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Abstract

Objective: The electrocardiogram (ECG) provides an effective, non-invasive approach for 

clinical diagnosis in patients with cardiac diseases, such as atrial fibrillation (AF). AF is the most 

common cardiac rhythm disturbance and affects ~2% of the general population in industrialized 

countries. Automatic AF detection in clinics remains a challenging task due to the high inter-

patient variability of ECGs, and unsatisfactory existing approaches for AF diagnosis (e.g., atrial or 

ventricular activity based analyses).

Approach: We have developed RhythmNet, a 21-layer 1D convolutional recurrent neural 

network, trained using 8,528 single lead ECG recordings from the 2017 PhysioNet/Computing in 

Cardiology (CinC) Challenge, to classify ECGs of different rhythms including AF automatically. 

Our RhythmNet architecture contained 16 convolutions to extract features directly from raw ECG 

waveforms, followed by three recurrent layers to process ECGs of varying lengths and to detect 

arrhythmia events in long recordings. Large 15 × 1 convolutional filters were used to effectively 

learn the detailed variations of the signal within small time-frames such as the P-waves and QRS 

complexes. We employed residual connections throughout RhythmNet, along with batch-

normalization and rectified linear activation units to improve convergence during training.

Main results: We evaluated our algorithm on 3,658 testing data and obtained an F1 accuracy of 

82% for classifying sinus rhythm, AF, and other arrhythmias. RhythmNet was also ranked 5th in 

the 2017 CinC challenge.

Significance: Potentially, our approach could aid AF diagnosis in clinics and be used for patient 

self-monitoring to improve the early detection and effective treatment of AF.
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1. Introduction

1.1. Background

Cardiovascular disease is one of the leading causes of death worldwide. An important class 

of cardiovascular disease is cardiac arrhythmia and is an abnormal heart rhythm that is too 

fast, too slow or erratic. Atrial fibrillation (AF) is the most common form of cardiac 

arrhythmia, it affects millions of people around the world and is also associated with 

substantial morbidity and mortality (Narayan et al., 2017; Zhao et al., 2017). Currently, 1 in 

5 strokes in people aged over 60 years is caused by AF, and the prevalence of AF is ~2% of 

the general population (Lip et al., 2016). Electrocardiograms (ECG), discovered by 

Muirhead in 1872 to record heartbeats in a patient using wires attached to the patient’s 

wrists, is a widely used, non-invasive approach for clinical diagnosis in patients with cardiac 

arrhythmia, including AF. It has been suggested that early AF diagnosis from ECG 

recordings may enhance the effectiveness of clinical treatment and prevent serious 

complications (Artis et al., 1991). However, such diagnoses require specially trained health 

professionals to manually read and identify irregular ECGs, which is often a time consuming 

and a rather subjective process in some instances (Osowski et al., 2004). As a result, there is 

high interest in developing an automatic approach for AF detection from ECGs.

During AF, the electrical impulses that originate from the intrinsic cardiac pacemaker no 

longer pace the heart effectively, and are instead overrun by additional electrical sources 

(Haissaguerre et al., 1998). As a result, the P-waves in the surface ECG recordings devolve 

into a series of fibrillatory(f)waves with small magnitudes (Huang et al., 2011), and a fast 

and irregular heart rhythm is reflected in the short and variable R-peak-to-R-peak (RR) 

intervals (Tateno & Glass, 2001). Currently, two main approaches exist for AF detection 

from ECGs: atrial activity-based analyses detect AF by identifying the absence of P-waves 

and the presence of f-waves (Alcaraz et al., 2006; Du et al., 2014; García et al., 2016; 

Ladavich & Ghoraani, 2015; Pürerfellner et al., 2014; Ródenas et al., 2015), whereas 

ventricular activity-based analyses look for irregularity in the RR intervals of QRS 

complexes (Alcaraz et al., 2010; Carrara et al., 2015; DeMazumder et al., 2013; Huang et 

al., 2011; Lake & Moorman, 2010; Linker, 2016; Park et al., 2009; Sarkar et al., 2008; 

