  recover the underlying subspace basis u1,…, uk, subspace amplitudes θ1,…, θk 

and coefficient vectors z(1),…, z(k), as a function of the sample-to-dimension ratio n/d → c 

> 0, the subspace amplitudes θ1,…, θk, the noise variances σ1
2, …, σL

2 and corresponding 

proportions nℓ/n → pℓ for each ℓ ∈ {1,…, L}. One may generally expect performance to 

improve with increasing sample-to-dimension ratio and subspace amplitudes; Theorem 1 

provides the precise dependence on these parameters as well as on the noise variances and 

their proportions.

Theorem 1 (Recovery of individual components). Suppose that the sample-to-dimension 
ratio n/d → c > 0 and the noise variance proportions nℓ/n → pℓ for ℓ ∈ {1,…, L} as n, d → 
∞. Then the ith PCA amplitude θ i is such that

θ i
2 a . s . 1

c max α, βi 1 + c ∑
ℓ = 1

L pℓσℓ
2

max α, βi − σℓ
2 , (2)

where α and βi are, respectively, the largest real roots of

A x = 1 − c ∑
ℓ = 1

L pℓσℓ
4

x − σℓ
2 2 , Bi x = 1 − cθi

2 ∑
ℓ = 1

L pℓ
x − σℓ

2 . (3)

Furthermore, if A(βi) > 0, then the ith principal component ui is such that
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ui, Span u j:θ j = θi
2 a . s . A βi

βiBi′ βi
, ui, Span u j:θ j ≠ θi

2 a . s . 0, (4)

the normalized score vector z i n is such that

z i

n
, Span z j :θ j = θi

2
a . s . A βi

c βi + 1 − c θi
2 Bi′ βi

,

z i

n
, Span z j :θ j ≠ θi

2
a . s . 0,

(5)

and

∑
j:θ j = θi

ui, u j
z i

n
, z j

∣ ∣ z j ∣ ∣

∗
a . s . A βi

cβi βi + 1 − c θi
2 Bi′ βi

. (6)

Section 5 presents the proof of Theorem 1. The expressions can be easily and efficiently 

computed. The hardest part is finding the largest roots of the univariate rational functions 

A(x) and Bi(x), but off-the-shelf solvers can do this efficiently. See [18] for an example of 

similar calculations.

The projection ∣ ui, Span u j:θ j = θi ∣2 in Theorem 1 is the square cosine principal angle 

between the ith principal component ui and the span of the basis elements with subspace 

amplitudes equal to θi. When the subspace amplitudes are distinct, 

∣ ui, Span u j:θ j = θi ∣2 = ∣ ui, ui ∣2 is the square cosine angle between ui and ui. This value 

is related by a constant to the squared error between the two (unit norm) vectors and is one 

among several natural performance metrics for subspace estimation. Similar observations 

hold for ∣ z i n, Span z j :θ j = θi ∣2. Note that z i n has unit norm.

The expressions (4), (5) and (6) apply only if A(βi) > 0. The following conjecture predicts a 

phase transition at A(βi) = 0 so that asymptotic recovery is zero for A(βi) ≤ 0.

Conjecture 1 (Phase transition). Suppose (as in Theorem 1) that the sample-to-dimension 
ratio n/d → c > 0 and the noise variance proportions nℓ/n → pℓ for ℓ ∈ {1,…, L} as n, d → 
∞. If A(βi) ≤ 0, then the ith principal component ui and the normalized score vector z i n

are such that
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∣ ui, Span u1, …, uk ∣2 a . s . 0, z i

n
, Span z 1 , …, z k

2 a . s . 0 .

This conjecture is true for a data model having Gaussian coefficients and homoscedastic 

Gaussian noise as shown in [32]. It is also true for a one-dimensional subspace (i.e., k = 1) 

as we showed in [18]. Proving it in general would involve showing that the singular values 

of the matrix whose columns are the noise vectors exhibit repulsion behavior; see Remark 

2.13 of [5].

2.3. Homoscedastic noise as a special case

For homoscedastic noise with variance σ2, A(x) = 1 – cσ4/(x – σ2)2 and 

Bi x = 1 − cθi
2 x − σ2 . The largest real roots of these functions are, respectively, 

α = 1 + c σ2 and βi = σ2 + cθi
2. Thus the asymptotic PCA amplitude (2) becomes

θ i
2 a . s . θi

2 1 + σ2 cθi
2 1 + σ2 θi

2 if cθi
4 > σ4,

σ2 1 + 1 c
2 otherwise.

(7)

Further, if cθi
4 > σ4, then the non-zero portions of asymptotic subspace recovery (4) and 

coefficient recovery (5) simplify to

ui, Span u j:θ j = θi
2 a . s . c − σ4 θi

4

c + σ2 θi
2 ,

z i

n
, Span z j :θ j = θi

2
a . s . c − σ4 θi

4

c 1 + σ2 θi
2 ,

(8)

These limits agree with the homoscedastic results in [5, 7, 21, 29, 32]. As noted in Section 

2.2, Conjecture 1 is known to be true when the coefficients are Gaussian and the noise is 

both homoscedastic and Gaussian, in which case (8) becomes

ui, Span u j:θ j = θi
2 a . s . max 0,

c − σ4 θi
4

c + σ2 θi
2 ,

z i

n
, Span z j :θ j = θi

2 a . s . max 0,
c − σ4 θi

4

c 1 + σ2 θi
2 .

See Section 2 of [21] Section and 2.3 of [32] for a discussion of this result.
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2.4. Bias of the PCA amplitudes

The simplified expression in (2) enables us to immediately make two observations about the 

recovery of the subspace amplitudes θ1,…,θk by the PCA amplitudes θ1, …, θk

Remark 4 (Positive bias in PCA amplitudes). The largest real root βi of Bi(x) is greater than 

maxℓ σℓ
2 . Thus 1 βi − σℓ

2 > 1 βi for ℓ ∈ {1,…, L} and so evaluating (3) at βi yields

0 = Bi βi = 1 − cθi
2 ∑

ℓ = 1

L pℓ
βi − σℓ

2 < 1 − cθi
2 1

βi
.

As a result, βi > cθi
2, so the asymptotic PCA amplitude (2) exceeds the subspace amplitude, 

i.e., θ i is positively biased and is thus an inconsistent estimate of θi. This is a general 

phenomenon for noisy data and motivates asymptotically optimal shrinkage in [27].

