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Abstract
Radiomics is a medical imaging analysis approach based on computer-vision. Metabolic radiomics in particular analyses the
spatial distribution patterns of molecular metabolism on PET images. Measuring intratumoral heterogeneity via image is one of
the main targets of radiomics research, and it aims to build a image-based model for better patient management. The workflow of
radiomics using texture analysis follows these steps: 1) imaging (image acquisition and reconstruction); 2) preprocessing
(segmentation & quantization); 3) quantification (texture matrix design & texture feature extraction); and 4) analysis (statistics
and/or machine learning). The parameters or conditions at each of these steps are effect on the results. In statistical testing or
modeling, problems such as multiple comparisons, dependence on other variables, and high dimensionality of small sample size
data should be considered. Standardization of methodology and harmonization of image quality are one of the most important
challenges with radiomics methodology. Even though there are current issues in radiomics methodology, it is expected that
radiomics will be clinically useful in personalized medicine for oncology.
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Abbreviations
AQ Absolute quantization
AUC-CSH Area under curve of cumulative SUV-volume

histogram
CSH Cumulative SUV-volume histogram
CV Coefficient of variation
FBN Fixed bin number
FBS Fixed bin size
FCM Fuzzy C-means
FDR False-discovery rate
18F-FDG 18F-fluorodeoxyglucose
FLAB Fuzzy locally adaptive Bayesian
GLCM Gray-level co-occurrence matrix
GLRLM Gray-level run-length matrix
GLSZM Gray-level size zone matrix

IFH Intensity frequency histogram
ITH Intratumoral heterogeneity
IVH Intensity volume histogram
MTV Metabolic tumor volume
NGTDM Neighborhood gray-tone difference matrix
PET/CT Positron emission tomography/computed

tomography
PVC Partial volume correction
RQ Relative quantization
SAM Second angular moment
SGLDM Spatial gray-level dependence matrix
SUV Standardized uptake value
TLG Total lesion glycolysis

Introduction

Tumors become heterogenous at both genetic and phenotypic
levels during progression via branched evolution, which is
called intratumoral heterogeneity (ITH) [1]. ITH is clinically
important because it is one of the main causes of resistance to
treatment due to bottle neck effect [2, 3]. Further, ITH can
cause underestimation of mutational burden of tumors due to
analyzing only small specimens containing limited amount of
tumor cells [4]. Despite larger and multiple biopsies are need-
ed to evaluate mutational characterization accurately, tumor
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sampling procedure is invasive and is limited to practice
enough [5]. Therefore, the role of imaging is expected in per-
sonalized medicine, which can perform total region analysis
and can be repeatedly performed by less invasive.

18F-Fluorodeoxyglucose (18F-FDG) positron emission
tomography/computed tomography (PET/CT) imaging is suc-
cessfully used in clinical practice, especially for oncology [6,
7]. Visual assessment of 18F-FDG PET/CT imaging by image
specialists such as radiologists and nuclear medicine physi-
cians can make diagnosis of tumor, staging, and response
assessment after chemo- or radiotherapy [8]. The subjectivity
of visual assessment causes large intra- and inter-observer
variations of interpretation in medical imaging [9].
Quantification of imaging is increasingly highlighted to
achieve objective interpretation [10]. Many studies have sug-
gested clinical usefulness of standardized uptake value
(SUV)-based PET parameters such as SUVmax, SUVpeak,
and SUVavg as well as metabolic tumor volume (MTV) and
total lesion glycolysis (TLG) [11–17]. However, those param-
eters do not reflect information of metabolic ITHwhich can be
estimated via evaluation of spatial distribution of metabolic
activity in a tumor.

One of the most highlighted methods to quantify ITH from
images is texture analysis. Different mathematical methods
including texture analysis has been developed for pattern rec-
ognition of images since the early 1970s [18]. Rapid develop-
ment of image analysis based on high-throughput computing
enables to extract many kinds of quantitative phenotype fea-
tures about shape, edge, and texture from digitalized medical
images including ultrasonography, CT, magnetic resonance
imaging, and PET/CT [19]. This field of medical study has
been termed as ‘radiomics’ which aims maximizing the infor-
mation extracted from medical images and building a model
using machine learning to achieve better patient management
[20]. For example, radiogenomics is a subfield of radiomics,
which aims to predict genomic information of tumors using
macroscopic phenotypes expressed on images, and is expect-
ed to do a complementary role in personalized medicine for
oncology [20]. 18F-FDG PET/CT imaging shows spatial dis-
tribution of metabolic activity in a tumor, which is thought to
be related to tumor phenotype and tumor microenvironment.
Recently, many studies with 18F-FDG PET/CT imaging in
oncology have focused on quantification of metabolic ITH
and its clinical usefulness in prediction of treatment response
or prognosis as well as diagnosis.