Tateno & Glass, 2001). However, atrial activitybased analyses are often error-prone when 

performed on noise contaminated ECGs. This is due to the small signal-to-noise ratio caused 

by the low amplitude f-waves (COLLOCA, 2013). On the other hand, ventricular activity-

based analyses alleviate this problem due to the well-defined, large amplitude QRS 

complexes in the ECGs (Zhao et al., 2015b). However, ventricular activity based analyses 

require relatively long ECG recordings (>30s) of AF episodes for reliable detection 

(Petrėnas et al., 2015). Recent studies have combined both atrial and ventricular activity-

based analyses for more accurate AF detection (Babaeizadeh et al., 2009; Colloca et al., 

2013; Oster & Clifford, 2015), and have obtained promising results on diverse datasets.
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Non-linear classifiers such as support vector machines (SVM) (Cortes & Vapnik, 1995) have 

been used to enhance the performance (Colloca et al., 2013; Couceiro et al., 2017; Li et al., 

2014a; Li et al., 2014b). These methods involve the extraction of features from ECGs, such 

as those described in (Lake & Moorman, 2010; Linker, 2009; Sarkar et al., 2008) to learn 

which features are specific to AF and non-AF. This generally requires domain expertise in 

the field of ECG analysis, as a rigorous feature generation and selection procedure is 

required to find the optimal feature combination for learning, which can be extremely time-

consuming.

Neural networks have been applied in many different fields, including medicine and 

bioengineering, to overcome the issues above by automating the feature extraction step 

(Krizhevsky et al., 2012; LeCun & Bengio, 1995; LeCun et al., 2015; LeCun et al., 2010). 

This allows the algorithms to not only learn “end-to-end” to make predictions directly from 

raw data but to also increase the effectiveness of the learning process when large datasets are 

available, as well as to enable an ease of adaptability to a wider range of tasks. 

Convolutional neural networks (CNNs) (LeCun & Bengio, 1995) have been widely applied 

in recent years for imaging tasks (He et al., 2016a; Krizhevsky et al., 2012; Szegedy et al., 

2015). By applying a series of independent nested filters through multiple layers, CNNs 

have also been successful in setting state-of-the-art performance in tasks such as acoustic 

scene classification (Valenti et al., 2016). But a major disadvantage of CNNs is that they 

cannot be used on inputs with varying lengths. On the other hand, recurrent neural networks 

(RNNs) can model data of arbitrary lengths and have been widely used for modeling 

sequential data such as in speech recognition (Graves et al., 2013). However, an RNN 

usually requires the input to be encoded into a set of features, as they do not learn effectively 

from raw data, and are often more difficult to train (Pascanu et al., 2013).

1.2. Literature review on neural networks

This section describes the general concepts of the proposed method. It is organised as 

follows. Section 1.2.1 outlines the basic operations of CNNs, and how they can be applied to 

signals. Section 1.2.2 describes the use of residual connections to enhance CNNs. Section 

1.2.3 outlines the basic operations of RNNs for sequence learning tasks.

1.2.1. 1D convolutional neural networks—The CNN is a type of ANN that excels in 

processing 2D data such as images. However, by considering signals as a 1D image, studies 

have shown promising results using convolutions for signal processing (Han & Lee, 2016; 

Hershey et al., 2017; Piczak, 2015).

The 1D convolution operation is performed by sliding a small 1D filter across the input one 

unit at a time and calculating the dot product between the two (Srivastava et al., 2014). This 

is computed as

li
n + 1 = f (∑a = 1

K κali + a
n ), ∀ i ∈ ln (1)

Xiong et al. Page 3

Physiol Meas. Author manuscript; available in PMC 2019 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for a K×1 filter, κ, at each index, i, over the entire input of layer ln. The entries of the filter 

are the weight parameters to be trained, which vary spatially when used at each position 

along the input vector. In general, the entries of a filter would become more numerically 

significant at indices where important features that are characteristic of a certain class occur 

(LeCun & Bengio, 1995). To increase the degrees of freedom for optimization, the entire 

convolution operation can be repeated multiple times per layer to create multiple feature 

maps (LeCun & Bengio, 1995).

