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Abstract—Quantification of 3-D intravascular flow is valuable for studying arterial wall diseases but currently
there is a lack of effective clinical tools for this purpose. Divergence-free interpolation (DFI) using radial basis func-
tion (RBF) is an emerging approach for full-field flow reconstruction using experimental sparse flow field samples.
Previous DFI reconstructs full-field flow from scattered 3-D velocity input obtained using phase-contrast magnetic
resonance imaging with low temporal resolution. In this study, a new DFI algorithm is proposed to reconstruct full-
field flow from scattered 2-D in-plane velocity vectors obtained using ultrafast contrast-enhanced ultrasound
(>1000 fps) and particle imaging velocimetry. The full 3-D flow field is represented by a sum of weighted diver-
gence-free RBFs in space. Because the acquired velocity vectors are only in 2-D and hence the problem is ill-condi-
tioned, a regularized solution of the RBF weighting is achieved through singular value decomposition (SVD) and
the L-curve method. The effectiveness of the algorithm is determined via numerical experiments for Poiseuille flow
and helical flow with added noise, and it is found that an accuracy as high as 95.6% can be achieved for Poiseuille
flow (with 5% input noise). Experimental feasibility is also determined by reconstructing full-field 3-D flow from
experimental 2-D ultrasound image velocimetry measurements in a carotid bifurcation phantom. The method is
typically faster for a range of problems compared with computational fluid dynamics, and has been found to be
effective for the three flow cases. (E-mail: mengxing.tang@imperial.ac.uk) © 2018 The Author(s). Published by
Elsevier Inc. on behalf of World Federation for Ultrasound in Medicine & Biology. This is an open access article
under the CC BY license. (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

Atherosclerosis, caused by the buildup of atheromas in

the lining of artery walls and narrowing arteries, can

affect any artery in the body, causing diseases such as

angina, stroke, heart attack and peripheral artery disease.

Development of atherosclerosis is associated with bends

and bifurcations in vessel geometry, and it has been

hypothesized that flow patterns related to differences in

geometry and wall shear stress are involved in the selec-

tive localization of atherosclerosis (Glagov et al. 1988;

Ku et al. 1985; Zarins et al. 1983). Studying physiologic
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flow patterns in complex geometries where atherosclero-

sis is more likely to appear may elucidate the mecha-

nisms that lead to its development.

Computational fluid dynamics (CFD) is a standard

physiologic flow simulation tool. High-fidelity CFD

requires (i) accurate flow domain geometry, which poses

a challenge for lumen surface reconstruction from noisy

and scattered imaging input, because in many cases

imaging input includes missing boundary data with holes

resulting from the accessibility limitation of imaging

scanners; (ii) reliable 3-D boundary/initial conditions

and fluid properties (accounting for the non-Newtonian

rheology of blood) (Johnston et al. 2004; Yilmaz and

Gundogdu 2008). In addition, the computational cost of

adequately resolving the physics of complex flows by
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traditional CFD is high, while it is challenging to predict

complex flows using low-fidelity models with confi-

dence. Even with the recent progress in parallel comput-

ing, fast CFD has only been possible under restricted

conditions (Geveler et al. 2011; Liu et al. 2004; Wu

et al. 2004).

Ultrasound imaging is highly accessible and afford-

able compared with magnetic resonance imaging and

has been used in the study of atherosclerosis to (i) quan-

tify arterial wall thickness as a measure of atherosclero-

sis risk (Chambless et al. 1997; Gussenhoven et al.

1989; Pignoli et al. 1986); (ii) acquire flow domain

geometry and conduct CFD (Augst et al. 2003; Lee et al.

2004; Zhao et al. 2000); and (iii) measure 2-D flow

velocity by speckle tracking (Leow and Tang 2018;

Leow et al. 2015; Nam et al. 2012; Niu et al. 2010) or

velocity Doppler (Fox 1978; Overbeck et al. 1992;

Scabia et al. 2000) and correlate flow field with athero-

sclerosis risk. Multibeam Doppler estimation methods

measure the Doppler frequency from different beam-

flow angles and solve the individual flow vector compo-

nents (Fox 1978; Overbeck et al. 1992). Speckle tracking

using microbubble contrast agents (also known as echo

particle image velocimetry [echo-PIV] or ultrasound

image velocimetry [UIV]) is another method that can

quantify 2-D flow and perfusion within blood vessels

and heart ventricles (Kim et al. 2004; Poelma et al.