This review aims to help researchers who are interested in
starting radiomics study to carry out high quality research.
Researchers should understand details of radiomics method-
ology, because radiomics research is more methodologically
complex than conventional PET/CT imaging research. This
review provides an overview of workflow in radiomics study
and critical insights into the emerging methodological issues
which affect results of radiomics studies.

Analysis Pipeline

The conventional PET/CT analysis approach consists of the
following: (1) PET/CT imaging: image acquisition and recon-
struction; (2) preprocessing: tumor segmentation; (3) quanti-
fication: feature extraction (SUVmax, MTV, TLG, etc.); and
(4) analysis: statistical analysis (Fig. 1a). The pipeline of
radiomics analysis on 18F-FDG PET/CT is similar to the con-
ventional PET/CTanalysis but needs a few more steps such as
intensity quantization during preprocessing and texture matrix
design before feature extraction in quantification (Fig. 1b).
Several user-friendly software packages provide functions
for tumor segmentation and radiomics feature extraction
[21–24]. Although it depends on the purpose of research,
radiomics research uses machine learning in many cases while
using statistical analysis. Given each step of radiomics analy-
sis contains various options which affect results of radiomics
features, it is essential to understand the method correctly and
analyze them in a way that is appropriate for the purpose of the
study.

PET/CT Imaging

Influences of Image Acquisition

So far, most radiomics studies have been conducted in a single
institution with retrospective manners. Each institution ac-
quires PET/CT images using different machines with different
imaging methods. Regardless of successive results for con-
struction of prognosis-predicting model using texture features
extracted frommore than one PET/CTacquisition system [25,
26], texture features are known as being affected by settings of
image acquisition and reconstruction methods. A study focus-
ing on image acquisition setting of dual-time points, with pe-
ripheral nerve sheath tumors which had relatively low 18F-
FDG uptake, showed that many texture features were changed
significantly between early (101.5 ± 15.0 min) and late (251.7
± 18.4 min) scans [27].

Several articles reported that respiratory motion affected
values of the texture features significantly [28–31]. In addi-
tion, among different phase bins such as the end of inhalation,
inhalation-to-exhalation, mid exhalation, end of exhalation,
and exhalation-to-inhalation, the difference was low to mod-
erate as coefficient of variation (CV) < 10% [28]. The influ-
ence of respiratory motion to the texture features of lung tu-
mors was different according to the lesion location: e.g., min-
imal influence in upper lobe lesions and more significant in-
fluence in lower lobe lesions. Despite the significant differ-
ence of values in the texture features between whether respi-
ratory gating or not, the impact on the prognostic values was
not significant [30].
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Influences of Image Reconstruction

The sensitivity to image reconstruction settings is feature-
dependent [32–34]. Robust texture features in reconstruction
settings can be considered as good parameters in radiomics
analysis (Table 1) [34].Texture features were more affected by
grid size than iteration number and full-width half-maximum
filtration size [33].While partial volume correction (PVC) had
a smaller impact on texture features than delineation method,
regional texture features were more affected by whether PVC
or not than local texture features [35]. Area under curve of

cumulative SUV-volume histogram (AUC-CSH) could con-
tain more information after PVC [35, 36].

Issues: the Need for Harmonization

Harmonization is crucial for multicenter trials or obtaining
compatible research results because the image reconstruction
conditions of different research institutes are different. PSF
reconstruction with Gaussian filtering harmonizes texture fea-
tures with those obtained ordered subset expectation maximi-
zation. Since loss of information occurs in the filter process, it

