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Abstract

An emerging focus on the geometry of representational structures is advancing a variety of areas 

in social perception, including social categorization, emotion perception, and trait impressions. 

Here, we review recent studies adopting a representational geometry approach, and argue that 

important advances in social perception can be gained by triangulating on the structure of 

representations via three levels of analysis: neuroimaging, behavioral measures, and computational 

modeling. Among other uses, this approach permits broad and comprehensive tests of how 

bottom-up facial features and visual processes as well as top-down social cognitive factors and 

conceptual processes shape perceptions of social categories, emotion, and personality traits. 

Although such work is only in its infancy, a focus on corroborating representational geometry 

across modalities is allowing researchers to use multiple levels of analysis to constrain theoretical 

models in social perception. This approach holds promise to further our understanding of the 

multiply determined nature of social perception and its neural basis.

When we encounter others, we perceive their social categories, emotional state, and even 

personality traits. Across social perception lies underlying representations – of social 

categories, emotions, traits – that in turn drive perceptual judgments and behavior. Here, we 

propose that important advances in social perception can be gained by triangulating on the 

structure of representations derived from multiple levels of analysis. Here we focus on three 

such levels of analysis: neuroimaging, behavioral measures, and computational modeling. 

We will show how an emerging focus on the geometry of representational structures is 

advancing a variety of areas in social perception, including social categorization, emotion 

perception, and trait impressions.

Social perception as movement through multidimensional space

Computational models of social perception [1-3] assume that any given representation (e.g., 

the social category “male”) is reflected by a unique pattern distributed over a population of 

nodes. It is the distributed pattern, dynamically re-instantiated in every new instance, that 
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serves as the unique ‘code’ for a social category, stereotype, or trait. Such models are 

consistent with multi-cell recordings, which have shown that the communal activity of a 

population of neurons – a specific pattern of firing rates – provides the ‘code’ for various 

kinds of sensory and abstract cognitive information [i.e., a 'population code'; 4].

We can conceive of representations in social perception (e.g., social categories, emotions, 

traits) as points in a multidimensional space. The space can be measured using a variety of 

different modalities, such that the dimensions consist of neurons, fMRI voxels, or nodes in a 

computational model, such as a neural-network model. The specific representational 

structure can be estimated through patterns of activation from these different modalities, as 

well as through behavioral data. Although these multidimensional spaces from different 

modalities may be radically different in an absolute sense, it is valuable to estimate the 

extent to which a shared representational geometry (i.e., the pairwise distances among 

representations) is preserved. This analytic approach – representational similarity analysis 

[RSA; 5,6] – can inform our understanding not only of how representational spaces 

underlying social perception manifest at the neural level, but also help address fundamental 

questions about how social perception is shaped by both relevant bottom-up visual and top-

down social cognitive processes.

In certain neural-network models and in the actual brain, neural-representational patterns 

operate as ‘attractors’, such that a neural system is attracted to complete those patterns when 

presented with a stimulus, allowing the system to descend from a high-energy state where 

the neuronal pattern is rapidly fluctuating to a lower-energy steady state in which the 

representational pattern comes to stabilize, i.e., an attractor state [7]. If the neuronal 

system’s state were imagined as a ball, the process of descending into an attractor state is 

analogous to a ball’s compulsion to roll down a hill, reflecting the increasing completion of 

the neural-representational pattern. Such attractor dynamics have long been observed in 

local populations of neurons in actual cortex, and serve as an intrinsic pattern-completion 

process allowing neuronal patterns to serve as stored representations [7].

Computational models.

Various forms of computational models may be used to corroborate representational 

geometries in social perception, including neural-network models. Imagine a system of 100 

neurons, with two unique patterns of activation for the emotion categories Angry and Happy; 

each pattern is therefore a point in a 100-dimensional space. The system, once presented 

with a person’s face, will move through 100-dimensional space toward the Angry and Happy 

attractor state. Thus, at any moment, the neuronal population’s proximity to the Angry and 

Happy attractor state in 100-dimensional space can be said to reflect to what extent that 

category representation is activated. Just as a ball’s energy is higher at the top of a hill 

relative to resting on the ground, each point in neural state space has an associated energy 

level, which determines the trajectory of where the system will go. The system will gravitate 

toward energy minima, which are the stored representational patterns, i.e., attractor states 

[7]. If we were to project this 100-dimensional neural state space onto a more intuitive two-

dimensional space, visualizing the energy levels at various points in the space, we can reveal 

these Angry and Happy category representations in the system (Fig. 1).
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Behavior.