2011; Toulemonde et al. 2017) by combining microbub-

ble contrast agents and ultrasound. With the advance-

ment of high-frame-rate plane wave ultrasound imaging

(typical frame rate: >1000 fps), the temporally changing

features of fast and pulsatile flow can be fully resolved.

Although ultrasound imaging is still primarily in two

dimensions, with contrast-enhanced ultrafast UIV it is

possible to acquire the 3-D geometries of vessels and the

ventricles by stacking 2-D images slice by slice, as well

as two-dimensional D11X Xin plane velocity in optically opaque

geometries. A detailed experimental setup and post-

processing algorithm of plane wave ultrafast UIV were

recently introduced by Leow and co-workers (Leow and

Tang 2018; Leow et al. 2015). However, like most

velocimetry imaging techniques, plane wave ultrafast

UIV obtains 2-D in-plane velocity fields at discrete

imaging planes and the out-of-plane velocity component

is lost. So it is of much benefit and interest to build full

3-D flow fields from such scattered 2-D velocity data

with a reliable and computationally cheap method.

Divergence-free interpolation (DFI) using radial

basis function (RBF) is a mesh-free flow reconstruction

algorithm of low computational cost, and we expect it to

have high accuracy as it reconstructs the flow field from

experimental data. As an alternative to CFD, it combines

3-D vectorial data with a mass conservation law, and it

does not require fluid properties such as viscosity, or even
the full geometry, to be known. It is therefore more reli-

able than CFD in cases when an accurate boundary/initial

condition and geometry are unavailable

(Lowitzsch 2005a; 2005b; Wendland 2009). DFI was first

proposed by Narcowich and Ward (1994) and was then

proven accurate in obtaining full-field flow velocity by

Lowitzsch (2004, 2005a; 2005b). Chan and Liebling

(2015) recently proposed a reconstruction method from

multiple directional PIV measurements in optical micros-

copy. Skrinjar et al. (2009) and Sundareswaran et al.

(2012) reported on the feasibility of DFI using 3-D veloc-

ity input from phase-contrast magnetic resonance imag-

ing. However, previous DFI techniques depended on 3-D

sparse velocity input for flow reconstruction and cannot

work on 2-D velocity measurements by ultrasound.

In this study, we proposed a new 3-D flow recon-

struction method using 2-D in-plane projected vectorial

data, taking advantage of ultrafast plane wave UIV at a

high frame rate (>1000 fps) and divergence-free RBF.

As far as we know this is the first study able to recon-

struct the full flow field from 2-D flow measurements

and to reconstruct 3-D flow using ultrafast UIV.

The experimental method and basic theories of

ultrasound-augmented DFI (UADFI) are introduced first,

followed by numerical simulation on a straight vessel

flow and a helical flow and, finally, in a carotid bifurca-

tion phantom. Appendix A introduces four different

RBF kernels, and Appendix B compares three algo-

rithms to select the optimal regularization parameter for

the UADFI system. Grid convergence of the helical flow

using STAR-CCM+ (Version 11.06, Siemens, Berlin,

Germany) is described in Appendix C.
METHODS

Data acquisition setup (simulation and experiments)

In UADFI, multi-angle 2-D velocimetry measure-

ments are acquired (or simulated). In this study, two dis-

tinct acquisition angles were required because these

provide the projections of the real 3-D flow field onto

two plane directions, which contain independent flow

information to allow for full-field reconstruction. The

angles between the imaging plane (probe plane) and

probe motion direction are denoted as u1 and u2 for two
imaging directions, respectively. In practice, ultrasound

scanning is achieved as follows: after scanning at dis-

crete planes separated by spacing along the Z-axis

(defined along the direction of the probe motion

[Fig. 1a]) for the first angle (u1) from Z1 to Z2, the imag-

ing probe was rotated to u2, and the same flow domain

was scanned along the �Z direction until the probe

reached Z1 (Fig. 1a). The motion of the probe is con-

trolled by a programmed stage controller, and its step

size is 5 mm (spacing = 5 mm). Acquisition angles



Fig. 1. (a) Schematic of straight cylindrical vessel (top view) along the probe motion direction, with blue and red imag-
ing planes demarcating the two independent scanning directions. (b) One B-mode image acquired in a straight vessel.