The 1D pooling operation is a common operation in 1D CNNs to down-sample patch size 

(Hu et al., 2014). By compressing certain layers, the total number of weight parameters in 

the network is decreased which in turn increases the efficiency of training. A commonly 

used pooling operation is max-pooling (Kim, 2014), where an input patch is down-sampled 

by keeping only the maximum value within each sub-region with a size of K:

li
n + 1 = max(li + k

n ), ∀ k ∈ [0, K − 1] . (2)

The number of weight parameters in CNNs can easily reach hundreds of millions due to the 

complexity of the convolution operation. Therefore, overfitting is a major concern during 

training (Srivastava et al., 2014). Dropout is a technique that decreases overfitting by 

randomly setting weights parameters to zero (Srivastava et al., 2014). This forces the 

network to find unbiased features in the dataset that are representative of the data in general, 

instead of specific characteristics that appear only in the training data. A dropout rate, ϕ is 

added to (7) such that the layer lN becomes

li
n = li

nϕi
n, ∀ i ∈ ln (3)

where ϕ equals zero with a pre-determined probability.

1.2.2. Residual blocks in CNNs—Since the optimization of neural networks is a 

gradient-based method, it can be enhanced via the use of residual connections. Residual 

connections provide an alternative pathway for the gradients to be propagated during 

backpropagation (Figure 1) (He et al., 2016a). The motivation of residual blocks stemmed 

from an optimization problem which occurred in traditional CNNs which do not contain skip 

connections. In traditional CNNs, it was observed that by utilizing a larger number of layers, 

which was previously thought to increase the effectiveness by increasing the degrees of 

freedom, resulted in a decrease in performance during training compared to CNNs with 

fewer layers. The vanishing gradient problem is a possible explanation to this phenomenon, 

where, in larger CNNs, the gradients of the layers that are deeper in the network 

progressively approach zero after many iterations due to the repeated derivative calculations 

in backpropagation, resulting in non-optimization (Bengio et al., 1993). By preserving the 

original gradient and combining it with the gradient after the convolution, skip connections 

can increase the efficiency of the propagation of gradients during weight parameter updates 

in SGD.
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Within a residual block, a typical network includes a batch normalization (BN) layer, 

followed by a ReLU layer, and then a convolutional layer (He et al., 2016a). BN is a layer 

that constantly normalizes each mini-batch throughout the entire network, reducing the 

internal covariant shift caused by progressive transforms (Ioffe & Szegedy, 2015). BN uses 

the mean of the mini-batch, in a layer, xmean, and their standard deviation, xstd, such that

BN li = γ
xi − xmean

xstd
+ β (4)

where xi represents entries in the current mini-batch and γ and β are trained parameters. By 

applying ReLU before a convolution layer, as opposed to applying it after in the traditional 

fashion, the input values are further normalized to accelerate SGD.

1.2.3. Recurrent neural networks—In RNNs, outputs of each neuron within the 

intermediate layers are cycled into its original input (Figure 2A). RNNs are widely used in 

the fields of speech recognition (Graves et al., 2013), language translation (Amodei et al., 

2016) and video processing (Baccouche et al., 2011) as the cycling of information within 

each node allows sequential data to be processed efficiently. Hence, RNNs differ from CNNs 

as they can process data of variable input size. When many recurrent neurons exist in a 

recurrent layer, the sequential data is processed in parallel through different weights, 

allowing RNNs to generate multiple representations and create effective feature space 

separation.

In each RNN layer, ln, for every node, information at different time steps, t, of an input is 

stored. The value of the layer in the next time step depends on the current time step of the 

layer, and the current time step of the previous layer such that

li, t + 1
n = f tanh(ωi, j

r li, t
n + ωi, j

n − 1li, t
n − 1) (5)

where ωn−1 is the weight of the previous layer and ωr is the weight of the recurrent node. 