Remark 5 (Alternate formula for amplitude bias). If A(βi) ≥ 0, then βi ≥ α because A(x) and 

Bi(x) are both increasing functions for x > maxℓ σℓ
2 . Thus, the asymptotic amplitude bias is

θ i
2

θi
2

a . s . βi

cθi
2 1 + c ∑

ℓ = 1

L pℓσℓ
2

βi − σℓ
2 =

βi

cθi
2 1 + c ∑

ℓ = 1

L
pℓ −1 +

βi

βi − σℓ
2

=
βi

cθi
2 1 + βic ∑

ℓ = 1

L pℓ
βi − σℓ

2 − c =
βi

cθi
2 1 +

βi

θi
2 1 − Bi βi − c

=
βi

cθi
2 1 +

βi

θi
2 − c = 1 +

βi

cθi
2 − 1

βi

θi
2 + 1 ,

(9)

where we have applied (2), divided the summand with respect to σℓ
2, used the facts that p1 +

…+ pL = 1 and Bi(βi) = 0, and finally factored. The expression (9) shows that the positive 

bias is an increasing function of βi when A(βi) ≥ 0.

2.5. Overall subspace and signal recovery

Overall subspace recovery is more useful than individual component recovery when 

subspace amplitudes are equal and so individual basis elements are not identifiable. It is also 

more relevant when we are most interested in recovering or denoising low-dimensional 

signals in a subspace. Overall recovery of the low-dimensional signal, quantified here by 

mean square error, is useful for understanding how well PCA “denoises” the data taken as a 

whole.
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Corollary 1 (Overall recovery). Suppose (as in Theorem 1) that the sample-to-dimension 
ratio n/d → c > 0 and the noise variance proportions nℓ/n → pℓ for ℓ ∈ {1,…, L} as n, d → 
∞. If A(β1),…, A(βk) > 0, then the subspace estimate U = u1, …, uk ∈ ℂd × k from PCA is 

such that

1
k ∣ ∣ UHU ∣ ∣F

2 a . s . 1
k ∑

i = 1

k A βi
βiBi′ βi

, (10)

and the mean square error is

1
n ∑

i = 1

n
Uϴzi

− Uϴzi 2

2 a . s . ∑
i = 1

k
2 θi

2 −
A βi

cB′ βi
+

βi

cθi
2 − 1 βi + θi

2 , (11)

where A(x), Bi(x) and βi are as in Theorem 1, and z i is the vector of score entries for the ith 

sample. Proof of Corollary 1. The subspace recovery can be decomposed as

1
k ∣ ∣ UHU ∣ ∣F

2 = 1
k ∑

i = 1

k
ui

HU j:θ j = θi 2

2 + ui
HU j:θ j ≠ θi 2

2,

where the columns of Uj:θj=θi are the basis elements uj with subspace amplitude θj equal to 

θi, and the remaining basis elements are the columns of Uj:θj≠θi. Asymptotic overall 

subspace recovery (10) follows by noting that these terms are exactly the square cosine 

principal angles in (4) of Theorem 1.

The mean square error can also be decomposed as

1
n ∑

i = 1

n
UϴZi

− Uϴzi 2

2 = Uϴ 1
n

Z
H

− Uϴ 1
n

Z
H

F

2

= ∑
i = 1

k
θi

2 z i

n 2

2
+

θ i
2

θi
2 − 2ℜ

θ i
θi

∑
j = 1

k θ j
θi

ui, u j
z i

n
, z j

n

∗
,

(12)

where Z = z 1 , …, z k ∈ ℂn × k, Z = z 1 , …, z k ∈ ℂn × k and ℜ denotes the real part of its 

argument. The first term of (1212) has almost sure limit 1 by the law of large numbers. The 

almost sure limit of the second term is obtained from (9). We can disregard the summands in 

the inner sum for which θj ≠ θi; by (4) and (5) these terms have an almost sure limit of zero 

(the inner products both vanish). The rest of the inner sum
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∑
j:θ j = θi

θ j
θi

ui, u j
z i

n
, z j

n

∗
= ∑

j:θ j = θi

1 ui, u j
z i

n
, z j

n

∗

has the same almost sure limit as in (6) because z i n
2 1 as n ∞. Combining these 

almost sure limits and simplifying yields (11).

2.6. Importance of homoscedasticity

How important is homoscedasticity for PCA? Does having some low noise data outweigh 

the cost of introducing heteroscedasticity? Consider the following three settings:

1. - All samples have noise variance 1 (i.e., data are homoscedastic).

2. - 99% of samples have noise variance 1.01 but 1% have noise variance 0.01.

3. - 99% of samples have noise variance 0.01 but 1% have noise variance 99.01.

In all three settings, the average noise variance is 1. We might expect PCA to perform well 

in Setting 1 because it has the smallest maximum noise variance. However, Setting 2 may 

seem favorable because we obtain samples with very small noise, and suffer only a slight 

increase in noise for the rest. Setting 3 may seem favorable because most of the samples 

have very small noise. However, we might also expect PCA to perform poorly because 1% 

of samples have very large noise and will likely produce gross errors (i.e., outliers). Between 

all three, it is not initially obvious what setting PCA will perform best in. The following 

theorem shows that PCA performs best when the noise is homoscedastic, as in Setting 1.

Theorem 2. Homoscedastic noise produces the best asymptotic PCA amplitude (2), 

subspace recovery (4) and coefficient recovery (5) in Theorem 1 for a given average noise 

variance σ‒2 = p1σ1
2 + ⋯ + pLσL

2 over all distributions of noise variances for which A(βi) > 0. 

Namely, homoscedastic noise minimizes (2) (and hence the positive bias) and it maximizes 
(4) and (5).

Concretely, suppose we had c = 10 samples per dimension and a subspace amplitude of θi = 

1. Then the asymptotic subspace recoveries (4) given in Theorem 1 evaluate to 0.818 in 

Setting 1, 0.817 in Setting 2 and 0 in Setting 3; asymptotic recovery is best in Setting 1 as 

predicted by Theorem 2. Recovery is entirely lost in Setting 3, consistent with the 

observation that PCA is not robust to gross errors. In Setting 2, only using the 1% of 

samples with noise variance 0.01 (resulting in 0.1 samples per dimension) yields an 

asymptotic subspace recovery of 0.908 and so we may hope that recovery with all data could 

be better. Theorem 2 rigorously shows that PCA does not fully exploit these high quality 

samples and instead performs worse in Setting 2 than in Setting 1, if only slightly.

Section 6 presents the proof of Theorem 2. It is notable that Theorem 2 holds for all 

proportions p, sample-to-dimension ratios c and subspace amplitudes θi; there are no 

settings where PCA benefits from heteroscedastic noise over homoscedastic noise with the 
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same average variance. The following corollary is equivalent and provides an alternate way 

of viewing the result.