To measure these attractor dynamics during social perception, researchers have recently 

leveraged response-directed hand movement using computer mouse-tracking [8]. By 

examining how the hand settles into a response over time, and may be partially pulled 

toward other potential responses, mouse-tracking has charted out the real-time dynamics 

through which social categories, emotions, stereotypes, attitudes, and traits activate and 

resolve over hundreds of milliseconds [8,9]. At any given moment of time in a mouse-

tracking task, the hand’s proximity to a given response (e.g., a social category, emotion, or 

trait) on the two-dimensional space of the screen – like the proximity of the system to a 

given attractor in high-dimensional neural state space – may index the extent to which that 

social category, emotion, or trait representation is currently activated [8]. Thus, the distance 

the hand travels toward an unselected response option (before arriving at the selected option) 

can be taken as a proxy – using the physical distance in two-dimensional space – of the 

distance between that representation and a perceiver’s current state in higher-dimensional 

neural state space (Fig. 1). Numerous other behavioral measures can be used, such as ratings 

or response times.

Neuroimaging.

Finally, computational models and behavioral measures can be combined with 

neuroimaging. FMRI studies have increasingly focused on multi-voxel patterns of activity 

within a functional region to understand representational structure [5,11]. Although a far 

coarser measure than measuring activity of actual neurons, individual voxels may contain 

different distributions of neurons selective for certain types of information, thereby allowing 

voxel patterns to serve as potential proxies of underlying neuronal patterns [11,12]. Recent 

multi-voxel pattern analyses have demonstrated reliable decoding of various kinds of 

representations in social perception [13]. For instance, studies have shown the fusiform 

gyrus (FG), a visual face-processing region [14], is involved in representing faces’ gender 

[15], race [16,17], and emotion [18]. Consider a brain region with 100 voxels, with two 

unique multi-voxel patterns associated with the race categories White and Black; each 

category representation is therefore a point in a 100-dimensional multi-voxel space. Just like 

distances between representations in the multidimensional space of a computational model, 

or physical distance within the two-dimensional space of a computer screen with mouse-

tracking (or other behavioral measures), distances between representations in the 

multidimensional space of neural response patterns can be used to understand the structure 

of representations in social perception (Fig. 1). Depending on the theoretical question at 

hand, these neural response patterns can be localized to a specific region or distributed over 

a larger cortical area or even the entire brain. Moreover, using computational models of the 

function of different anatomical regions (e.g., the HMAX model of ventral-temporal cortex; 

[19]), the structure of simulated representations in a putative region can be corroborated with 

the structure of fMRI response patterns in that actual region.

Linking these levels of analysis – computational modeling, behavioral data, and 

neuroimaging – by comparing their relative representational geometries has recently been 

used to address theoretically important questions in social perception.
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Social categorization

A glimpse of a face conveys a number of social categories, such as gender or race. A central 

challenge of social categorization is to take the inherent diversity in facial features out in the 

social world to form a coherent categorization. Current neural-network models predict that 

when facial features occasionally conflict (e.g., a man’s face with feminine features), as with 

natural variation in the population, multiple partially-active social categories will be 

activated (i.e., both male and female) that simultaneously compete over time [13] – a process 

for which representational geometry has recently been useful in understanding [20] (Fig. 2).

This category competition driving perception may also be affected by top-down factors. For 

instance, being exposed to a face has long been known to spontaneously activate relevant 

gender or racial stereotypes [21,22], but recent work has suggested a more bidirectional 

relationship. Like other forms of perception, top-down expectations may facilitate certain 

perceptual interpretations [23,24], which in social perception may include stereotype-based 

expectations [2,13]. Over the years, stereotype effects have been documented on perceptual 

judgments [25-27], but it has remained less clear how such biases might manifest earlier in 

the perceptual process.

In one set of neuroimaging studies [10], the structure (i.e., all pairwise similarities) of 

gender, race, and emotion categories was assessed across several domains: multi-voxel 

response patterns to faces (via fMRI), subjective perception of faces (via mouse-tracking), 

and stereotype knowledge (via a stereotype content task). The results revealed a shared 

representational geometry across modalities (stereotype knowledge, subjective perceptions, 

and multi-voxel response patterns in the face-processing right FG). The similarity (i.e., 

distance) between any given pair of social categories (e.g., Black and anger) in stereotype 

knowledge predicted a corresponding similarity in how faces belonging to those categories 

were perceived (via mouse-tracking) as well as in faces’ multi-voxel response patterns. For 

example, the more similarly the categories ‘Black’ and ‘anger’ were believed to be in terms 

of their stereotype knowledge predicted a greater tendency to perceive Black faces and angry 

faces more similarly (e.g., a partial attraction to ‘angry’ even for a non-angry Black face). 