(c) Illustration of 2-D velocity acquired in a straight vessel by ultrasound imaging velocimetry.
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(u1 = 45˚, u1 = 135˚) and spacing are illustrated in

Figure 1. Two-dimensional velocity vectors were then

registered according to acquisition parameters and seg-

mented by a level set method (Lee et al. 2016), as illus-

trated in Figure 1b.
Reconstruction algorithm

Blood flow is usually assumed incompressible (Osh-

ima et al. 2001; Tu and Deville 1996), and the divergence

of its velocity is zero. DFI with 3-D velocity input was

introduced in some previous work (Lowitzsch 2004,

2005a; 2005b; Narcowich and Ward 1994; Wendland

2009), and we briefly introduce the previous method below

in eqns (1)�(4) and our new algorithm in eqns (5) to (11).
Existing algorithm: Divergence-free interpolation

with 3-D velocity input. RBF is a family of scalar val-

ued approximation functions used for interpolation. The

value of RBF at a point
!
x depends on its distance from

the interpolation centre
!
c. The divergence-free matrix-

valued RBF, ;ð!rÞ, is defined by
; !

r
� �

¼ �DI þ r r T� �
’

!
r

� �
ð1Þ

where ’ð!rÞ is the scalar valued RBF (see examples of

such RBFs in Appendix A) and
!
r ¼ !

c�!
x. I is the

identity matrix. If we choose the 3-D Gaussian function

as the scalar valued RBF, eqn 1 can be expanded as

; !
xj;

!
ci

� �
¼ 6ɛ�4ɛ2 k!r k 2

� �
I þ 4ɛ2

!
r
!
r
T

� �
exp �ɛ!r2

� 	
ð2Þ

where ɛ is the reciprocal of the variance of the Gaussian
function, here referred to as the shape parameter of

Gaussian (see Appendix A), and ;ð!xj;!ciÞ is a 3£ 3

symmetric matrix.
!
xj is the coordinate of the jth velocity

vector, and
!
ci is the coordinate of the ith interpolation

center point. For simplification, the point cloud of center

points coincides with that of measurement data points.

Then the velocity interpolation scheme has the form

!
v

!
xj

� �
¼

Xm
i ¼ 1

; !
xj;

!
ci

� �
λi ð3Þ

where m is the number of interpolation centers, and λi ¼
½λi1; λi2; λi3�T is a vector of weight coefficient for the

RBFs. Each column of ;ð!xj;!ciÞ is divergence free via

eqn (1), and the interpolated velocity
!
vð!xjÞ is a linear

combination of divergence-free columns (see eqn [3])

and is thus divergence free (Narcowich and Ward 1994).

We then rewrite eqn (3) in a compact matrix form:
!
v

!
x1

� �
..
.

!
v

!
xm

� �
2
6664

3
7775

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
!
v

¼
; !

x1;
!
c1

� �
⋯ ; !

x1;
!
cm

� �
..
.

⋱ ..
.

; !
xm;

!
c1

� �
⋯ ; !

xm;
!
cm

� �
2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G

�
λ1

..

.

λm

2
64

3
75

|fflfflffl{zfflfflffl}
λ

ð4Þ

Once eqn (4) is solved and weight coefficients λ are

obtained, 3-D velocity vectors at any spatial location within

the flow domain can be computed with eqn (3). All previ-

ous DFIs are based on matrix inversion of eqn (4) using

3-D velocity measurement input
!
v, not suitable for UIV

where only 2-D in-plane velocities are available.
New algorithm: Divergence-free interpolation with

2-D velocity input. Based on the previous work on

DFI, we derived the new algorithm of UADFI based on

2-D UIV velocity input, discussed in the following four

subsections.