Corollary 2 (Bounds on asymptotic recovery). If A(βi) ≥ 0 then the asymptotic PCA 
amplitude (2) is bounded as

θ i
2 a . s . θi

2 + θi
2 βi

cθi
2 − 1

βi

θi
2 + 1 ≥ θi

2 1 + σ‒2

cθi
2 1 + σ‒2

θi
2 , (13)

the asymptotic subspace recovery (4) is bounded as

ui, Span u j:θ j = θi
2 a . s . A βi

βiBi′ βi
≤

c − σ‒4 θi
4

c + σ‒2 θi
2 , (14)

and the asymptotic coefficient recovery (5) is bounded as

z i

n
, Span z j :θ j = θi

2
a . s . A βi

c βi + 1 − c θi
2 Bi′ βi

≤
c − σ‒4 θi

4

c 1 + σ‒2 θi
2 , (15)

where σ‒2 = p1σ1
2 + ⋯ + pLσL

2 is the average noise variance and the bounds are met with 

equality if and only if σ1
2 = ⋯ = σL

2. Proof of Corollary 2. The bounds (13), (14) and (15) 

follow immediately from Theorem 2 and the expressions for homoscedastic noise (7) and (8) 

in Section 2.3.

Corollary 2 highlights that while average noise variance may be a practically convenient 

measure for the overall quality of data, it can lead to an overly optimistic estimate of the 

performance of PCA for heteroscedastic data. The expressions (2), (4) and (5) in Theorem 1 

are more accurate.

Remark 6 (Average inverse noise variance). Average inverse noise variance 

ℐ = p1 × 1 σ1
2 + ⋯ + pL × 1 σL

2 is another natural measure for the overall quality of data. In 

particular, it is the (scaled) Fisher information for heteroscedastic Gaussian measurements of 

a fixed scalar. Theorem 2 implies that homoscedastic noise also produces the best 

asymptotic PCA performance for a given average inverse noise variance; note that 

homoscedastic noise minimizes the average noise variance in this case. Thus, average 

inverse noise variance can also lead to an overly optimistic estimate of the performance of 

PCA for heteroscedastic data.
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3. Impact of parameters

The simplified expressions in Theorem 1 for the asymptotic performance of PCA provide 

insight into the impact of the model parameters: sample-to-dimension ratio c, subspace 

amplitudes θ1,…, θk, proportions p1,…, pL and noise variances σ1
2, …, σL

2. For brevity, we 

focus on the asymptotic subspace recovery (4) of the ith component; similar phenomena 

occur for the asymptotic PCA amplitudes (2) and coefficient recovery (5) as we show in 

Section S3 of the Online Supplement.

3.1. Impact of sample-to-dimension ratio c and subspace amplitude θi

Suppose first that there is only one noise variance fixed at σ1
2 while we vary the sample-to-

dimension ratio c and subspace amplitude θi. This is the homoscedastic setting described in 

Section 2.3. Figure 1a illustrates the expected behavior: decreasing the subspace amplitude 

θi degrades asymptotic subspace recovery (4) but the lost performance could be regained by 

increasing the number of samples. Figure 1a also illustrates a phase transition: a sufficient 

number of samples with a sufficiently large subspace amplitude is necessary to have an 

asymptotic recovery greater than zero. Note that in all such figures, we label the axis 

∣ ui, ui ∣2 to indicate the asymptotic recovery on the right hand side of (4).

Now suppose that there are two noise variances σ1
2 = 0.8 and σ2

2 = 1.8 occurring in 

proportions p1 = 80% and p2 = 20%. The average noise variance is still 1, and Figure 1b 

illustrates similar overall features to the homoscedastic case. Decreasing subspace amplitude 

θi once again degrades asymptotic subspace recovery (4) and the lost performance could be 

regained by increasing the number of samples. However, the phase transition is further up 

and to the right compared to the homoscedastic case. This is consistent with Theorem 2; 

PCA performs worse on heteroscedastic data than it does on homoscedastic data of the same 

average noise variance, and thus more samples or a larger subspace amplitude are needed to 

recover the subspace basis element.

3.2. Impact of proportions p1,…, pL

Suppose that there are two noise variances σ1
2 = 0.1 and σ2

2 = 3.25 occurring in proportions p1 

= 1 – p2 and p2, where the sample-to-dimension ratio is c = 10 and the subspace amplitude is 

θi = 1. Figure 2 shows the−asymptotic subspace recovery (4) as a function of the proportion 

p2. Since σ2
2 is significantly larger, it is natural to think of p2 as a fraction of contaminated 

samples. As expected, performance generally degrades as p2 increases and low noise 

samples with noise variance σ1
2 are traded for high noise samples with noise variance σ2

2. The 

performance is best when p2 = 0 and all the samples have the smaller noise variance σ1
2 (i.e., 

there is no contamination).

It is interesting that the asymptotic subspace recovery in Figure 2 has a steeper slope initially 

for p2 close to zero and then a shallower slope for p2 close to one. Thus the benefit of 

reducing the contamination fraction varies across the range.
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3.3. Impact of noise variances σ1
2, …, σL

2

Suppose that there are two noise variances σ1
2 and σ2

2 occurring in proportions p1 = 70% and 

p2 = 30%, where the sample-to-dimension ratio is c = 10 and the subspace amplitude is θi = 

1. Figure 3 shows the asymptotic subspace recovery (4) as a function of the noise variances 

σ1
2 and σ2

2. As expected, performance typically degrades with increasing noise variances. 

However, there is a curious regime around σ1
2 = 0 and σ2

2 = 4 where increasing σ1
2 slightly 

from zero improves asymptotic performance; the contour lines point slightly up and to the 

right. We have also observed this phenomenon in finite-dimensional simulations, so this 

effect is not simply an asymptotic artifact. This surprising phenomenon is an interesting 

avenue for future exploration.

The contours in Figure 3 are generally horizontal for small σ1
2 and vertical for small σ2

2. This 

indicates that when the gap between the two largest noise variances is “sufficiently” wide, 

the asymptotic subspace recovery (4) is roughly determined by the largest noise variance. 

While initially unexpected, this property can be intuitively understood by recalling that βi is 

the largest value of x satisfying

1
cθi

2 = ∑
ℓ = 1

L pℓ
x − σℓ

2 . (16)

When the gap between the two largest noise variances is wide, the largest noise variance is 

significantly larger than the rest and it dominates the sum in (16) for x > maxℓ σℓ
2 , i.e., 

where βi occurs. Thus βi, and similarly, A(βi) and Bi′ βi  are roughly determined by the 

largest noise variance.