The value of the next layer in the current time step depends on the current layer by

li, t
n + 1 = f tanh(ωi, j

n li, t
n ) (6)

The above operations are repeated to propagate the nodal values through several successive 

recurrent nodes (Figure 2B).

In this paper, we propose a neural network which combines the strengths of both CNNs and 

RNNs (Donahue et al., 2015; Pinheiro & Collobert, 2014) for the automatic detection of AF 

and other arrhythmias from ECGs. Our method is developed on the dataset provided by the 

organizers of 2017 PhysioNet/Computing in Cardiology Challenge (Clifford et al., 2017), 

the largest study of this kind. We also evaluate our algorithm against the other participants of 

the competition. The fully data-driven nature of our approach is an exciting development, 
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and could potentially aid AF detection in clinics and patient self-monitoring from ECG 

recordings for early detection and effective treatment of AF.

2. Methods

2.1. Materials and pre-processing

The 2017 PhysioNet/CinC Challenge contained 12,186 single lead ECG recordings recorded 

by the patients from a self-diagnosis device, the AliveCor Kardia (California, United States) 

(Clifford et al., 2017). The ECG data contained four classes: normal rhythm (N), AF rhythm 

(AF), other rhythm (O) and noisy recordings (~). A typical waveform for each class is 

shown in Figure 3A. The ECG data used in this study was split into a training set with the 

manually annotated ground truths, and a test set. The training dataset consisted of 8,528 

ECG recordings ranging from 9 to 60 seconds in length, with a sampling rate of 300 Hz. The 

testing set consisted of 3,658 recordings and was used to evaluate the performance of our 

algorithm in the 2017 CinC challenge. Figure 3B outlines the class distributions of the 

datasets.

Since the test set was inaccessible to the public, we performed 5-fold cross-validation on the 

training set, as a means to analyze the performance of RhythmNet and perform diagnostics. 

The training set generated from cross-validation was used to train our network, while the test 

set generated from cross-validation was used to preliminarily assess the performance of our 

network.

2.2. Proposed neural network architecture

ECG classification is a challenging task due to the variable signal quality and lengths, 

ambiguity of labels as a result of multiple rhythm types in the same recording, variable 

human physiology, and the difficulty in distinguishing the features for cardiac arrhythmia 

such as AF. We propose a novel 21-layer residual convolutional recurrent neural network, 

with the alias RhythmNet (Figure 4), to effectively learn the features defining different 

single-lead ECG recordings. The network processes 5-second non-overlapping signal 

segments successively along the entire length of each ECG with convolutional layers and 

uses the recurrent layers to aggregate the individual outputs into a single prediction. 5 

seconds was selected as the input length from hyper-parameter tuning, as input lengths 

which deviated from this value resulted in a decreased performance during cross-validation.

Overall, RhythmNet consists of 16 convolutional layers within 16 residual blocks, three 

recurrent layers, and two fully connected layers. Each residual block consists of the BN, 

ReLU, convolution arrangement and an additional dropout layer, with a dropout rate of 0.8 

as found from hyper-parameter tuning. Max pooling is added to decrease the number of 

parameters at the end of each residual block. Max pooling is also applied on the 

corresponding skip connection to maintain consistency of spatial size. All convolutional 

layers contain 15×1 filters to process the raw ECG waveform. After the 16 residual blocks, a 

fully connected layer with 1024 nodes is added to flatten the matrices from the convolutional 

layers, and to match the input requirements of the recurrent layer. Three recurrent layers, 

each with 512 nodes, are then used to learn an enhanced representation of the ECG signal 

Xiong et al. Page 6

Physiol Meas. Author manuscript; available in PMC 2019 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for more accurate classifications by using convolutions as a preliminary feature extractor. 

Finally, the output of the recurrent layers is flattened through a fully connected layer to 

produce the probability of each ECG class via softmax activations.

