Skip to main content
. Author manuscript; available in PMC: 2019 Dec 1.
Published in final edited form as: Smart Health (Amst). 2018 Jul 7;9-10:287–296. doi: 10.1016/j.smhl.2018.07.002

Algorithm 2.

AdaBoost with Reject Option Algorithm

Given:
  • -

    (x1, y1), …, (xm, ym) where xiχ, y ∈ {−1, +1}

  • -

    ε : false negative rate upper bound

  • -

    λ : indecision weight

  • -

    τ : stopping condition threshold

  • -

    T : maximum allowed number of rounds

  1: procedure Train(data)
  2:   Initialize example i weight at iteration 1: D1(i) = 1/m for i = 1, …, m
  3:   for t=1,…,T do
  4:     Train weak classifier using distribution Dt
  5:     Find weak learner at iteration t: ht, βt=arg minhjH,βtFP+λIND
subject toFNR=FNTP+FNε
  6:     Choose weak learner weight αt=12ln(1εtεt)
  7:     Update Dt+1(i)=Dt(i)exp(αtyiht(xi))Zt where Zt is normalization factor
  8:     If δFPR| ≤ 0 and δINDRτ then break
  9:   Return final classifier: H(x)