The precise relative impact of each noise variance σ2
ℓ depends on its corresponding 

proportion pℓ, as shown by the asymmetry of Figure 3 around the line σ1
2 = σ2

2. Nevertheless, 

very large noise variances can drown out the impact of small noise variances, regardless of 

their relative proportions. This behavior provides a rough explanation for the sensitivity of 

PCA to even a few gross errors (i.e., outliers); even in small proportions, sufficiently large 

errors dominate the performance of PCA.

Along the dashed cyan line in Figure 3, the average noise variance is σ‒2 ≈ 1.74 and the best 

performance occurs when σ1
2 = σ2

2 = σ‒2, as predicted by Theorem 2. Along the dashed green 

curve, the average inverse noise variance is ℐ ≈ 0.575 and the best performance again occurs 

when σ1
2 = σ2

2, as predicted in Remark 6. Note, in particular, that the dashed line and curve 

are both tangent to the contour at exactly σ1
2 = σ2

2. The observation that larger noise variances 

have “more impact” provides a rough explanation for this phenomenon; homoscedasticity 

minimizes the largest noise variance for both the line and the curve. In some sense, as 

Hong et al. Page 14

J Multivar Anal. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



discussed in Section 2.6, the degradation from samples with larger noise is greater than the 

benefit of having samples with correspondingly smaller noise.

3.4. Impact of adding data

Consider adding data with noise variance σ2
2 and sample-to-dimension ratio c2 to an existing 

dataset that has noise variance σ1
2 = 1, sample-to-dimension ratio c1 = 10 and subspace 

amplitude θi = 1 for the ith component. The combined dataset has a sample-to-dimension 

ratio of c = c1+c2 and is potentially heteroscedastic with noise variances σ1
2 and σ2

2 appearing 

in proportions p1 = c1/c and p2 = c2/c. Figure 4 shows the asymptotic subspace recovery (4) 

of the ith component for this combined dataset as a function of the sample-to-dimension 

ratio c2 of the added data for a variety of noise variances σ2
2. The orange curve, showing the 

recovery when σ2
2 = 1 = σ1

2, illustrates the benefit we would expect for homoscedastic data: 

increasing the samples per dimension improves recovery. The red curve shows the recovery 

when σ2
2 = 4 > σ1

2. For a small number of added samples, the harm of introducing noisier data 

outweighs the benefit of having more samples. For sufficiently many samples, however, the 

tradeoff reverses and recovery for the combined dataset exceeds that for the original dataset; 

the break even point can be calculated using expression (4). Finally, the green curve shows 

the performance when σ2
2 = 1.4 > σ1

2. As before, the added samples are noisier than the 

original samples and so we might expect performance to initially decline again. In this case, 

however, the performance improves for any number of added samples. In all three cases, the 

added samples dominate in the limit c2 → ∞ and PCA approaches perfect subspace 

recovery as one may expect. However, perfect recovery in the limit does not typically 

happen for PCA amplitudes (2) and coefficient recovery (5); see Section S3.4 of the Online 

Supplement for more details.

Note that it is equivalent to think about removing noisy samples from a dataset by thinking 

of the combined dataset as the original full dataset. The green curve in Figure 4 then 

suggests that slightly noisier samples should not be removed; it would be best if the full data 

was homoscedastic but removing slightly noisier data (and reducing the dataset size) does 

more harm than good. The red curve in Figure 4 suggests that much noisier samples should 

be removed unless they are numerous enough to outweigh the cost of adding them. Once 

again, expression (4) can be used to calculate the break even point.

4. Numerical simulation

This section simulates data generated by the model described in Section 2.1 to illustrate the 

main result, Theorem 1, and to demonstrate that the asymptotic results provided are 

meaningful for practical settings with finitely many samples in a finite-dimensional space. 

As in Section 3, we show results only for the asymptotic subspace recovery (4) for brevity; 

the same phenomena occur for the asymptotic PCA amplitudes (2) and coefficient recovery 

(5) as we show in Section S4 of the Online Supplement. Consider data from a two-

dimensional subspace with subspace amplitudes θ1 = 1 and θ2 = 0.8, two noise variances 
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σ1
2 = 0.1 and σ2

2 = 3.25, and a sample-to-dimension ratio of c = 10. We sweep the proportion 

of high noise samples p2 from zero to one, setting p1 = 1 – p2 as in Section 3.2. The first 

simulation considers n = 103 samples in a d = 102 dimensional ambient space (104 trials). 

The second increases these to n = 104 samples in a d = 103 dimensional ambient space (103 

trials). Both simulations generate data from the standard normal distribution, i.e., 

zi j, εi j~𝒩 0, 1 . Note that sweeping over p2 covers homoscedastic settings at the extremes (p2 

= 0, 1) and evenly split heteroscedastic data in the middle (p2 = 1/2).

Figure 5 plots the recovery of subspace components ∣ ui, ui ∣2 for both simulations with the 

mean (blue curve) and interquartile interval (light blue ribbon) shown with the asymptotic 

recovery (4) of Theorem 1 (green curve). The region where A(βi) ≤ 0 is the red horizontal 

segment with value zero (the prediction of Conjecture 1). Figure 5a illustrates general 

agreement between the mean and the asymptotic recovery, especially far away from the non-

differentiable points where the recovery becomes zero and Conjecture 1 predicts a phase 

transition. This is a general phenomenon we observed: near the phase transition the smooth 

simulation mean deviates from the non-smooth asymptotic recovery. Intuitively, an 

asymptotic recovery of zero corresponds to PCA components that are like isotropically 

random vectors and so have vanishing square inner product with the true components as the 

dimension grows. In finite dimension, however, there is a chance of alignment that results in 

a positive square inner product.

Figure 5b shows what happens when the number of samples and ambient dimension are 

increased to n = 104 and d = 103. The interquartile intervals are roughly half the size of those 

in Figure 5a, indicating concentration of the recovery of each component (a random 

quantity) around its mean. Furthermore, there is better agreement between the mean and the 

asymptotic recovery, with the maximum deviation between simulation and asymptotic 

prediction still occurring nearby the phase transition. In particular for p2 < 0.75 the largest 

deviation for ∣ u1, u1 ∣2 is around 0.03. For p2 ∉ (0.1, 0.35), the largest deviation for 

∣ u2, u2 ∣2 is around 0.02. To summarize, the numerical simulations indicate that the 

subspace recovery concentrates to its mean and that the mean approaches the asymptotic 

recovery. Furthermore, good agreement with Conjecture 1 provides further evidence that 

there is indeed a phase transition below which the subspace is not recovered. These findings 

are similar to those in [18] for a one-dimensional subspace with two noise variances.