Projection matrix. Assume a velocity vector!
A ¼ ðAx;Ay;AzÞT , a plane whose orientation is defined

by its normal vector
!
B ¼ ðBx;By;BzÞT . The projection

of
!
A on the plane, denoted by

!
A k!B, is

!
A k!B ¼

B2
y þ B2

z �Bx � By �Bx � Bz

�Bx � By B2
x þ B2

z �By � Bz

�Bx � Bz �By � Bz B2
x þ B2

y

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R1 or R2ð Þ

Ax

Ay

Az

2
4

3
5

ð5Þ
where the 3£ 3 square matrix on the right-hand side is

the projection matrix for the vector
!
A, which depends

only on the direction of
!
B. This means only the angle

between the imaging plane and probe motion direction is

needed to construct the projection matrix. In this study

two different imaging angles were used, and thus two

3£ 3 projection matrices R1 and R2 are constructed for

each angle. Assume m1 and m2 are numbers of vectorial

data points from imaging angles 1 and 2

(m1 þm2 ¼ m). The projection matrix R for the UADFI

system is a 3m£ 3m block diagonal matrix, with m1

diagonal blocks of R1 and m2 diagonal blocks of R2:
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R ¼

R1

⋱

R1

R2

⋱

R2

2
6666666664

3
7777777775

ð6Þ

Ultrasound-augmented divergence-free interpolation. By

multiplying both sides of eqn (4) by projection matrix R,

we have

Aλ ¼ b ð7Þ
where A ¼ R � G and b ¼ R �!v. b is the planar projec-

tion of true 3-D flow vector on two imaging planes, that

is, velocity from UIV measurement. To reconstruct full-

field 3-D flow by eqn (3), we aimed at finding a stable

solution of λ for eqn (7).

Singularity and regularization for UADFI. As R is sin-

gular and rank(R)� 3m, A is also singular because of the

rank inequality:

rank R � Gð Þ�min rank Rð Þ; rank Gð Þð Þ�3m ð8Þ
The condition number of the singular matrix A is

infinite. As a result, small perturbations in b could result

in arbitrarily large perturbations in λ when conducting

matrix inversion of eqn (7). In real medical imaging

applications, errors include measurement error, UIV

post-processing and round-off errors, and are inevitable.

In this study, to solve the ill-posed system of eqn (7) and

obtain a stable and accurate solution of λ, regularization
should be used, and below we introduce a stable trun-

cated singular value decomposition (TSVD) solution to

the noise-contaminated singular system in eqn (7).

TSVD pseudo-inverse. Velocity vector b is contami-

nated by experimental error, and eqn (7) becomes an

error minimization problem

argmin
λ k b�Aλ k 2 þ tλ2
� � ð9Þ

where tλ2 is the regularization term. To find the solution

to eqn (9), we conduct SVD for A:

A ¼ USVT ¼
Xk
i ¼ 1

uisiv
T
i ð10Þ

Here, U and V are left singular vectors and right sin-

gular vectors, respectively; si is the ith singular value of

A; k is the regularization parameter; and S is a diagonal

matrix composed of singular values in descending order.

Then a regularized solution of eqn (9) is
λreg ¼
Xk
i ¼ 1

uT
i bvi
si

ð11Þ

k (k< rank(A)) acts as a measure of the extent to which

the noise-contaminated UIV input should be trusted.

Small k means the UIV input is less trusted and results in

a large regularization error, whereas large k causes the

system to be sensitive to noise and suffer large perturba-

tion error. An optimal k to balance the regularization

error and perturbation error is determined by the L-curve

(Hansen and O’Leary 1993) method, and different meth-

ods to optimize the regularization parameter are com-

pared in Appendix B.

After solving the regularized weight coefficient λreg
with eqn (11) 3-D full-field flow is reconstructed with eqn