The proposed neural network contains several hyper-parameters which were carefully 

selected after extensive experimentation. Each hyper-parameter was tuned by keeping all 

other parameters of the network constant and evaluating the effects of incrementally 

adjusting the value with 5-fold cross-validation on the training set. For each hyper-

parameter, the value which resulted in the best cross-validation F1 score was selected for the 

final model. Initially, the RhythmNet was tested with 8, 16 or 32 residual blocks, followed 

by the use of 2, 3 or 4 recurrent layers. It was observed that 32 residual blocks and four 

recurrent independently resulted in substantial over-fitting as the training accuracy was 

much higher than the testing accuracy during cross-validation. On the other hand, eight 

residual blocks and two recurrent layers resulted in lower accuracies as the network did not 

contain sufficient parameters to learn the complex features in the ECG signals. The internal 

arrangement of each residual block and the progression of the number of feature maps in 

each convolutional layer was adapted from the architecture proposed by He in 2016 (He et 

al., 2016b) to 1D CNNs. The filter size in each convolutional layer was tuned by testing the 

entire network with 3×1, 5×1, 10×1 and 15×1 sized filters. Filters sized larger than this value 

was not tested due to the high computational costs which slowed down training and 

prediction run-time. Experiments testing the filter sizes showed that for 1D input, larger 

filters were more effective due to the increased receptive field being able to more effectively 

account for the variations of the signal over time. Adjusting the number of nodes of the 

recurrent layer did not result in any significant change as the majority of the processing was 

done by the residual blocks. Nevertheless, 512 proved to deliver a decent balance between 

learning capacity and avoiding over-fitting. Dropout was the last parameter to be tuned and 

various combinations were tested. Experiments showed that having a consistent dropout rate 

throughout all layers of RhythmNet improved the accuracy and stability of optimization 

during training while varying the dropout rate between layers decreased the accuracy. 

Dropout rates of 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 were tuned and 0.8 resulted in the best cross-

validation accuracy. Larger dropout rates decreased the accuracy of the network as too many 

nodes were removed causing a decreased learning capacity and smaller dropout rates 

decreased the accuracy as the network was more prone to over-fit to the training set.

2.3. Training

The adaptive moment estimation (ADAM) optimizer, a type of SGD algorithm, was used to 

optimize the weight parameters (Kingma & Ba, 2014). The ADAM used consisted of an 

adaptive learning rate and momentum variable which increased the rate of convergence. An 

initial learning rate of 0.01 and exponential decay rates of 0.9 and 0.999 for the 1st and 2nd 

moment estimates were used. The training data was fed into RhythmNet in batches during 

training, and the accuracy was evaluated using cross-validation on the training set after each 

complete iteration of all the training data. This was repeated until the cross-validation 

accuracy stopped increasing, and the best performing model before this was chosen. The 

network was developed in Tensorflow, an open-source deep learning library for Python, and 

was trained on an NVIDIA Titan X-Pascal GPU with 3840 CUDA cores and 12GB RAM. 
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The training phase took approximately two hours and predictions for each signal took ~0.01 

seconds.

2.4. Evaluation

The F1 score used for evaluation was the average of the individual F1 scores for the normal 

rhythm, AF rhythm, and other rhythm. The classification accuracy of noisy signals was not 

considered, however, it implicitly impacted the F1 scores of other classes when noisy signals 

were predicted incorrectly. The overall accuracy measure was defined as

F1 = 1
3

2 × Ntrue positive
∑ Nground truth + ∑ N predicted

+
2 × Atrue positive

∑ Aground truth + ∑ Apredicted

+
2 × Otrue positive

∑Oground truth + ∑Opredicted

(7)

where for each class, the total number of correct predictions were multiplied by 2 and 

divided by the sum of the total number of signals within each class and the total number 

predicted for that class.

