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Abstract

Alarm fatigue has been increasingly recognized as one of the most significant problems in the 

hospital environment. One of the major causes is the excessive number of false physiologic 

monitor alarms. An underlying problem is the inefficient traditional threshold alarm system for 

physiologic parameters such as low blood oxygen saturation (SpO2). In this paper, we propose a 

robust classification procedure based on the AdaBoost algorithm with reject option that can 

identify and silence false SpO2 alarms, while ensuring zero misclassified clinically significant 

alarms. Alarms and vital signs related to SpO2 such as heart rate and pulse rate, within monitoring 

interval are extracted into different numerical features for the classifier. We propose a variant of 

AdaBoost with reject option by allowing a third decision (i.e., reject) expressing doubt. Weighted 

outputs of each weak classifier are input to a softmax function optimizing to satisfy a desired false 

negative rate upper bound while minimizing false positive rate and indecision rate. We evaluate the 

proposed classifier using a dataset collected from 100 hospitalized children at Children’s Hospital 

of Philadelphia and show that the classifier can silence 23.12% of false SpO2 alarms without 

missing any clinically significant alarms.

1. Introduction

The rapid pace of innovation in the medical device market has resulted in significant 

improvements in the devices used to monitor patients’ physiologic parameters in hospitals 

today. These devices provide rich information to doctors and nurses by monitoring vital 

signs and alerting clinicians of potential problems. However, studies have shown that more 

than 80% of hospital cardio respiratory monitor alarms are false or clinically insignificant 

(do not require bedside intervention) [1, 2, 3]. The excessive false alarms lead to alarm 

fatigue [4], such that life-threatening events are less likely to be addressed on time or can 

even be ignored, with potentially deadly consequences [5].
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One of the most common continuously monitored vital signs is pulse oximetry, which is also 

the most common source of physiologic monitor alarms in the modern hospital [1]. Pulse 

oximetry is a non-invasive method for monitoring patient’s blood-oxygen saturation; it does 

so by providing peripheral oxygen saturation (SpO2) readings. Since the oxygen saturation is 

a good indication of a person’s oxygen levels, clinicians set threshold alarms for low SpO2 

[6]. However, there are many factors influencing the effectiveness of the low SpO2 alarm 

threshold such as patient size, skin condition, sensor technology, patient movement, and the 

employed signal processing algorithm. As a result, many low SpO2 alarms do not require 

clinician intervention and contribute to the ”alarm hazards”, stated as the number one health 

technology hazard for 2015 by the ECRI Institute [7]. Therefore, our goal in this paper is to 

propose a new approach to reducing false low blood oxygen saturation alarms without 

silencing clinically significant alarms that represent life-threatening conditions.

Reducing false positive pulse oximetry alarms has been an active area of research for the 

past several decades. Low SpO2 alarms can be significantly reduced by decreasing the low 

alarm threshold [8], adding a short delay [9], or combining both methods under continuous 

patient safety surveillance [10, 11]. However, by design these methods will also delay alerts 

for actionable alarms and potentially hide clinically significant fluctuations. On the other 

hand, pulse oximetry measurements can also be filtered statistically from noise and outliers, 

which then be used to compare with alarm thresholds instead of raw values [12, 13, 14]. As 

signal extraction algorithms, these approaches are limited with time series and cannot 

consider patient’s static information (e.g., patient age), which can help to reduce patient 

variabilities. While these technologies have been shown to significantly reduce the number 

of false low SpO2 alarms, they also miss true low SpO2 events – which raises significant 

clinical safety concerns.

In this paper, we propose to reduce the number of false SpO2 alarms by developing an 

AdaBoost machine learning classifier with reject option that is tuned specifically to not 

silence valid alarms while suppressing as many of the false alarms as possible. We choose 

vital signs that are related to SpO2 alarms (such as heart rate, SpO2) to extract classifying 

features. Vital sign data, in the form of time series, are extracted into different numerical 

measurements within intervals before the alarm triggering time. These features are combined 

with patient information and related alarms that trigger during the monitoring window. In 

line with clinical guidelines that suggest that it may take up to 15 seconds to evaluate the 

validity of an alarm [11], our algorithm considers measurements for up to 15 seconds after 

an alarm.