This greater perceptual similarity was in turn reflected by an increased similarity in the 

multi-voxel representations of Black faces and angry faces in the FG (Fig. 3a). That these 

stereotypical biases on perception manifest in a visual face-processing region’s 

representational structure suggests that social cognitive processes can impact visual 

representation.

Emotion perception

As in social categorization, the notion that cognitive processes may exert top-down impacts 

on perception has become increasingly important in understanding emotion perception, 

particularly the role of emotion-concept knowledge [28,29]. Early “basic emotion” 

approaches emphasized six universal facial expressions of emotion, associated with specific 

action units that may be read directly from a face. Constructionist approaches and recent 

neural-network models suggest that not only do facial features related to, fear, for example, 

drive categorizations, but so does conceptual knowledge about what fear means. Recent 
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work has used representational geometry to provide a comprehensive test of how inter-

individual variability in conceptual knowledge may shape facial emotion perception.

In one set of studies [30], the structure (i.e., pairwise similarities) of the six basic emotion 

categories was assessed at the level of conceptual knowledge (via a rating task), facial 

emotion perception (via mouse-tracking) and faces’ intrinsic physical properties (via 

measuring facial action units). A corresponding geometry was observed between conceptual 

knowledge and facial emotion perception, controlling for faces’ inherent physical similarity. 

When individuals believed two emotions (e.g., anger and disgust) to be conceptually more 

similar, faces belonging to those categories were perceived with a corresponding similarity 

(i.e., mouse trajectories were more attracted to both emotion responses in parallel, although 

each face only depicted one emotion) (Fig. 3b). Such findings suggest that subtle individual 

differences in the conceptual understanding of what different emotions mean are reflected in 

how those emotions are perceived from a face. A neuroimaging study [31] replicated this 

general finding but also showed that such a conceptually shaped representational structure 

was reflected in the structure of FG multi-voxel patterns, thereby suggesting its impact on 

visual representation of faces. Thus, believing anger and disgust are more conceptually 

related is associated with an increased bias to perceive angry and disgusted faces more 

similarly, as well as increased similarity in their multi-voxel response patterns in the FG.

Other work has used representational geometry to test for shared neural representations 

across faces and voices [32] or competing models of inferring the emotional experience of 

another person [33]. For instance, in response to emotional episodes, the similarity structure 

of multi-voxel patterns in the TPJ and dmPFC, regions implicated in theory of mind, were 

compared to the similarity structure of several candidate theoretical models. Among these 

was an appraisal model, relating episodes by their similarity across 38 appraisal dimensions 

(i.e., abstract features of the causal contexts that elicit emotions). The geometry of neural 

patterns in theory-of-mind regions corresponded best with the geometry of this 38-

dimensional appraisal model, suggesting that these regions contain a high-dimensional 

model capturing the appraisal of others’ emotional experiences that cannot be reduced 

merely to a two-dimensional circumplex model (valence and arousal) or six-dimensional 

basic-emotion model (also see Fig. 4).

Trait impressions

Perceiving personality traits from a face – warmth, intelligence – may seem ambiguous and 

arbitrary relative to perceiving aspects like social categories or emotions. But much research 

has demonstrated that arrangements of facial features reliably relate to specific trait 

perceptions [34,35], a process requiring minimal visual exposure [36,37]. Popular models of 

face-based trait impressions focus exclusively on the role of bottom-up facial features 

[34,38]. However, an emerging literature has noted the considerable influence of top-down 

cognitive processes in face impressions [6,35,39,40], for which representational geometry 

has recently been valuable.