Table 1 Robustness of texture features to reconstruction

Classification Texture
matrix

CV ≤ 5% 5%<CV ≤ 10% 10%<CV ≤ 20% CV> 20%

1st order Histogram SUVavg/SULpeak/TLG/MTV/surface
area/asphericity/entropy

SUVmax/SD/kurtosis Skewness Variance

2nd order GLCM Entropy/homogeneity/dissimilarity Energy/contrast/IDM/LNE

Higher order NGTDM Coarseness/contrast/strength Busyness/complexity

GLRLM SRE/LRE/RLNU/RP HGRE/HGSRE GLNUr/HGLRE LGRE/LGSRE/LGLRE

GLSZM SZE/GLNUs/ZP ZLNU/HGZE/HGSZE LZE/LGZE/HGLZE LGSZE/LGLZE

Modified from Shiri (2017) [31] with formal permission

CV coefficient of variation, GLCM gray-level co-occurrence matrix, GLNUr gray-level non-uniformity for run, GLNUs gray-level non-uniformity for
size, GLRLM gray-level run-length matrix, GLSZM gray-level size-zone matrix, HGLRE high gray-level long-run emphasis, HGLZE high gray-level
long-zone emphasis, HGRE high gray-level run emphasis, HGSRE high gray-level short-run emphasis, HGSZE high gray-level short-zone emphasis,
HGZE high gray-level zone emphasis, IDM intensity difference moment, IFH intensity frequency histogram, LGLRE low gray-level long-run emphasis,
LGLZE low gray-level long-zone emphasis, LGRE low gray-level run emphasis, LGSRE low gray-level short-run emphasis, LGSZE low gray-level
short-zone emphasis, LGZE low gray-level zone emphasis, LRE long run emphasis, LZE long-zone emphasis,MTV metabolic tumor volume, NGTDM
neighborhood gray-tone difference matrix, RLNU run-length non-uniformity, RP run percentage, SD standard deviation, SRE short-run emphasis, SUV
standardized uptake value, SZE short-zone emphasis, TLG total lesion glycolysis, ZLNU zone-length non-uniformity, ZP zone percentage
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a bFig. 1 The pipeline of radiomics
analysis. The conventional PET/
CT analysis approach is
composed of imaging (acquisition
and reconstruction),
preprocessing (tumor
segmentation), quantification
(PET feature extraction: SUV,
MTVand TLG) and statistical
analysis (a). The pipeline of
radiomics analysis is composed of
imaging (acquisition and
reconstruction), preprocessing
(segmentation and quantization),
quantification (histogram or
texture matrix design and feature
extraction), and analysis (statistics
and/or machine learning) (b)
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should be considered that the unfiltered images can be more
discriminative in radiomics analysis [37]. A recent study dem-
onstrated that using the ComBat method, initially developed
for solving the problem of batch effect in genomic analysis,
successfully harmonized the data of different reconstructions
settings by removing the estimated center effect without loss
of the pathophysiological information [38].

Tumor Segmentation

Recognition and Delineation

The process of tumor segmentation can be categorized into
two sequential phases; recognition and delineation [39]. In the
recognition phase, a target lesionwith high uptake is identified
and distinguished from other target lesion-like entities in the
PET image. In the delineation phase, the target lesion is pre-
cisely separated from the background and non-significant ob-
ject. The segmentation in the PET image is affected from
intrinsic and extrinsic factors including spatial resolution and
noise as well as shape, texture, and location of pathologies
[40]. Low resolution and high smoothing make it difficult to
define the precise segmentation of the tumor in PET images.
Even though recent explosive use of hybrid imaging including
PET/CTand PET/MRwhich improves tumor segmentation in
the PET image mainly via improvement in the recognition
phase, the challenging issues in the delineation phase are still
unresolved.

Tumor Delineation Methods for PET Images

There are a wide variety of tumor delineation methods such as
those which are manual, thresholding-based, stochastic and
learning-based, and boundary based, which make different re-
sults [40]. So far, none have been agreed as the best tumor
delineation methods for PET radiomics research. This is be-
cause, as discussed later, there is no consensus on whether to
include the necrotic portion in PET radiomics studies. The
manual delineation method is an intuitive and simple process,
being the most common way to obtain surrogate truths if ex-
perts carry out the delineation process [41, 42]. However, it is a
highly subjective and laborious method, related to high intra-
and inter-operator variations as well as less reproducible prod-
ucts [43–47]. The thresholding methods, including fixed- and
adaptive thresholding delineations, are rapid as well as simple
and intuitive. A predefined cutoff value of SUVof 2.5 is one of
the most commonly used fixed thresholding values for malig-
nant tumor delineation [48–51]. Fixed relative thresholding
allowing voxels with higher intensities than 40% of the
SUVmax is another most commonly used fixed thresholding
method in a clinical setting [48, 49, 51]. Fixed thresholding
does not consider background intensities, which leads to

inaccurate delineation for tumors with small volume and low
metabolic activity. To correct the background-related errors in
tumor delineation, it has been suggested to use various adaptive
thresholding methods, which were based on phantom data. [48,
52–55]. The most commonly discussed adaptive thresholding
method in the radiomics field was the Nestle’s method, deter-
mining threshold (T) by a function of tumor metabolic activity
and background intensities [48, 51, 56, 57]