AdaBoost is generally used in conjunction with other learning algorithms to improve the 

performance by iteratively adapting weak classifiers to misclassified samples during the 

previous iteration. To minimize the risk of silencing significant alarms, we introduce a reject 

option to not making any decision in case of doubt (i.e., a low confidence alarm). An alarm 

is considered high confidence if all the weak classifiers agree upon the validity outcome. On 

the other hand, due to the uncertainty involved, all low confidence alarms are immediately 

classified as clinically significant in order not to silent potentially life-threatening events. 

The proposed algorithm is optimized to achieve minimum false positive and indecision rate 

while maintaining false negative rate satisfying the upper bound condition.
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We evaluate the proposed algorithm on a dataset of 100 hospitalized children at the 

Children’s Hospital of Philadelphia. The dataset includes patients’ information (e.g., age, 

weight), vital signs, and physiological monitoring alarms. For evaluation purposes, alarms 

were classified by clinicians (via video inspection) as (1) invalid, (2) valid but not clinically 

significant, and (3) clinically significant. To satisfy the conservative requirements of our 

algorithm, at the training stage we treat (2) and (3) as both valid. The results indicate that the 

classifier is able to silence a high number of false positive alarms without misclassifying any 

clinically significant alarms. Furthermore, we compare the performance of the proposed 

algorithm with the vanilla AdaBoost algorithm and show that AdaBoost with reject option 

can maintain the desired false negative rate while being able to silence false alarms.

In summary, the contributions of this paper are three-fold: (1) an AdaBoost classification 

method with reject option for reducing the number of false SpO2 alarms without silencing 

any clinically significant alarms; (2) an evaluation of the proposed classifier on de-identified 

data obtained from the Children’s Hospital of Philadelphia; (3) a comparison of the 

proposed algorithm versus other state-of-the-art algorithms.

The remainder of this paper is organized as follows. In the next section, we briefly describe 

our dataset and formulate the problem. We discuss how the feature extraction and data 

preprocessing procedures in Section 3. Section 4 then introduces the proposed classifier in 

detail. We evaluate the performance of the proposed classifier in Section 5 and provide 

concluding remarks in Section 6.

2. Preliminaries and Problem Statement

This section describes the dataset used for evaluation in this paper. The large of number of 

false SpO2 alarms is highlighted, followed by the statement of the problem addressed in this 

work.

The study was approved by the Institutional Review Board of the Children’s Hospital of 

Philadelphia (IRB #14-010846). As part of a larger study, the research team video recorded 

551 hours of patient care on a medical unit at the Children’s Hospital of Philadelphia 

between July 2014 and November 2015 from 100 children whose families and nurses 

provided written informed consent. Beside patient background information (e.g., age group), 

continuously recorded blood oxygen saturation, heart rate, and respiratory rate were 

extracted from the physiologic monitoring network at a maximum sampling rate of 0.2 Hz. 

Each session lasted up to 6 hours and included up to 6 synchronized cameras per patient 

capturing multiple views of the patient and room as well as views of the monitoring device 

displays. In addition, all physiologic monitoring alarms were also extracted from the 

physiologic monitoring network with corresponding timestamps. These alarms were later 

reviewed, in conjunction with the video recordings, and annotated into four categories with 

the oversight of a physician expert: technical alarms, valid clinically significant alarms, valid 

non-clinically significant alarms and invalid alarms [15].1

1Note that in the original dataset and corresponding study [15] clinically significant alarms are called actionable.
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Technical alarms are caused by medical instruments such as electrocardiogram (ECG) lead 

displacement, while all others such as low oxygen saturation are clinical alarms. By 

reviewing the video, the team could further assess if the alarm correctly identified the 

physiologic status of the patient (i.e., valid) or was a false reading due to artifact (i.e., 

invalid). A valid alarm which led to a clinical intervention or consultation was further 

categorized as clinically significant alarm, while the rest were non-clinically-significant. 

Each alarm was annotated accordingly in the dataset; as noted in Section 1, for training 

purposes we consider both technical and invalid alarms as invalid, whereas valid clinically 

significant alarms and valid non-clinically-significant alarms are both considered valid.