One set of studies [41] tested whether individual differences in conceptual trait associations 

shape how those traits are perceived from a face. The structure (i.e., all pairwise similarities) 
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of traits was assessed at the level of conceptual knowledge (e.g., “if someone is agreeable, 

are they also open-minded?”) and face impressions. A reverse correlation technique was 

used to estimate each perceiver’s visual prototypes for different traits. Indeed, to the extent a 

perceiver believed any pair of traits to be more related (e.g., openness and agreeableness), 

they perceived those traits in faces with a corresponding similarity (e.g., greater resemblance 

in the visual prototypes for the two traits; Fig. 3c). This showed that face impressions arise 

not just from bottom-up features but also the conceptual understanding of what those traits 

mean. Although top-down factors have long been recognized as affecting personality 

inferences in general [42], current models of face-based trait impressions focus on a 

relatively fixed and universal two-dimensional structure derived from bottom-up facial 

features alone. These findings suggest a more dynamic multidimensional structure that 

varies across perceivers and contexts, not necessarily tied to any evolutionary or functional 

value [6]. It also empirically connects more recent face-based trait impressions research to 

more classic work on the conceptual shaping of personality inferences.

Other recent research went so far as to quantify the role of conceptual trait knowledge in 

social perception generally – across domains of face impressions, familiar person 

knowledge, and group stereotypes [43]. Analyses demonstrated a strong correspondence in 

the geometry of trait representations across these social perception models, suggesting that a 

perceiver’s conceptual trait associations may provide a domain-general model for inferring 

about not only faces but also familiar others and social groups. Finally, representational 

geometry has additionally been used to understand inferences about others transient mental 

states [44,45], finding that a three-dimensional model of rationality, social impact, and 

valence best predict the structure of behavioral data and neural patterns associated with 

mental states.

Conclusion

Across various domains of social perception, an emerging focus on representational 

geometry is exploring how both bottom-up facial features and a variety of top-down social 

cognitive factors together shape perceptions of other people. While the general correlational 

approach with representational geometry has permitted broad tests of how an entire system 

of representations in social perception may be determined by novel factors (e.g., stereotypes, 

emotion-concept knowledge), future research could establish more causal links through 

manipulating these factors. Although this work is in its early stages, linking across 

computational modeling, neuroimaging, and behavioral data allows researchers to use 

multiple levels of analysis to constrain theoretical models. It provides promise for furthering 

our understanding of the multiply determined nature of social perception and its neural 

basis.
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Figure 1. The link between modeling, mouse-tracking, and multivariate fMRI.
An illustration of the link between the three modalities is depicted using an example of 

stereotype influences on emotion perception based on [10]. Happy and Angry categories are 

each associated with a unique pattern across a neuronal population, with certain neurons 

highly active during a ‘Happy state and other neurons highly active during an ‘Angry’ state. 

These states are low-energy attractors, into which the system is compelled to settle (similar 

to how a ball must roll down a hill). These states would be associated with distinct multi-

voxel patterns using fMRI. Mouse-tracking can provide a real-time behavioral index of how 

the perceptual process settles over time into one of the two categories. The computer screen 

during mouse-tracking may serve as a two-dimensional proxy for higher dimensional neural 

state space. The mouse-tracking paradigm is depicted at the center, overlaid onto a 

hypothetical energy landscape describing the energy at all states in the system. The two 

energy minima (attractors) are shown, corresponding to the Happy and Angry response 

locations and ‘Happy and ‘Angry’ neural states (and corresponding multi-voxel patterns). At 

the beginning of the perceptual process, the system is in an unstable, high-energy state. As 

the process evolves over hundreds of milliseconds, the neuronal population gradually settles 

into a low-energy attractor state, i.e., Happy or Angry category, just as the hand settles into 

one of the response locations. Due to automatic stereotype-based expectations linking Black 

people to hostility, for a happy Black face, during the perceptual process (e.g., mid-

trajectory) the neuronal pattern would approximate the Angry pattern to a greater extent and 

the hand would be more attracted toward the Angry response (e.g., relative to a happy White 

face). Because the multi-voxel pattern in response to such a face would reflect an average 

over this time period (as fMRI’s temporal sensitivity is limited), it would exhibit a degree of 

greater pattern-similarity to the Angry category (e.g., relative to a happy White face), as 
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shown in previous neuroimaging work [10]. This example shows the link between the 

multidimensional space of a neuronal population/model, the two-dimensional space of a 

computer screen with mouse-tracking, and the multidimensional space of multi-voxel 

response patterns.
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Figure 2. Co-activation of representations in social categorization.
A recent study [20] synchronizing neuroimaging and mouse-tracking found that, when 

categorizing gender- or race-atypical faces (e.g., a feminine male face), participants’ hand 

trajectories exhibited a parallel attraction toward the opposite gender or race category 

response before ultimately arriving at the correct response, suggesting that the opposite 

category was co-activated in parallel. In the face-processing right FG, each participant’s 

distinct multi-voxel pattern for the male, female, White, and Black category was assessed. 