3. Results

RhythmNet achieved an overall F1 accuracy of 0.864 from the 5-fold cross-validation 

experiments, with 0.919 for normal rhythms, 0.858 for AF rhythms and 0.816 for other 

rhythms. Figure 5 outlines the proportions of predictions for each class. RhythmNet had 

difficulties distinguishing normal rhythms from other rhythms, as 8.8% of the normal 

rhythm subgroup were mistakenly predicted as other rhythm, and 10% of the other rhythm 

subgroup was mistakenly predicted as normal rhythm. Many AF rhythms were also 

classified as other rhythms (9%). However, there was relatively small error between normal 

rhythm and AF as only a small proportion of either class were mistakenly classed as the one 

or another, implying that RhythmNet was effective in distinguishing AF and normal 

rhythms.

The results from the 2017 CinC Challenge showed that our approach obtained an overall F1 

accuracy of 0.82 on the hidden test set, with 0.90 for normal rhythms, 0.82 for AF rhythms 

and 0.73 for other rhythms (Xiong et al., 2017). RhythmNet was only 0.01 from the top 

entry and achieved 5th place out of the total 75 research groups that participated in the 

competition (Clifford et al., 2017). The lower score on the hidden test set compared to cross-

validation showed that our algorithm over-fit during training. The fact that the model with 

the best performing accuracy during cross-validation was used as the entry in the challenge 

could cause the network to have the optimal predictions during cross-validation, but not on 

the hidden test set, hence, resulting in over-fitting.

4. Discussion and conclusions

Classification of arrhythmias such as AF from ECGs is a challenging task due to the high 

variability of the signals between different patients. The ECG dataset used in this study is 
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especially difficult due to the severe class imbalance for the four different classes of signals, 

making it difficult for traditional learning algorithms such as SVMs or ANNs. The varying 

length of signals (9s to 60s) is also a challenge due to the occurrence of arrhythmia events 

which could only last a few seconds. These events could often be other rhythms or noisy 

segments which could confuse the classification of the entire signal. Mixtures of AF and 

other arrhythmic patterns, and normal -rhythm in the same recording complicate the decision 

further.

Recent studies have built upon traditional atrial and ventricular-based analyses by using 

them as features for non-linear classifiers such as SVMs to classify AF and other signals 

from ECGs. Many studies have been proposed which utilize feature extraction and selection 

tools to generate features for SVM classifiers (Lake & Moorman, 2010; Linker, 2009; Sarkar 

et al., 2008; Colloca et al., 2013), including the study from Li which used a genetic 

algorithm for feature selection (Li et al., 2014a; Li et al., 2014b), and have been successful 

on large databases.

Deep learning has become increasingly popular in recent years as it eliminates the need for 

feature extraction (LeCun et al., 2015). Our approach obtained 5th place in the 2017 CinC 

challenge and had an F1 score of 0.82, 0.01 less than the 4 top performing teams (Datta et 

al., 2017; Hong et al., 2017; Teijeiro et al., 2017; Zabihi et al., 2017). Although our study 

shows that deep learning without feature extraction is effective for ECG classification, the 4 

top teams all used feature-oriented methods. Datta et al. and Zabihi et al used traditional 

non-linear classifiers (Datta et al., 2017; Zabihi et al., 2017), while Hong et al. and Teijeiro 

et al. (Hong et al., 2017; Teijeiro et al., 2017) used neural networks to classify sets of 

carefully generated and refined features. In contrast, our proposed RhythmNet does not 

require explicit feature extraction as the raw waveforms are processed by the network 

directly, which enables an automated workflow. However, the inherent limitations of our 

approach were reflected in the results. The lower performance of RhythmNet was primarily 

due to over-fitting on the cross-validation set and shows the difficulty of training large neural 

networks such as the one proposed in this study when limited data is available. This could be 

improved by increasing dropout or training the network for a shorter amount of time during 

cross-validation. It is difficult to precisely determine the optimal point between under and 

overfitting, as testing data such as that in the 2017 CinC challenge is often not accessible 

during training. Hence, the true performance accuracy of the network for any unseen dataset 

cannot be accurately measured. The most promising method to address this issue seems to 

be to introduce more test data to increase the robustness of validation.