5. Proof of Theorem 1

The proof has six main parts. Section 5.1 connects several results from random matrix 

theory to obtain an initial expression for asymptotic recovery. This expression is difficult to 

evaluate and analyze because it involves an integral transform of the (nontrivial) limiting 

singular value distribution for a random (noise) matrix as well as the corresponding limiting 

largest singular value. However, we have discovered a nontrivial structure in this expression 

that enables us to derive a much simpler form in Sections 5.2-5.6.
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5.1. Obtain an initial expression

Rewriting the model in (1) in matrix form yields

Y = y1, …, yn = UϴZH + EH ∈ ℂd × n, (17)

where Z = z 1 , …, z k ∈ ℂn × k is the coefficient matrix, E = ε1, …, εn ∈ ℂd × n is the 

(unscaled) noise matrix, H = diag η1, …, ηn ∈ ℝ+
n × n is a diagonal matrix of noise standard 

deviations.

The first k principal components u1, …, uk, PCA amplitudes θ1, …, θk and (normalized) 

scores z 1 n, …, z k n defined in Section 1 are exactly the first k left singular vectors, 

singular values and right singular vectors, respectively, of the scaled data matrix Y n.

To match the model of [5], we introduce the random unitary matrix

R = U U⊥ U U⊥ H = UUH + U⊥ U⊥ H,

where the random matrix U ∈ ℂd × k is the Gram-Schmidt orthonormalization of a d × k 
random matrix that has iid (mean zero, variance one) circularly symmetric complex normal 

𝒞𝒩 0, 1  entries. We use the superscript ⊥ to denote a matrix of orthonormal basis elements 

for the orthogonal complement; the columns of U⊥ form an orthonormal basis for the 

orthogonal complement of the column span of U.

Left multiplying (17) by R n yields that Ru1, …, Ruk, θ1, …, θk and z 1 n, …, z k n

are the first k left singular vectors, singular values and right singular vectors, respectively, of 

the scaled and rotated data matrix

Y = 1
n

RY .

The matrix Y matches the low rank (i.e., rank k) perturbation of a random matrix model 

considered in [5] because

Y = P + X,

where

P = 1
n

R UϴZH = 1
n

UϴZH = ∑
i = 1

k
θiui

1
n

z i H
, X = 1

n
R EH = 1

n
RE H .
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Here P is generated according to the “orthonormalized model” in [5] for the vectors u i and 

the “iid model” for the vectors z(i) and P satisfies Assumption 2.4 of [5]; the latter considers 

u i and z(i) to be generated according to the same model, but its proof extends to this case. 

Furthermore RE has iid entries with zero mean, unit variance and bounded fourth moment 

(by the assumption that εi are unitarily invariant), and H is a non-random diagonal positive 

definite matrix with bounded spectral norm and limiting eigenvalue distribution 

p1δ
σ1

2 + ⋯ + pLδ
σL

2, where δ
σℓ

2 is the Dirac delta distribution centered at σℓ
2. Under these 

conditions, Theorem 4.3 and Corollary 6.6 of [3] state that X has a non-random compactly 

supported limiting singular value distribution μX and the largest singular value of X 
converges almost surely to the supremum of the support of μX. Thus Assumptions 2.1 and 

2.3 of [5] are also satisfied.

Furthermore, ui
Hu j = ui

HRHRu j = Rui
Hu j for all i, j ∈ {1,…, k} so

∣ Rui, Span u j:θ j = θi ∣2 = ∣ ui, Span u j:θ j = θi ∣2,

∣ Rui, Span u j:θ j ≠ θi ∣2 = ∣ ui, Span u j:θ j ≠ θi ∣2,

and hence Theorem 2.10 from [5] implies that, for each i ∈ {1,…, k},

θ i
2 a . s . ρi

2 if θi
2 > θ‒2,

b2 otherwise,
(18)

and that if θi
2 > θ‒2, then

∣ ui, Span u j:θ j = θi ∣2 a . s . −2φ ρi

θi
2D′ ρi

,

z i

n
, Span z j :θ j = θi

2
a . s . −2 c−1φ ρi + 1 − c−1 ρi

θi
2D′ ρi

,
(19)

and

∣ ui, Span u j:θ j ≠ θi ∣2 a . s . 0,

z i

n
, Span z j :θ j ≠ θi

2
a . s . 0,

(20)
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where ρi = D−1 1 θi
2 , θ‒2 = 1 D b+ , for z > b, φ(z) = ∫ z/z2 – t2) dμx (t), b is the 

supremum of the support of μX and μX is the limiting singular value distribution of X 
(compactly supported by Assumption 2.1 of [5]). We use the notation f (b+) = limz→b+ f (z) 

as convenient shorthand for the limit from above of a function f (z).

Theorem 2.10 from [5] is presented therein for d ≤ n (i.e., c ≥ 1) to simplify their proofs. 

However, it also holds without modification for d > n if the limiting singular value 

distribution μX is always taken to be the limit of the empirical distribution of the d largest 

singular values (d – n of which will be zero). Thus we proceed without the condition that c > 

1.

Furthermore, even though it is not explicitly stated as a main result in [5], the proof of 

Theorem 2.10 in [5] implies that

∑
j:θ j = θi

ui, u j
Z i

n
, z j

z j

∗
a . s . −2φ ρi

θi
2D′ ρi

×
−2 c−1φ ρi + 1 − c−1 ρi

θi
2D′ ρi

, (21)

as was also noted in [27] for the special case of distinct subspace amplitudes.

Evaluating the expressions (18), (19) and (21) would consist of evaluating the intermediates 

listed above from last to first. These steps are challenging because they involve an integral 

transform of the limiting singular value distribution μX for the random (noise) matrix X as 

well as the corresponding limiting largest singular value b, both of which depend 

nontrivially on the model parameters. Our analysis uncovers a nontrivial structure that we 

exploit to derive simpler expressions.

Before proceeding, observe that the almost sure limit in (21) is just the geometric mean of 

the two almost sure limits in (19). Hence, we proceed to derive simplified expressions for 

(18) and (19); (6) follows as the geometric mean of the simplified expressions obtained for 

the almost sure limits in (19).

5.2. Perform a change of variables

We introduce the function defined, for z > b, by

ψ z = cz
φ z = 1

c∫ 1
z2 − t2

dμX t
−1

, (22)

because it turns out to have several nice properties that simplify all of the following analysis. 