(3). The UIV experimental setup is introduced below.
Experimental measurement

Decafluorobutane microbubbles were diluted in

water as contrast agent to a concentration of 2 £ 105

microbubbles/mL, and an L12-3v linear array probe con-

nected to a Vantage 128 platform (Verasonics,

Redmond, WA, USA) was used for UIV acquisition. A

high-frame-rate plane wave pulse inverse scheme, with

five compounding imaging angles between �9˚ and 9˚,

was transmitted, and the frame rate is 1000 fps. Then

received RF data are beamformed by a delay and sum

method to produce B-mode images. An autocorrelation

technique developed by Leow et al. (2015) was used for

2-D in-plane flow velocity quantification. The 2-D

experimental setup and acquisition procedures are

described in Leow et al. (2015). In this study, the ultra-

fast UIV system was used to track steady flow in a

carotid bifurcation tissue-mimicking phantom; it takes a

matter of microseconds to acquire one image and several

seconds for UIV post-processing using GPU, that is,

in-plane velocimetry calculation.
Three numerical/experimental cases

In this study, UADFI was tested on three steady

flow cases below. Input for cases 1 and 2 was obtained

by first extracting 3-D velocity vectors on two sets of

imaging planes from an analytical solution or CFD, and

then calculating their in-plane components.

� Case 1 (simulated case): Fully developed Poiseuille

flow in a straight vessel with a diameter of 10 mm

and length of 10 mm. The volumetric flow rate Q is

1 mL/s. In-plane UIV resolution is 1 mm.
� Case 2 (simulated case): Helical flow where the helix

radius is 5 mm and total length is 35 mm. Inlet flow



Fig. 2. Geometries of cases 2 and 3: (a) helix; (b) carotid bifurcation (surface geometry from ultrasound scan).
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velocity is uniform at 10 mm/s (mean flow rate = 10

mm/s). In-plane UIV resolution is 1 mm.
� Case 3 (experimental case): Steady flow in a carotid

bifurcation phantom with experimental 2-D UIV

measurements. The inlet flow rate is 0.4 mL/s, and

in-plane UIV resolution is 1 mm.

The geometries of cases 2 and 3 are illustrated in

Figure 2, and the projected 2-D velocity after image

registration is illustrated in Figure 3 (plane

spacing = 5 mm in Fig. 3). The Reynolds numbers for

the three cases are smaller than 1000. The helical flow

CFD simulation is conducted in STAR-CCM+, and a

steady, incompressible laminar flow model is used to

simulate the flow. Grid independence is discussed in

Appendix C. Errors of cases 1 and 2 were analyzed by

comparing reconstructed flow with the Poiseuille

equation and CFD, respectively. A 5% random artifi-

cial Gaussian error is then added to the sampled 2-D

velocity of the first two cases to test the stability of

the algorithm. In cases 1 and 2, different RBF kernels

are also compared, and the influence of spacing on

accuracy is investigated. All three cases in this study

were conducted at double precision in MATLAB

R2016 b (The MathWorks, Natick, MA, USA). All

simulations were performed with an Intel Core i7 3.4-

GHz HP EliteDesk 800 G1 Tower workstation with

32 GB RAM memory and NVIDIA GeForce GTX

1050 Ti GPU.
Error analysis

The absolute error err is defined by

err ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i ¼ 1

uti�uið Þ2 þ vti�við Þ2 þ wti�wið Þ2
n o

3m

vuuut
ð12Þ

where uti, vti and wti are the three velocity components

from ground truth, that is, CFD, and ui, vi and wi are

velocities reconstructed by UADFI.
RESULTS

Poiseuille flow case

Reconstruction results are illustrated in Figures 4�6.

As in practical applications, in-plane resolution is kept con-

stant, and the influence of different RBF kernels and spac-

ing between ultrasound acquisition planes on reconstruction

accuracy is studied below.
Reconstruction accuracy using different kernels. Tag-

gedPFour different kernels are used (spacing = 2 mm) and it

is outlined in Table 1 that Gaussian, inverse multiquadric

(IM) and multiquadric (MU) have higher reconstruction

accuracy than the thin-plate spine (TPS) kernel.

Reconstruction accuracy using different spacing. To

reduce the duration of ultrasound acquisition and UIV



Fig. 3. Input 2-D velocity for reconstruction of the three cases: (a) straight tube; (b) helix; (c) carotid bifurcation.
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Fig. 4. Poiseuille flow: (a) ground truth; (b) reconstructed flow field by Gaussian radial basis function.
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post-processing, it is of great interest to increase the

spacing between acquisition planes and evaluate the

accuracy when spacing is large. The acquisition

time constraint is especially important in the case of con-

trast-enhanced ultrasound imaging so that acquisitions in

all necessary planes for reconstruction have to be within

the current U.S. Food and Drug Administration limits of

contrast agent administration in humans. Spacing is var-

ied from 1 to 9 mm. It is shown in Figure 7 that increas-

ing spacing reduces the reconstruction accuracy.