As has been previously published [16], the study team trained a research assistant to review 

video and determine the validity of clinical alarms. During the training period, the research 

assistant reviewed every clinical alarm from the first 42 patients (with a total of 4675 alarms) 

with direct oversight from a physician expert in physiologic monitoring. The research 

assistant and expert then separately reviewed every clinical alarm that required interpretation 

from 10 additional patients (generating an additional 883 alarms). The research assistant and 

expert agreed on the validity determination for 99.3% of the 883 alarms. The research 

assistant then made the remaining validity determinations independently unless they were 

uncertain, in which case they consulted one or more experts.

Our study only considers a subset from the original dataset and includes:

• patient’s age group (less than one month old, from one to less than two months 

old, from two to less than six month old, older than six months),

• numerical measurements of pulse oximetry and heart rate (measured by pulse 

oximeter and 3-lead electrocardiography) at a maximum sampling rate of 0.2 Hz,

• annotated clinical alarms with corresponding alarm type and timestamp.

In summary, the extracted dataset contains 551 hours of recorded data with a total of 9547 

clinical alarms in 26 different types. Vital signs were measured at 0.2 Hz rate and all the 

measurable data were recorded into one sample with patient ID and timestamp. Out of 9547 

alarms, about 51% were invalid. Figure 1 shows the highest occurring alarm types2 as the 

rest only accounted for fewer than 100 alarms each. As can be seen from Figure 1, low SpO2 

generated the highest number of alarms (34% of total alarms), for which 81% were invalid. 

It is clear that reducing invalid low SpO2 alarms is an appropriate and potentially efficient 

target to address alarm fatigue.

Problem

The problem considered in this paper is to provide a robust classifier that can identify and 

silence false low SpO2 alarms while ensuring zero misclassified clinically significant alarms.

2Definition of each alarm is described in detail in [16].
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3. Feature Extraction and Data Preprocessing

In this section, we first describe how we select and extract features from the given dataset. 

Then, the data preprocessing procedure is presented, namely removing samples without 

qualified information and performing dimensionality reduction.

3.1. Feature Extraction

There are three groups of variables in the dataset, namely: patient background information, 

vital sign measurements, and alarm data. Both patient information and alarm data (e.g., 

alarm type) are categorical data, which can be used directly as features in our machine 

learning algorithms. On the other hand, vital sign measurements are time series and need to 

be converted into usable forms. In medical datasets, the most recent patterns are the most 

significant ones; therefore, our approach is converting each vital sign measurement from the 

time an alarm occurred back to two minutes before that. In addition, it has been shown in 

previous works that the subsequent measurements in 15 seconds play an important role to 

suppress false positive alarms [9, 11], and thus, are also added to our feature set. Since we 

recorded vital signs every five seconds, this results in additional 27 features for each vital 

sign that we consider.3

The pulse oximetry sensor is capable of estimating both blood oxygen and pulse rate, 

provides a portable way to monitor heart rate in comparison with ECG monitoring [17]. 

Therefore, beside SpO2 measurements, we also extract heart rate (denoted as HR) from 

electrocardiography and pulse rate (denoted as PuR) obtained by pulse oximeter. Since both 

methods are used to monitor the same vital sign, they are highly correlated and any 

difference between measurements is an indication of bad estimations (e.g., sensor 

misplacement) or, much less likely, poor perfusion to the extremity where the sensor is 

located. Hence, our feature set also includes the minimum, maximum, and median of the 

differences between heart rate and pulse rate within two minutes before the alarm 

timestamp. Intuitively, a false positive low SpO2 alarm caused by sensor misplacement 

should also incur a higher than usual difference between these measurements.

Although blood oxygen saturation and heart rate are the most frequently monitored in 

hospital, respiratory rate has been shown to be an early and sensitive indicator of 

deterioration [18]. That is, an early respiratory rate alarm is more likely to validate a 

subsequent low SpO2 alarm. To capture the correlation, we add a binary feature to indicate if 

a respiratory rate alarm was triggered within two minutes before each low SpO2 alarm, and 

an additional similar binary feature for heart rate alarm.

Finally, Table 1 summarizes all the features that we use for our classifiers. Extracted data are 

parsed to generate corresponding feature data as listed above.