T ¼ β � SUVtumor mean 70%SUVmaxð Þ þ SUVbackground mean;

with β ¼ 0:15 or 0:30:

Regardless of simplicity and general applicability, the
thresholding methods are known to be underestimating tumor
volume as well as susceptible to contrast variation, noise, and
heterogeneity [48, 58, 59]. Several algorithm-based delinea-
tion methods including fuzzy C-Means (FCM) [60] and fuzzy
locally adaptive Bayesian (FLAB) [61] have been proposed
for advanced automatic tumor delineation which showed bet-
ter accuracy as well as less dependency on noise and image
quality. The FLAB algorithm showed superior delineation re-
sults in small sized lesions less than 2 cm than the FCM algo-
rithm [61]. Another advanced method is a gradient-based tu-
mor delineation approach which showed more accurate and
robust results than those of the thresholding methods [62, 63].
Meanwhile, CT-based anatomical tumor delineation showed
significantly larger tumor volume than those of PET-based
methods [59]. An example of different tumor delineation re-
sults is presented in Fig. 2.

Issues: Inclusion or Exclusion of Necrotic Portion

One specific issue regarding the tumor delineation process in
radiomics research is about inclusion/exclusion of inner ne-
crotic areas with low 18F-FDG uptake similar to background
activity. For instance, contouring-based delineations such as
the gradient-based methods include inner non-hypermetabolic
areas [62, 64]. On the other hand, clustering-based methods
exclude inner non-hypermetabolic areas [64, 65].
Thresholding-based methods exclude inner non-
hypermetabolic areas while the threshold is sufficiently high.
Given that more aggressive tumor makes more necrotic por-
tions during proliferation, inclusion of necrotic portions would
be helpful to assess aggressiveness of a tumor via texture
analysis. On the other hand, those necrotic portions are no
more metabolically active, and the approach focusing on hy-
permetabolic areas may be also reasonable.

Issues: Sensitive Results of Radiomics Features
to Delineation Methods

Radiomics features are sensitive to different delineation
methods [35]. Therefore, one tumor delineation method may
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not be sufficient for radiomics analysis. The recent trend of
tumor segmentation in radiomics research is multiple-
segmentation which uses various tumor delineation methods
from manual delineation to various automatic delineations
[66]. Different delineation methods can be used as a validation
method as far as delineation related sensitivity issue of
radiomics features [67]. To accomplish advanced level of
radiomics analysis, it is recommended to applicate multiple
segmentations and clarify how segmentation is performed.

Intensity Quantization

Relative and Absolute Quantization

Voxel intensity quantization, also known as SUV
discretization or resampling, is the routine preprocessing step
before second or higher order texture feature extraction in
radiomics analysis. Quantization reduces the effect of noise
in radiomics analysis, by changing the substantially continu-
ous voxel intensity to a discontinuous value. In radiomics
analysis using 18F-FDG PET/CT images, two different ap-
proaches have been suggested for SUV quantization, namely
the relative quantization (RQ) known as the fixed bin number
(FBN) method and the absolute quantization (AQ) also called
as the fixed bin size (FBS) method.

The RQ method which resamples a voxel value, I(x), via
discretization of the SUV range (SUVmax − SUVmin) inside
the segmented tumor by a predetermined bin number (D;
e.g., 16, 32, 64, 128, 256) to obtain a resampled voxel value
(IRQ(x)) as the following formula [68]:

IRQ xð Þ ¼ round D� I xð Þ−SUVmin

SUVmax−SUVmin þ 1

� �

One of the most appropriate and widely used bin numbers
for the RQ is 64, because intensity resolution would be

sufficiently fine, less than 0.25 of SUV in a case with the
SUV range of a tumor from 4 to 20 [68, 69]. Another study
has suggested that 32 numbers of bins are appropriate because
values of several texture features including entropy calculated
in gray-level co-occurrence matrix (EntropyGLCM) are sub-
stantially affected by a number of bins, especially when the
FBN is less than 32 [51].