Ultrasound-augmented DFI is ill-conditioned, and

to evaluate its numerical stability, 5% random Gaussian

noise is added to the 2-D velocity input; that is, ǁb �
b̂ǁ2/ǁ b̂ǁ2 = 5%. The error of reconstructed flow, shown

in Figure 7, indicates that the algorithm is robust with

measurement noise, and err increases when spacing is

larger. The relative error with 5% noise input increases

from 4.4% to 20% (mean flow rate = 12.73 mm/s) when

spacing increases from 1 to 9 mm.
Helical flow case

Reconstruction accuracy using different kernels. Tag-

gedPThe reconstruction results are illustrated in Figures 8

and 9. Table 2 lists the errors using four kernels, and the

other three RBFs have higher accuracy than TPS, the

mean relative error of which is 14% (spacing = 2 mm).
Reconstruction accuracy for different spacing. Si-

milarly to case 1, the error increases with increasing

spacing. Figure 10 illustrates the error increases when

spacing increases; relative error increases to 14.4% for

noise-free input when spacing is 8 mm.
It is interesting to note that reconstruction errors

with noise-free input is not always lower than those with

noise, which indicates that a sub-optimal regularization

parameter is achieved with the L-curve method.

This motivates future research exploring other regulari-

zation methods.
In vitro experiment case

Figure 11 illustrates the reconstructed flow of case 3.

We did not conduct CFD because of the difficulty in mea-

suring accurate boundary condition (especially flow inlet

condition) and geometry. As a result of the lack of an ideal

standard for error evaluation, we did not compare the influ-

ence of spacing/kernel on accuracy, and the Gaussian is

used for reconstruction. The plane spacing of input is 5 mm.
DISCUSSION/SUMMARY

This study illustrates the generation of 3-D flow

reconstruction through integration of ultrafast plane

wave imaging, ultrasound imaging velocimetry, micro-

bubble contrast agents and DFI. It fills a current gap

between CFD and experimental ultrasound measure-

ments. By reconstructing a full 3-D flow velocity field

with limited samples of 2-D measurements, it can over-

come the problem of CFD with real measurement con-

straints and the problem of current 2-D ultrasound

measurements by providing a full 3-D velocity field.

Unlike current CFD which usually utilizes only geome-

try and inlet condition from imaging, UADFI recon-

structs the 3-D full velocity field from experimental 2-D

in-plane velocity input, can achieve reasonable accuracy

and is robust to measurement noise. This method is sim-

ple, computationally efficient compared with CFD, mesh



Fig. 5. Poiseuille flow: (a) out-of-plane velocity at cross plane; (b) in-plane velocity at sagittal plane.
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free and independent of initial condition and, thus, has

potential for faster flow estimation than CFD in biomedi-

cal applications. The reconstruction accuracy and recon-

struction speed are discussed below.

Influence of experimental/reconstruction parameters on

accuracy

Reconstruction accuracy is related to UIV experi-

mental parameters including spacing, acquisition angles,

frequency, compounding angles and UADFI parameters

including different RBF kernels, shape parameter (not

mentioned in this study) and regularization parameter.

It should be noted that the spacing required depends

on the complexity of the flow. The proposed method will

interpolate the flow field taking into account mass con-

servation, and recover out-of-plane velocities to generate

a full 3-D velocity field, but it would be impossible for

the method to retrieve information on a complex local

vortex flow if it is not being sampled in the imaging

planes. Therefore, we have to sample sufficiently densely

(i.e., use smaller spacing) to visualize complex and

localized vortex flow, at the cost of slower reconstruc-

tion and UIV acquisition. In case 3 of this study we

tested the plane spacing at 5 mm for real UIV measure-

ment, and the results were reasonably good. UIV accu-

racy depends on the acquisition angle, and the higher

UIV accuracy is achieved when the angle between flow

direction and the acquisition plane is smaller. However,

for real acquisition it is difficult to know the flow direc-

tion beforehand, and thus, in this study we used two per-

pendicular acquisition angles to maximize the

independence of flow information acquired from two

angles. UIV experimental error can be below or around

10% according to Leow et al. (2015), and by optimizing
UIV parameters such as the number of plane waves com-

pounded, plane wave tilting angle, frequency, acoustic

pressure and pulse length, UIV accuracy can be

improved.