3.2. Data Preprocessing

Since the vital sign dataset was captured during routine clinical care, not all vital signs were 

collected for every patient. For instance, SpO2 measurements were recorded for all 100 

3This includes 24 features for every 5-second measurement before the alarm, plus 3 features after triggering time.
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children, whereas only 79 children had heart rate obtained from electrocardiography 

available. Missing vital signs will eventually create multiple unknown values in our feature 

data and decrease the classifier’s performance. Therefore, we only keep alarm samples with 

at least 60% of the features available, which results in 2318 alarms left from the original 

3265.

With 86 features for 2318 samples, our dataset forms a large multivariate matrix with many 

variables being extracted from the same signals; hence, it is often desirable to reduce the 

dimensionality, which results in lower memory consumption and faster classification without 

affecting the classification performance. Principle Component Analysis (PCA) is usually a 

good choice in this case. By transforming the data (i.e., linear projection) onto a lower 

dimensional space, PCA can reduce the dimensionality while preserving as much data 

variation as possible [19]. Mathematically, PCA tries to find a new set of uncorrelated 

variables (principle components), that are linear combinations but smaller in size than the 

original ones, to express the data in reduced form. We choose 95% explained fraction for our 

model since the feature set is highly correlated and are able to reduce the dataset dimension 

to 17 variables. PCA is only performed on training data to ensure test information is not 

leaked into training principle components.

4. Methods

This section first overviews the approach and AdaBoost algorithm, then describes the 

proposed AdaBoost with reject option in details.

4.1. Approach Overview

A robust alarm classifier should be able to suppress many false low blood oxygen saturation 

alarms and should not silence any clinically significant alarms. In order to achieve a low 

false negative rate, we need to capture as many patterns in the training data as possible while 

prioritizing clinically significant alarms. AdaBoost algorithm fits well in this context as the 

algorithm puts higher weights on previous misclassified points, which can be tuned 

specifically toward false negative points.

A general AdaBoost training algorithm minimizes the training error. In our application, we 

prioritize achieving a low false negative rate than the accuracy. Instead of the AdaBoost 

weighted sum output layer, we propose a different output layer that employs a softmax 

function to generate the probability distribution of the outcomes. Intuitively, classifying a 

low confidence alarm (i.e., both classes have either low probability or high probability) is 

high risk; hence, we want to be cautious and always classify the alarm as valid (i.e., not 

silence the alarm). On the other hand, high confidence alarms can be classified as the class 

with the higher probability.

4.2. AdaBoost Algorithm

In general, the AdaBoost algorithm is a boosting method which combines multiple weak and 

inaccurate classifiers to achieve a highly accurate prediction classifier as shown in 

Algorithm 1. On each training iteration t, the algorithm adds a weak learner with the aim of 

minimizing the training error εt such that the weights of incorrectly classified examples from 
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previous iterations are increased (i.e., these examples will play more important roles in the 

training of the next iteration). Each weak classifier is assigned a weight corresponding to the 

training error of the iteration. The final classifier computes the sign of a weighted 

combination of weak classifiers (i.e., weighted majority vote).

Freund and Schapire proved that the training error of AdaBoost after T iterations is bounded 

by ε ≤ 2T∏t = 1
T εt(1 − εt), hence drops exponentially fast in the number of iterations T if 

each weak classifier is slightly better than random [20]. However, Freund and Schapire also 

proved that if the weak classifier are chosen from a class of VC-dimension d ≥ 2, then the 

final classifier after T iterations belong to a class of VC-dimension at most 2(d + 1)(T + 1) 

log2(e(T + 1)), and the generalization error bound is of the form

err(H) = err(H) + O
∼( dT

m )

Algorithm 1

AdaBoost Algorithm

Given:

- (x1, y1), …, (xm, ym) where xi ∈ χ, y ∈ {−1, +1}

- Number of learning rounds T

  1: procedure Train(data)

  2:   Initialize example i weight at iteration 1: D1(i) = 1/m for i = 1, …, m

  3:   for t=1,…,T do

  4:     Train weak classifier using distribution Dt

  5:
    Find weak learner at iteration t: ht = arg  min

h j ∈ H
ε j = ∑i = 1

m Dt(i)[yi ≠ h j(xi)

  6:

    Choose weak learner weight αt = 1
2ln(

1 − εt
εt

)