The results showed that the extent of parallel attraction toward the opposite category (e.g., 

toward ‘female’ for a male face) was associated with a greater neural-pattern similarity to 

that opposite category’s multi-voxel pattern (or toward ‘Black’ for a White face with Black-

related features, see Fig. 1). Such work suggests that common ambiguities tend to activate 

alternate social categories before a categorization stabilizes, and this is reflected in the 

similarity of that face’s multi-voxel pattern to the alternate social category’s pattern in the 

right FG [20]. Thus, by examining the geometry of a given face’s neural response pattern to 

the patterns associated with other social categories, novel insights may be made into the 

mechanisms of social categorization.
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Figure 3. Representational similarity analysis (RSA) in social perception.
In RSA, representational dissimilarity matrices (RDMs) comprise all pairwise similarities/

dissimilarities (see Fig. 4A) and are estimated for each modality. Unique values under the 

diagonal are vectorized, with each vector reflecting the geometry of the representational 

space. Correspondence in geometry is then assessed through the vectors’ bivariate 

relationships (e.g., correlation, regression). (A) Participants’ stereotype RDM (stereotype 

content task) predicted their perceptual RDM (mouse-tracking), showing that a biased 

similarity between two social categories in stereotype knowledge was associated with a bias 

to see faces belonging to those categories more similarly, which in turn was reflected in FG 

pattern structure [10]. (B) Participants’ emotion-concept RDM (emotion concept ratings 

task) predicted their perceptual RDM (mouse-tracking), showing that an increased similarity 

between two emotion categories in emotion-concept knowledge was associated with a 

tendency to perceive those facial expressions more similarly [30], which was also reflected 

in FG pattern structure [31]. (C) Participants’ conceptual RDM (trait ratings task) predicted 

their perceptual RDM (reverse correlation task), showing that an increased tendency to 

believe two traits are conceptually more similar is associated with using more similar facial 

features to make inferences about those traits [41].
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Fig. 4. Representational similarity and geometry.
(A) Representational dissimilarity matrices (RDMs), as in Fig. 3, comprise dissimilarities 

for all pairs of conditions. For simple cases, these dissimilarities – i.e., the distances between 

pairs of representations – can be derived by single values (e.g., behavioral similarity rating, 

mouse-trajectory deviation). In most cases, however, data are multivariate, and pairwise 

dissimilarities must be computed using distance metrics such as Pearson correlation distance 

or Euclidean distance. Consider the activation pattern of a brain region with 10 voxels. 

Pearson distance normalizes vector magnitude and scale, and thus in the case of multi-voxel 

patterns removes any differences in overall activation level and variability, leaving only the 

relative shape of the pattern that is typically of interest. Euclidean distance, on the other 

hand, combines sensitivity to relative pattern shape with absolute differences in magnitude 

and scale. On the left, for the two conditions’ multi-voxel patterns, Pearson distance is zero, 

because normalizing for magnitude and scale differences, the pattern is identical; Euclidean 

distance, however, is sensitive to these differences (i.e., how much higher one pattern is than 

another). On the right, the relative shape of the two conditions’ multi-voxel patterns are 

much less congruent, leading Pearson distance to be higher than on the left; Euclidean 

distance is lower than on the left, because incorporating magnitude and scale, the patterns 

are now more similar. Consider if the vector comprised 10 items on a stereotype survey (e.g., 

aggressive, communal), rather than 10 voxels, and the conditions were two social groups, 

such absolute differences in magnitude and scale may be important to capture (e.g., that one 

group is judged overall more aggressive and less communal than another). (B) Clustering 
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and organization can also be informative. Hypothetical geometries (from multi-voxel 

patterns, behavioral data, or model simulations) are provided in a reduced, intuitive two-

dimensional space. Top panel: When presented with White, Biracial, and Black faces, one 

region’s multi-voxel patterns may have a two-category organization, placing Biracial faces 

into either the White or Black cluster (left) whereas another region may have a three-

category organization, such that Biracial faces are placed into their own distinct cluster 

(right). Bottom panel: When presented with emotional faces, certain perceivers may have a 

6-category organization in behavioral data or neural patterns, such that each basic emotion 

has a distinct cluster (left), whereas other perceivers may have a more blended organization, 

such that various emotion expressions do not fit into the six distinct emotion categories. 

Thus, examining representational spaces in social perception may reveal important 

differences in the perceptual organization of different brain regions or individual perceivers.
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