Rewriting (19) using ψ(z) instead of φ(z) and factoring appropriately yields that if θi
2 > θ‒2

then
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∣ ui, Span u j:θ j = θi ∣2 a . s . 1
ψ ρi

−2c
θi

2D′ ρi ρi
,

z i

n
, Span z j :θ j = θi

2
a . s . 1

c ψ ρi + 1 − c θi
2

−2c
θi

2D′ ρi ρi
,

(23)

where now

D z = cz2

ψ2 z
+ c − 1

ψ z (24)

for z > b and we have used the fact that

1
c

1
ψ ρi

+ 1 − c−1

ρi
2 = 1

c ψ ρi + 1 − c
D ρi

−1
= 1

c ψ ρi + 1 − c θi
2 .

5.3. Find useful properties of ψ(z)

Establishing some properties of ψ(z) aids simplification significantly.

Property 1. We show that ψ(z) satisfies a certain rational equation for all z > b and derive 

its inverse function ψ−1(x). Observe that the square singular values of the noise matrix X are 

exactly the eigenvalues of cXXH, divided by c. Thus we first consider the limiting 

eigenvalue distribution μcXXH of cXXH and then relate its Stieltjes transform μ to ψ(z).

Theorem 4.3 in [3] establishes that the random matrix cXXH = (1/d)EH2EH has a limiting 

eigenvalue distribution μcXXH whose Stieltjes transform is given, for μ, by

m ζ = ∫ 1
t − ζ dμ

cXXH t , (25)

and satisfies the condition

∀
ζ ∈ ℂ+ m ζ = − ζ − c ∑

ℓ = 1

L pℓσℓ
2

1 + σℓ
2m ζ

−1

, (26)

where μ is the set of all complex numbers with positive imaginary part.

Since the d square singular values of X are exactly the d eigenvalues of cXXH divided by c, 

we have for all z > b
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ψ z = 1
c∫ 1

z2 − t2
dμX t

−1
= − ∫ 1

t − z2c
dμ

cXXH t
−1

. (27)

For all z and μ and so combining (25)–(27) yields that for all z > b

ψ z = − lim
ξ 0+

m z2c + iξ

−1
= z2c − c ∑

ℓ = 1

L pℓσℓ
2

1 − σℓ
2 ψ z

.

Rearranging yields

0 = cz2

ψ2 z
− 1

ψ z − c
ψ z ∑

ℓ = 1

L pℓσℓ
2

ψ z − σℓ
2 , (28)

for all z > b, where the last term is

− c
ψ z ∑

ℓ = 1

L pℓσℓ
2

ψ z − σℓ
2 = c

ψ z − c ∑
ℓ = 1

L Pℓ
ψ z − σℓ

2 ,

because p1 + … + pL = 1. Substituting back into (28) yields 0 = Q{ψ (z), z} for all z > b, 

where

Q s, z = cz2

s2 + c − 1
s − c ∑

ℓ = 1

L pℓ
s − σℓ

2 . (29)

Thus ψ(z) is an algebraic function (the associated polynomial can be formed by clearing the 

denominator of Q). Solving (29) for z > b yields the inverse

ψ−1 x = 1 − c
c x + x2 ∑

ℓ = 1

L pℓ
x − σℓ

2 = x
c 1 + c ∑

ℓ = 1

L pℓσℓ
2

x − σℓ
2 . (30)

Property 2. We show that maxℓ σℓ
2 < ψ z < cz2 for z > b. For z > b, one can show from (22) 

that ψ(y) increases continuously and monotonically from ψ(z) to infinity as y increases 

from z to infinity, and hence ψ−1(x) must increase continuously and monotonically from z to 

infinity as x increases from ψ(z) to infinity. However, ψ−1(x) is discontinuous at 

x = maxℓ σℓ
2  because ψ−1(x) → ∞ as x maxℓ σℓ

2  from the right, and so it follows that 

ψ z > maxℓ σℓ
2 . Thus 1 ψ z − σℓ

2 > 0 for all ℓ ∈ {1,…,L} and so
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cz2 = c ψ−1 ψ z
2 = ψ z 1 + c ∑

ψ z

L pℓσℓ
2

ψ z − σℓ
2 > ψ z .

Property 3. We show that 0 < ψ(b+) < ∞ and ψ′ (b+) = ∞. Property 2 in the limit z = b+ 

implies that

0 < max
ℓ

σℓ
2 ≤ ψ b+ ≤ cb2 < ∞ .

Taking the total derivative of 0 = Q{ψ(z), z} with respect to z and solving for ψ′ (z) yields

ψ ′ z = − ∂Q
∂z ψ z , z / ∂Q

∂s ψ z , z . (31)

As observed in [28], the non-pole boundary points of compactly supported distributions like 

μcXXH occur where the polynomial defining their Stieltjes transform has multiple roots. 

Thus ψ(b+) is a multiple root of Q(·, b) and so

∂Q
∂s ψ b+ , b = 0, ∂Q

∂z ψ b+ , b = 2cb

ψ2 b+ > 0 .

Thus ψ′ (b+) = ∞, where the sign is positive because ψ(z) is an increasing function on z > 

b.

Summarizing, we have shown that

a. 0 = Q{ψ (z), z} for all z > b where Q is defined in (29), and the inverse function 

ψ−1(x) is given in (30),

b. maxℓ σℓ
2 < ψ z < cz2,

c. 0 < ψ(b+) < ∞ and ψ′ (b+) = ∞.

We now use these properties to aid simplification.

5.4. Express D(z) and D′(z)/z in terms of only ψ(z)

We can rewrite (24) as

D z = Q ψ z , z + c ∑
ℓ = 1

L pℓ
ψ z − σℓ

2 = c ∑
ℓ = 1

L pℓ
ψ z − σℓ

2 . (32)
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because 0 = Q{ψ (z), z} by Property 1 of Section 5.3. differentiating (32) with respect to z 
yields

D′ z = − cψ ′ z ∑
ℓ = 1

L pℓ

ψ z − σℓ
2 2,

and so we need to find ψ′ (z) in terms of ψ(z). Substituting the expressions for the partial 

derivatives ∂Q{ψ (z), z}/∂z and ∂Q{ψ (z), z}/∂s into (31) and simplifying we obtain ψ′ (z) 

= 2cz/γ(z), where the denominator is

γ z = c − 1 + 2cz2
ψ z − c ∑

ℓ = 1

L pℓψ2 z

ψ z − σℓ
2 2 .