  7:

    Update Dt + 1(i) =
Dt(i)exp( − αtyiht(xi))

Zt
 where Zt is normalization factor

  8:
  Return final classifier: H(x) = sign(∑t =

T αtht(x))

This bound implies that the generalization error decreases at first, yet finally increases as T 
increases, which is exactly the kind of overfitting behavior. This characteristic is important 

in our context since we want to capture all the clinically significant alarm patterns and 

AdaBoost tends to not overfit [21]. Hence, choosing the right T is a major consideration in 

the proposed algorithm as will be discussed in the next subsection.
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4.3. AdaBoost with Reject Option Algorithm

On a high level, the proposed algorithm is a variant of AdaBoost with reject option by 

allowing a third decision (i.e., reject) expressing doubt. The predicted probability of each 

outcome j ∈ {−1, 1} (given the sample vector x and the weighting vector w) are input to a 

softmax function to generate a probability distribution over the two different possible 

outcomes:

η j = P(y = j ∈ { − 1, 1} | x) = e
w j ⊤ x

∑k e
wk

⊤x

Given a reject threshold β, the output function of the weak classifier in round t is then

ht(x) =

−1 if η−1 ≥ β

+1 if η+1 ≥ β

reject otherwise

Rather than using the usual prediction error, we ask that the weak classifiers satisfy a desired 

false negative rate (FNR) upper bound while minimizing the false positive rate (FPR) and 

the indecision rate (INDR). Note that the indecision rate may have a smaller effect than the 

false positive rate so that an indecision weight λ is used to express the relative ”importance” 

between these two rates. For example, an indecision weight of 0.5 means one false positive 

point is equal to two indecision points during optimizing. Hence, the weak learner’s goal is 

to find a hypothesis ht and the corresponding confidence probability threshold βt which 

minimizes:

FP+λ ∗ IND

subject to FNR = FN
TP+FN ≤ ε (1)

Algorithm 2

AdaBoost with Reject Option Algorithm

Given:

- (x1, y1), …, (xm, ym) where xi ∈ χ, y ∈ {−1, +1}

- ε : false negative rate upper bound

- λ : indecision weight

- τ : stopping condition threshold

- T : maximum allowed number of rounds

  1: procedure Train(data)
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  2:   Initialize example i weight at iteration 1: D1(i) = 1/m for i = 1, …, m

  3:   for t=1,…,T do

  4:     Train weak classifier using distribution Dt

  5:
    Find weak learner at iteration t: ht, βt = arg  min

h j ∈ H, βt
⧣ FP + λ ∗ ⧣ IND

subject to FNR = FN
TP+FN ≤ ε

  6:

    Choose weak learner weight αt = 1
2ln(

1 − εt
εt

)

  7:

    Update Dt + 1(i) =
Dt(i)exp( − αtyiht(xi))

Zt
 where Zt is normalization factor

  8:     If δFPR| ≤ 0 and δINDR ≥ τ then break

  9:   Return final classifier: H(x)

Here, we denote the number of false positive points, the number of true positive points, and 

the number of false negative points as FP, TP, and FN respectively. Finally, the boosting 

algorithm repeatedly iterates in a series of rounds until maximum T rounds or until it reaches 

a stopping condition. We define two stopping conditions as below:

• Soft Condition: δFPR ≤ 0 and δINDR ≥ τ

• Hard Condition: δFPR ≤ −τ and δINDR ≥ τ

Both stopping conditions are used to prevent over-fitting with different levels of sensitivity. 

The soft condition detects a sharp increase in the indecision rate when the false negative rate 

is still decreasing. It happens when the algorithm is starting to learn harder cases and 

potentially over-fits the training data. We call this a “soft” condition as it allows the 

algorithm to continue improving the performance overall with a slight increase in the false 

negative rate. On the other hand, the hard condition detects sharp changes in both false 

negative rate and indecision rate, which indicates an apparent over-fit problem and the 

algorithm should not be allowed to continue. In summary, a strictly low false negative rate 

model can be achieved with the soft stopping condition while the hard stopping condition is 

suited for a better overall performance model.