The accuracy of RhythmNet could be further enhanced by incorporating more arrhythmia 

databases during training and testing, as our method is fully data-driven and will only 

improve with more data to learn from. This is especially the case for improving AF 

detection, as our study only used ~1000 ECGs containing AF rhythms, which is a small 

number by today’s standards. Data augmenting could be an alternate method to simulate 

more data, as well as generative neural networks which could be investigated in future 

studies (Van Den Oord et al., 2016).
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ECG is a clinical approach that is widely used for detecting and classifying cardiac 

arrhythmias. In contrast to the traditionally-used ECG, which is a form of non-invasive 

measurement, invasive mapping approaches such as contact catheter mapping have become 

increasingly popular over the years. As a result, many methods have been proposed for 

processing atrial electrograms collected via invasive mapping approaches (Haïssaguerre et 

al., 2008; Pathik et al., 2017), including recurrence quantification analysis (Navoret et al., 

2013; Yang, 2011) entropy measurements (Cervigón et al., 2010) and fast Fourier transforms 

(Zhao et al., 2015b). These invasive mapping and subsequent signal processing methods 

have enabled the construction of more accurate and local arrhythmia patterns, such as 

complex fractionated atrial electrograms (CFAE) (Nademanee et al., 2004; Navoret et al., 

2013) and AF re-entrant driver regions (Hansen et al., 2015; Zhao et al., 2015a; Zhao et al., 

2017) which have been used to guide ablation procedures to improve ablation success rates. 

The improved accuracy provided by direct contact mapping is extremely useful and 

desirable; however, its invasiveness does impose limitations and risks which largely restrict 

its use. Electrocardiographic imaging (ECGI) (Lim et al., 2017), on the other hand, is an 

approach that has the potential to combine the strengths of both invasive and non-invasive 

mapping approaches. As a result, it will be useful to extend our developed CNN approach to 

allow the processing of data collected from promising novel mapping approaches like ECGI.

In this study, we have developed and evaluated RhythmNet, a residual convolutional 

recurrent neural network for the classification of AF and other rhythms from single lead 

ECGs. RhythmNet is the highest performing fully data-driven model to have the capacity to 

analyze ECG signals of varying lengths. Our approach allows us to automatically detect AF 

from ECGs, which will potentially lead to enhance early detection and treatment of AF 

worldwide.
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Figure 1. 
A schematic to illustrate the basic operations for residual blocks. In residual blocks, the skip 

connections provide an alternative pathway for information to be propagated without 

introducing additional parameters. The original input data is merged with its respective 

transformed version via the use of an element-wise sum.
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Figure 2. 
A recurrent layer with a single node. A) A compressed representation of the recurrent node. 

B) An unfolded version illustrating the cycling of weights inside a recurrent node at different 

time steps. Note that the weights within each layer are shared but applied to different time 

steps. The first node li, t = 1
2  simply inputs the information from the previous layer as there is 

no previous time step.
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Figure 3. 
The data used in this study. A) Typical examples of single-lead ECG recordings for each of 

the four classes: normal rhythm (N), atrial fibrillation (AF), other rhythm (O) and noisy (~), 

in the provided dataset in the 2017 CinC Challenge. B) An illustration of the distribution of 

the four classes within the training set and within the test set hidden to the public.
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Figure 4. 
The architecture of the proposed residual recurrent convolutional neural network 

(RhythmNet). The ECG signal is inputted in windows of 5 seconds and then passed through 

16 repeated residual blocks containing convolutions of different depth. The output of the 

residual blocks is then flattened into a 1D vector, and fed through three recurrent layers to 

process the successive windows sequentially, 5 seconds at a time. The output of the recurrent 

layer is then mapped onto a fully connected layer with four nodes denoting the probabilities 

of the four classes to predict for.
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Figure 5: 
Diagnostics of RhythmNet during cross-validation on the training set. A) A bar plot to 

visualize the proportions of the predictions vs ground truths. B) The corresponding 

confusion matrix with the proportions in %. The noisy class is in grey as it was not 

considered in the score.
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