Note that

2cz2
ψ z = − 2 c − 1 + c ∑

ℓ = 1

L 2pℓψ z

ψ z − σℓ
2 ,

because 0 = Q{ψ (z), z} for z > b. Substituting into γ(z) and forming a common 

denominator, then dividing with respect to ψ(z) yields

γ z = 1 − c + c ∑
ℓ = 1

L
pℓ

ψ2 z − 2ψ z σℓ
2

ψ z − σℓ
2 2 = 1 − c ∑

ℓ = 1

L pℓσℓ
4

ψ z − σℓ
2 2 = A ψ z ,

where A(x) was defined in (3). Thus

ψ ′ z = 2cz
A ψ z , (33)

and

D′ z
z = − 2c2

A ψ z ∑
ℓ = 1

L pℓ

ψ z − σℓ
2 2 = − 2c

θi
2

Bi′ ψ z
A ψ z , (34)

where Bi′ is the derivative of Bi(x) defined in (3).

5.5. Express the asymptotic recoveries in terms of only ψ(b+) and ψ(ρi)

Evaluating (32) in the limit z = b+ and recalling that D b+ = 1 σ‒2 yields
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θi
2 > θ‒2 0 > 1 −

θi
2

θ‒2 = 1 − cθi
2 ∑

ℓ = 1

L pℓ
ψ b+ − σℓ

2 = Bi ψ b+ , (35)

where Bi(x) was defined in (3). Evaluating the inverse function (30) both for ψ(ρi) and in the 

limit ψ(b+) then substituting into (18) yields

θ i
2 a . s .

ψ ρi
c 1 + c ∑

ℓ = 1

L pℓσℓ
2

ψ ρi − σℓ
2 if Bi ψ b+ < 0,

ψ b+

c 1 + c ∑
ℓ = 1

L pℓσℓ
2

ψ b+ − σℓ
2 otherwise.

(36)

Evaluating (34) for z = ρi and substituting into (23) yields

∣ ui, Span u j:θ j = θi ∣2 a . s . 1
ψ ρi

A ψ ρi
Bi′ ψ ρi

,

z i

n
, Span z j :θ j = θi

2
a . s . 1

c ψ ρi + 1 − c θi
2

A ψ ρi
Bi′ ψ ρi

,
(37)

if Bi{ψ (b+)} < 0.

5.6. Obtain algebraic descriptions

This subsection obtains algebraic descriptions of (35), (36) and (37) by showing that ψ(b+) 

is the largest real root of A(x) and that ψ(ρi) is the largest real root of Bi(x) when θi
2 > θ‒2. 

Evaluating (33) in the limit z = b+ yields

A ψ b+ = 2cb
ψ ′ b+ = 0, (38)

because ψ′ (b+) = ∞ by Property 3 of Section 5.3. If θi
2 > θ‒2 then ρi = D−1 1 θi

2  and so

0 = 1 − θi
2D ρi = 1 − cθi

2 ∑
ℓ = 1

L pℓ
ψ ρi − σℓ

2 = Bi ψ ρi . (39)

(38) shows that ψ(b+) is a real root of A(x), and (39) shows that ψ(ρi) is a real root of Bi(x).
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Recall that ψ(b+), ψ ρi ≥ maxℓ σℓ
2  by Property 2 of Section 5.3, and note that both A(x) and 

Bi(x) monotonically increase for x > maxℓ σℓ
2 . Thus each has exactly one real root larger 

than maxℓ σℓ
2 , i.e., its largest real root, and so ψ(b+) = α and ψ(ρi) = βi when θi

2 > θ‒2, where 

α and βi are the largest real roots of A(x) and Bi(x), respectively.

A subtle point is that A(x) and Bi(x) always have largest real roots α and β even though 

ψ(ρi) is defined only when θi
2 > θ‒2. Furthermore, α and β are always larger than maxℓ σℓ

2

and both A(x) and Bi(x) are monotonically increasing in this regime and so we have the 

equivalence

Bi α < 0 α < βi 0 < A βi . (40)

Writing (35), (36) and (37) in terms of α and β, then applying the equivalence (40) and 

combining with (20) yields the main results (2), (4) and (5).

6. Proof of Theorem 2

If A(βi) ≥ 0 then (4) and (5) increase with A(βi) and decrease with βi and B′(βi). Similarly, 

(2) increases with βi, as illustrated by (9). As a result, Theorem 2 follows immediately from 

the following bounds, all of which are met with equality if and only if σ1
2 = ⋯ = σL

2:

βi ≥ cθi
2 + σ‒2, Bi′ βi ≥ 1

cθi
2 , A βi ≤ 1 − 1

c
σ‒
θi

4
. (41)

The bounds (41) are shown by exploiting convexity to appropriately bound the rational 

functions Bi(x), Bi′ x  and A(x). We bound βi by noting that

0 = Bi βi = 1 − cθi
2 ∑

ℓ = 1

L pℓ
βi − σℓ

2 ≤ 1 −
cθi

2

βi − σ‒2,

because σℓ
2 < βi and f(v) = 1/(βi – v) is a strictly convex function over v < βi. Thus 

βi ≥ cθi
2 + σ‒2. We bound Bi′ βi  by noting that

Bi′ βi = cθi
2 ∑

ℓ = 1

L pℓ

βi − σℓ
2 2 ≥ cθi

2 ∑
ℓ = 1

L pℓ
βi − σℓ

2

2
= cθi

2 1
cθi

2

2
= 1

cθi
2,

because the quadratic function z2 is strictly convex. Similarly
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A βi = 1 − c ∑
ℓ = 1

L pℓσℓ
4

βi − σℓ
2 2 ≤ 1 − c ∑

ℓ = 1

L pℓσℓ
2

βi − σℓ
2

2
≤ 1 − 1

c
σ‒
θi

4
,

because the quadratic function z2 is strictly convex and

∑
ℓ = 1

L pℓσℓ
2

βi − σℓ
2 = βi ∑

ℓ = 1

L pℓ
βi − σℓ

2 − 1 =
βi

cθi
2 − 1 ≥

cθi
2 + σ‒2

cθi
2 − 1 = σ‒2

cθi
2 .

All of the above bounds are met with equality if and only if σ1
2 = ⋯ = σL

2 because the 

convexity in all cases is strict. As a result, homoscedastic noise minimizes (2), and it 

maximizes (4) and (5). See Section S2 of the Online Supplement for some interesting 

additional properties in this context.