Radial basis function kernels also influence accu-

racy, and a previous study compared Gaussian and TPS

kernels with 3-D velocity input (Skrinjar et al. 2009).

This study indicated that Gaussian, IM and MU have

higher accuracy than TPS. In our study we added 5%

Gaussian noise in cases 1 and 2 (17 numerical experi-

ments in total, with different spacing, illustrated in

Figs. 7 and 11), and the results indicated the robustness

of the method to noise. The shape parameter of the RBF

is an open research topic and difficult to optimize explic-

itly. It is usually found by trial and error or by cross-vali-

dation (Fasshauer and Zhang 2007; Wang and Liu 2002).

In our study we found it by trial and error. The regulari-

zation parameter is also vital in increasing accuracy and

suppressing the influence of noise, and it can be explic-

itly optimized with the L-curve method.

Reconstruction time

For the first two cases, the reconstruction time was

<3 min (spacing = 2 mm, number of input vectorial

points < 1000) when data acquisition and UIV post-

processing are not included. CFD using Star-CCM+ for

case 2 took around 1 h.

The reconstruction time of the third case

(spacing = 5 mm, number of input vectorial points

< 3000) was <15 min, including UIV experiment and

UIV post-processing. Image acquisition of each plane

takes a matter of microseconds, and total US acquisition

of the full length takes around 1 min (including move-

ment of stage controller, data transfer and



Fig. 6. Poiseuille flow. The first two rows are interpolated flow using Gaussian kernel at spacings of 4 and 9 mm, respec-
tively. The last row is using thin-plate spine kernel at a spacing of 4 mm. The three columns are sampled velocity,

in-plane velocity at the sagittal plane and out-of-plane velocity at the cross plane.
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beamforming). UIV post-processing is accelerated by

GPU and takes several seconds at each plane. SVD of

matrix G involves O((3m)3) flops, and the reconstruction

time could be significantly reduced if m is reduced, that
Table 1. Absolute error of four kernels for Poiseuille flow
reconstruction using noise-free input

Kernel Error (mm/s)

Gaussian 0.0399
IM (inverse multiquadric) 3.0652e-04
Multiquadric 5.8330e-04
TPS (thin-plate spline) 0.6358
is, the vectorial data are downsampled or spacing is

increased. In addition, an iterative solver with proper

regularization has the potential to reduce the reconstruc-

tion time to a matter of seconds (not introduced in this

study).

Limitations and future work

One limitation of UADFI is the mechanical transla-

tion of the ultrasound probe, as this may be not feasible

in some applications, makes acquisition slow and may

cause spatial registration error.

Only steady flow is studied. For periodic physio-

logic flow, one method is to use one probe to acquire



Fig. 7. RMS error of Poiseuille flow at different spacings by Gaussian kernel, with or without 5% random noise.
RMS = root mean square.
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flow for a full cardiac cycle (� 1 s) at each location;

then the probe translates to the next location. After

acquisition of 2-D flow information of a full cardiac

cycle at each location, the velocity field is registered

temporally, for example, by aligning the peak 2-D flow

rate at different locations temporally or using electrocar-

diogram gating.
Fig. 8. (a) Three-dimensional velocity of helical flow by comp
Gaussian radial ba
Future work should focus on three areas: shape

parameter, Runge phenomenon and better regularization

and faster optimization of eqn (9) as SVD is relatively

slow. Shape parameter ɛ optimization is not studied

here. Although significant research has been conducted

to optimize the RBF shape parameter for scalar interpo-

lation (Rippa 1999; Wang and Liu 2002), to the best of
utational fluid dynamics. (b) Reconstructed 3-D flow by
sis function.