Pseudocode for the proposed algorithm with the soft stopping condition is presented in 

Algorithm 2. Here we are given m labeled training examples with the labels yi ∈ {−1, +1} 

for invalid/valid alarms. The algorithm has four hyper parameters: the desired false negative 

rate upper bound ε (ε should be set to 0 in the case of no false negatives), the indecision 

weight λ, the maximum number of rounds T, and the stopping threshold τ. On each round t 
= 1, …, T, a given weak learning algorithm is applied to find a weak hypothesis ht and 

confidence probability threshold βt that satisfies (1). The aim of the weaker learner is to 

guarantee that the false negative rate is below the pre-defined upper bound while minimizing 
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false positive and indecision rate. The training algorithm results in a boosted classifier 

satisfying false negative rate with highest silencing alarm rate.

5. Results

In order to evaluate the performance of our approach, we perform 5-fold patient cross-

validation on the obtained data such that the dataset is randomly partitioned into five equal 

sized partitions of patients: samples from four patient subgroups are used as training data, 

and the samples from the remaining subgroup are assigned as the validation set. The process 

is repeated five times such that each subgroup is used for validation exactly once. The results 

of our evaluation are presented in this section. First, we analyze the proposed algorithm’s 

performance. Then, we provide a discussion of motion artifact effects on the performance. 

Finally, we compare the performance of the final classifier with vanilla AdaBoost algorithm 

and other well-known algorithms.

5.1. Performance Analysis

The false negative rate upper bound ε is crucial to the algorithm since it determines how 

much effort the weak classifiers need to expend in order to learn all the valid alarms. To 

ensure zero misclassified clinically significant alarms, we choose ε = 0.01. In addition, a 

good choice of indecision weight λ will balance the overall performance of the system. To 

illustrate, we analyze the classifier’s performance with λ = 0.01 and λ = 0.25 as shown in 

Figure 2a and Figure 3a respectively. In addition, we do not enforce the stopping condition 

to show the optimal number of weak learners selected by the algorithm and the effects of 

letting the algorithm choose a higher number of weak learners.

As can be seen from the training results of both figures, with a small number of weak 

learners, the final classifier has the false positive rate close to 1 to satisfy the false negative 

rate upper bound. This can be explained as for all decisions this classifier makes, the alarm 

is classified as valid due to inability to capture enough patterns. As the number of weak 

learners increases, the training false positive rate also decreases.

The algorithm stops the training phase when it reaches the soft stopping condition (denoted 

by a circle) or the hard stopping condition (denoted by a square) in Figure 2a and Figure 3a. 

The corresponding number of weak learners (approximately 130 and 220) are marked with 

vertical lines in the testing results respectively. Soft stopping condition results in models that 

meet false negative rate requirements and are able to silence 6% of the false alarms with λ = 

0.01 and 9.38% of the false alarms with λ = 0.25.

On the other hand, if the algorithm is allowed to run until hitting the hard stopping 

condition, the final models have better performance (18% and 22% of false alarms are 

silenced for λ = 0.01 and λ = 0.25 respectively) with a slightly increase in false negative 

rate. The false negative rate starts to increase significantly as the number of weak learners is 

greater than the hard stopping condition cutoff, which confirms the overfitting hypothesis. 

The results show that AdaBoost with reject option can reduce a significant portion of false 

alarms at no (or very low) cost in false negatives. In addition, the cases of misclassified valid 
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alarms are actually non-clinically-significant but require a great cost in performance to 

correctly classify as discussed in the next subsection.

5.2. Motion Artifact Effects

The proposed method offers a new approach to decrease false low SpO2 alarms, and 

consequently reduce alarm fatigue. As an alternative to traditional delay method, we allow 

alarms to trigger but keep collecting new data to silent alarm as soon as we can identify false 

alarm.

The results also reveal corner cases such that our classifiers can identify but with a great cost 

in performance, or cannot correctly classify at all. Further investigation on the two 

misclassified cases shows that they were preceded by invalid alarms within less than one 

minute. After our physician expert re-reviewed the video recordings of these alarms, we 

found out that these cases were largely affected by motion artifact. The patient’s vital sign 

measurements for both cases are shown in Figure 4 with invalid alarms denoted with red 

circles and valid alarms denoted with blue circles. For details, in the first case, the baby was 

being held and patted on the back by the caregiver, which led to preceding invalid alarms. 