7. Discussion and extensions

This paper provided simplified expressions (Theorem 1) for the asymptotic recovery of a 

low-dimensional subspace, the corresponding subspace amplitudes and the corresponding 

coefficients by the principal components, PCA amplitudes and scores, respectively, obtained 

from applying PCA to noisy high-dimensional heteroscedastic data. The simplified 

expressions provide generalizations of previous results for the special case of homoscedastic 

data. They were derived by first connecting several recent results from random matrix theory 

[3, 5] to obtain initial expressions for asymptotic recovery that are difficult to evaluate and 

analyze, and then exploiting a nontrivial structure in the expressions to find the much 

simpler algebraic descriptions of Theorem 1.

These descriptions enable both easy and efficient calculation as well as reasoning about the 

asymptotic performance of PCA. In particular, we use the simplified expressions to show 

that, for a fixed average noise variance, asymptotic subspace recovery, amplitude recovery 

and coefficient recovery are all worse when the noise is heteroscedastic as opposed to 

homoscedastic (Theorem 2). Hence, while average noise variance is often a practically 

convenient measure for the overall quality of data, it gives an overly optimistic estimate of 

PCA performance. Our expressions (2), (4) and (5) in Theorem 1 are more accurate.

We also investigated examples to gain insight into how the asymptotic performance of PCA 

depends on the model parameters: sample-to-dimension ratio c, subspace amplitudes θ1,…, 

θk, proportions p1,…, pL and noise variances σ1
2 = ⋯ = σL

2. We found that performance 

depends in expected ways on

a. sample-to-dimension ratio: performance improves with more samples;

b. subspace amplitudes: performance improves with larger amplitudes;

c. proportions: performance improves when more samples have low noise.
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We also learned that when the gap between the two largest noise variances is “sufficiently 

wide”, the performance is dominated by the largest noise variance. This result provides 

insight into why PCA performs poorly in the presence of gross errors and why 

heteroscedasticity degrades performance in the sense of Theorem 2. Nevertheless, adding 

“slightly” noisier samples to an existing dataset can still improve PCA performance; even 

adding significantly noisier samples can be beneficial if they are sufficiently numerous.

Finally, we presented numerical simulations that demonstrated concentration of subspace 

recovery to the asymptotic prediction (4) with good agreement for practical problem sizes. 

The same agreement occurs for the PCA amplitudes and coefficient recovery. The 

simulations also showed good agreement with the conjectured phase transition (Conjecture 

1).

There are many exciting avenues for extensions and further work. An area of ongoing work 

is the extension of our analysis to a weighted version of PCA, where the samples are first 

weighted to reduce the impact of noisier points. Such a method may be natural when the 

noise variances are known or can be estimated well. Data formed in this way do not match 

the model of [5], and so the analysis involves first extending the results of [5] to handle this 

more general case. Preliminary findings suggest that whitening the noise with inverse noise 

variance weights 1 σℓ
2 is not optimal.

Another natural direction is to consider a general distribution of noise variances v, where we 

suppose that the empirical noise distribution δ
η1
2 + ⋯ + δ

ηn
2 n

a . s .
v as n ∞. We 

conjecture that if η1,…, ηn are bounded for all n and ∫ dv τ x − τ ∞ as x τmax
+ , then 

the almost sure limits in this paper hold but with

A x = 1 − c∫ τ2dv τ

x − τ 2, Bi x = 1 − cθi
2∫ dv τ

x − τ .

where τmax is the supremum of the support of v. The proofs of Theorem 1 and Theorem 2 

both generalize straight-forwardly for the most part; the main trickiness comes in carefully 

arguing that limits pass through integrals in Section 5.3.

Proving that there is indeed a phase transition in the asymptotic subspace recovery and 

coefficient recovery, as conjectured in Conjecture 1, is another area of future work. That 

proof may be of greater interest in the context of a weighted PCA method. Another area of 

future work is explaining the puzzling phenomenon described in Section 3.3, where, in some 

regimes, performance improves by increasing the noise variance. More detailed analysis of 

the general impacts of the model parameters could also be interesting. A final direction of 

future work is deriving finite sample results for heteroscedastic noise as was done for 

homoscedastic noise in [29].
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Asymptotic subspace recovery (4) of the ith component as a function of sample-to-

dimension ratio c and subspace amplitude θi with average noise variance equal to one. 

Contours are overlaid in black and the region where A(βi) ≤ 0 is shown as zero (the 

prediction of Conjecture 1). The phase transition in (b) is further right than in (a); more 

samples are needed to recover the same strength signal.
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Figure 2: 
Asymptotic subspace recovery (4) of the ith component as a function of the contamination 

fraction p2, the proportion of samples with noise variance σ2
2 = 3.25, where the other noise 

variance σ1
2 = 0.1 occurs in proportion p1 = 1 – p2. The sample-to-dimension ratio is c = 10 

and the subspace amplitude is θi = 1. The region where A(βi) ≤ 0 is the red horizontal 

segment with value zero (the prediction of Conjecture 1).
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Figure 3: 

Asymptotic subspace recovery (4) of the ith component as a function of noise variances σ1
2

and σ2
2 occurring in proportions p1 = 70% and p2 = 30%, where the sample-to-dimension 

ratio is c = 10 and the subspace amplitude is θi = 1. Contours are overlaid in black and the 

region where A(βi) ≤ 0 is shown as zero (the prediction of Conjecture 1). Along the dashed 

cyan line, the average noise variance is σ‒2 ≈ 1.74 and the best performance occurs when 

σ1
2 = σ2

2 = σ‒2. Along the dashed green curve, the average inverse noise variance is ℐ ≈ 0.575

and the best performance again occurs when σ1
2 = σ2

2.
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Figure 4: 
Asymptotic subspace recovery (4) of the ith component for samples added with noise 

variance σ2
2 and samples-per-dimension c2 to an existing dataset with noise variance σ1

2 = 1, 

sample-to-dimension ratio c1 = 10 and subspace amplitude θi = 1.
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Figure 5: 
Simulated subspace recovery (4) as a function of the contamination fraction p2, the 

proportion of samples with noise variance σ2
2 = 3.25, where the other noise variance σ1

2 = 0.1

occurs in proportion p1 = 1 – p2. The sample-to-dimension ratio is c = 10 and the subspace 

amplitudes are θ1 = 1 and θ2 = 0.8. Simulation mean (blue curve) and interquartile interval 

(light blue ribbon) are shown with the asymptotic recovery (4) of Theorem 1 (green curve). 

The region where A(βi) ≤ 0 is the red horizontal segment with value zero (the prediction of 

Conjecture 1). Increasing data size from (a) to (b) results in smaller interquartile intervals, 

indicating concentration to the mean, which is itself converging to the asymptotic recovery.
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