Fig. 9. Helical flow. The four rows (from top to bottom) are ground truth by computational fluid dynamics, reconstructed
flow field using Gaussian kernel at spacings of 2 and 8 mm and thin-plate spine at spacing of 2 mm. The three columns
(from left to right) are the out-of-plane velocity at the cross plane, the in-plane velocity at the cross plane and the in-plane

velocity at the sagittal plane.
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Table 2. Absolute error of four kernels for helical flow recon-
struction using noise-free input

Kernel Error (mm/s)

Gaussian 0.9169
IM (inverse multiquadric) 0.9791
Multiquadric 1.0365
TPS (thin plate spline) 1.4036
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our knowledge no successful methods for finding ɛ have
been reported for DFI so far. According to previous sca-

lar valued RBF studies, when reducing ɛ or increasing

the number of data points, the error will first decrease

and then increase in finite arithmetical progression

(Sarra and Sturgill 2009).

Radial basis functions on a finite interval exhibit

wild oscillation near the interpolation boundary, termed

the Runge phenomenon (Fornberg and Zuev 2007). To

evaluate wall shear stress, it is necessary to reduce

numerical oscillation near the boundary caused by the

Runge phenomenon. Feasible and fast methods to defeat

the Runge phenomenon will be further studied, because

of the potential to obtain 3-D wall shear stress directly

from US imaging.

For regularization, TSVD is relatively slow with

large input data but is robust when combined with the L-

curve method. To speed up the flow reconstruction pro-

cess with large-scale data points included in UADFI, an

iterative solver should be constructed.
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Fig. 10. RMS error of helical flow with different spacings usi
white noise. RMS = ro
APPENDIX A. RBF KERNELS

Four different RBF kernels used in this study are

introduced:

Gaussian : ’
!
r

� �
¼ exp �ɛ!r2

� 	
ð13Þ

Multiquadric : ’
!
r

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ɛ

!
r
2

� 	s
ð14Þ

Inverse multiquadric : ’
!
r

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ɛ
!
r
2

� 	s ð15Þ

Thin�plate spline : ’
!
r

� �
¼ !

r
2

ln
!
r

� �
ð16Þ

ɛ in eqns (13)�(16) is the shape parameter and is related

to kernel width. The shape parameter has significant

influence on the accuracy and numerical stability of the

RBF method. In this first study investigating the feasibil-

ity of such an algorithm for UIV data, shape parameter

optimization was deemed beyond the scope of the cur-

rent work and was found by trial and error.
APPENDIX B. REGULARIZATION PARAMETER

Three methods for optimizing the regularization

parameter for the TSVD pseudo-inverse method are

compared.

A common feature of all regularization methods

is their dependence on the regularization parameter to

control how much filtering is introduced by the
ng the Gaussian kernel, with no input noise or with 5%
ot mean square.



Fig. 11. In vitro flow experiment: (a) reconstructed steady 3-D flow; (b) velocity magnitude contour at the cutting plane
of x = 3 mm.

Fig. 12. Comparison of L-curve, GCV and NCP using T singular value decomposition in Poiseuille flow case.
GCV = generalized cross-validation; NCP = normalized cumulative periodogram.
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Fig. 13. Grid convergence of helical flow computational fluid dynamics.
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regularization. A proper choice of the regularization

parameter is crucial. If prior knowledge of measure-

ment noise level is unknown, three methods are usu-

ally used to find the regularization parameter k:

generalized cross-validation (GCV) (Chung et al.

2008), normalized cumulative periodogram (Hansen

et al. 2006) and L-curve (Hansen and O’Leary 1993;

Hansen et al. 2006).

Figure 12 compares the errors of L-curve, NCG

and GCV using TSVD with data from case 1. The

results indicate that L-curve has highest accuracy

compared with NCG and GCV. After random Gauss-

ian noise is added to b̂, the optimal regularization

parameter is located by the three methods, and the

flow fields reconstructed with the three methods are

compared with the ground truth. It is of interest to

point out that rankðAÞ ¼ 2m (we did not prove it and

this study only uses the rank inequality in eqn [8]);

when truncation length is >2m (1080, see Fig. 12), the

error is wildly oscillating because the denominator in

eqn (12) is close to 0.
APPENDIX C. CFD GRID INDEPENDENCE

Grid convergence was achieved for helical flow by

Star-CCM+. Computations were performed on increas-

ingly finer grids until the velocity of an arbitrary point in

the centerline of the helix became grid independent, as

illustrated in Figure 13.
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