After the baby was put back stably, measurements continue to drop. When the alarm was 

fluctuating between appearing valid and invalid, our standard was to be cautious and 

annotate as valid. In the second case, there were also significant motion artifacts that led to 

the invalid alarm. Since our dataset does not include the context information, these alarms 

appear to have similar features and cause the confusion. Importantly, in the original analysis 

[16] these cases were not clinically significant, i.e., the alarm did not lead to a clinical 

intervention or consultation.

Motion artifacts can be detected and reduced from photopleythysmograms (PPG - raw 

measurement obtained by pulse oximeter) as described in [22]. However, PPG waveform is 

not included in our dataset, which can be a next step for our future research. In addition, we 

can also use new sensor technology to detect motion [23] for the next study.

5.3. Comparison with Other Classifiers

In this subsection, we compare the proposed algorithm with other state-of-the-art classifiers. 

It is important to note that while the number of silenced alarms is the overall performance of 

the smart alarm, it is more critical to ensure that no clinically significant alarm is suppressed. 

In other words, we want to achieve close to one sensitivity (true positive rate) while 

maximizing specificity (true negative rate).

Table 2 shows the performance of the proposed classifier at two operating points (e.g., soft 

condition and hard condition) in comparison with the vanilla AdaBoost algorithm with the 

same settings. We can achieve 23.12% specificity, i.e., the proposed classifier is able to 

silent 23.12% of false SpO2 alarms, while maintaining clinically significant alarm sensitivity 

at 99.27%. The vanilla AdaBoost algorithm even though achieves a higher number of 

silenced alarms, it also makes more mistakes to silence clinically significant alarms. In 

addition, we also compare with other well-known classifiers as listed in Figure 5. Similar to 

the vanilla AdaBoost, it can be seen that other classifiers can achieve a high specificity; 

however, requires a significant sacrifice in sensitivity. Thus, the proposed algorithm provides 
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much better low false negative rate guarantees, while being able to achieve a reasonable 

false alarm detection rate.

6. Conclusions

In this paper, we presented a robust false SpO2 alarms classifier based on the AdaBoost 

algorithm with reject option by allowing a third decision expressing doubt. Weighted outputs 

of each weak classifier are input to a softmax function that is optimized to satisfy a desired 

false negative rate upper bound while minimizing the false positive rate and indecision rate. 

Finally, we evaluated the proposed classifier on a dataset collected from the Children’s 

Hospital of Philadelphia and showed that the classifier is able to suppress 23.12% of false 

SpO2 alarms without missing any clinically significant alarms. The results show significant 

improvements over the vanilla AdaBoost algorithm and suggest that an avenue for future 

work is to detect motion artifacts.
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Figure 1. 
Number of alarms in different clinical categories for the top occurring physiologic 

monitoring alarms in the dataset.
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Figure 2. 
AdaBoost with reject option performance with ε = 0.01 and λ = 0.01.
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Figure 3. 
AdaBoost with reject option performance with ε = 0.01 and λ = 0.25.
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Figure 4. 
Patient’s SpO2 measurements during monitoring interval for misclassified cases. Red circle 

denotes measurements during preceding invalid alarm. Blue circle denotes measurements 

during valid alarm.
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Figure 5. 
Number of alarms in different clinical categories for the top occurring physiologic 

monitoring alarms in the dataset.
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Table 1

Extracted features for machine learning algorithms

Variable Group Extracted Features

Patient Information Age group

Vital Signs

27 SpO2 measurements

27 HR measurements

27 PuR measurements

(HR - PuR) min

(HR - PuR) max

(HR - PuR) median

Alarms
Preceding respiratory rate alarm

Preceding heart rate alarm
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Table 2

Performance comparison between the proposed algorithm and the vanilla AdaBoost

AdaBoost with Reject Option Vanilla AdaBoost

131 weak learners 218 weak learners 131 weak learners 218 weak learners

Number of Samples 2318

Valid / Invalid Alarms 549 / 1769

Sensitivity 100.00% 99.27% 95.26% 93.44%

Specificity 9.38% 23.12% 38.78% 43.81%

Silenced Alarms 166 413 712 813

Total False Negative 0 4 26 36
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