Recently, the alternative quantization method, the AQ, has
been suggested not to discard the absolute 18F-FDG uptake
information [70, 71]. The AQ method, resampling I(x), inten-
sities of voxel x, to IAQ(x) with a FBS (B; e.g., 0.1, 0.25, 0.5,
or 1 of SUV), uses the following formula [71]:

IAQ xð Þ ¼ round
I xð Þ
B

� �
−min round

I xð Þ
B

� �� �
þ 1

Another option for the AQ process has been introduced
using a high bound (HB; e.g., 15, 20, 25 SUV unit) with
discrete values (D; e.g., 64) as [72]:

IAQ2 xð Þ ¼ round D� I xð Þ
HB

� �

For example, when choosing a high bound of 15, 20, or 25
SUV unit with 64 discrete values with this formula, the inten-
sity resolution is approximately 0.2, 0.3, or 0.4, respectively.

The RQ and AQ methods mostly result in discordant
values of texture features to each other [71]. The RQ method
treats PET images as dimensionless, which induces heteroge-
nous intensity resolution dependent on the SUV range within
tumors on different PET images. In these cases, the voxel–
intensity differences within the tumor with relatively low
SUVmax would be exaggerated compared to those in the tumor
with higher SUVmax (Fig. 3). Therefore, values of texture
features based on the RQ method may not be directly compa-
rable with each other in different PET images. The AQ meth-
od induces identical intensity resolution among different PET
images, which enables direct comparison of values of texture

Fixed (absolute) thresholding: isocontour, 2.5 SUV

Gradient: PETedge

Fixed (relative) thresholding: isocontour, T
40%

Adaptive thresholding: isocontour, Nestle’s method (β=0.3)

Fig. 2 Tumor segmentation using
different delineation methods.
Different results are presented by
four different methods of tumor
delineation, including gradient
(PETedge, purple), fixed absolute
thresholding with SUVof 2.5
(red), fixed relative thresholding
with 40% of SUVmax (T40%,
blue), and adaptive thresholding
(the Nestle’s method, green)
methods
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features in different PET images, even in a clinical response
setting that the SUV range of a tumor varies during treatment
[71]. While the values of texture features from the RQmethod
were counter-intuitive to the visual assessment of heterogene-
ity, those from the AQ method were more correlated in the
simulated and clinical data of breast cancer patients [73]. For
these reasons, the AQ method seems to be more appropriate
than the RQ method for metabolic radiomics analysis using
18F-FDG PET/CT images. The AQ method also had better
repeatability and lower sensitivity of texture features to the
methods of delineation and reconstruction in a prospective
study with double baseline 18F-FDG PET/CT scans with a 3-
day interval [74].

Issues: Dependence on SUVmax and/or MTV

The influence of the quantization methods on values of texture
features is highly related to the dependency to the convention-
al PET parameters, tumor SUVmax and/or MTV. Several stud-
ies commonly found a trend that most texture features based
on the RQ method have the dependency of their values on
MTV [64, 72, 75–77]. Because the dependence on MTV is
much sensitive particularly for tumors with relatively small
size, MTVs of 10 cm3, 45 cm3, or 60 cm3 have been suggested
as cutoffs to find valuable complementary information to
MTV in radiomics analysis using the RQ method [72, 75,
76]. Meanwhile, it has been highlighted that the dependence
of AQ-based texture features on not only MTV but also
SUVmax (Fig. 4) [50, 64, 72, 77]. As the higher mountain
topography is more tough and complicated, the dependence
on SUVmax in tumor is considered to be one of the unique
characteristics of the texture features of PET images. Actually,
the RQmethod is regarded as a kind of intensity normalization
to the maximum intensity within a tumor. Therefore, it seems
artificial to normalize and eliminate the dependence on
SUVmax by using the RQ method. It might be more effective

to find additive meaning of texture features based on the AQ
method in multivariable analysis.

Texture Matrix Design and Feature Extraction

The First Order: Histogram-Based

Texture features are categorized into first, second, and higher
orders by the number of voxels involved in their texture matrix
design [78]. The first-order texture features are mainly calcu-
lated from intensity frequency histogram which represents the
frequency distribution of one-voxel intensity in a delineated
tumor. Therefore, the first-order texture features describe global
characters of a tumor on PET images. The first-order texture
features include CV, skewness, kurtosis, entropyhisto, and ener-
gy as well as conventional PET parameters like the SUVmax,
SUVavg, MTV, and TLG (Table 2). A commonly used
heterogeneity-associated parameter, the CV which is defined
as the standard deviation (SD) over SUVavg in a delineated
tumor [79], is also the first-order texture features derived from
intensity frequency histogram (IFH) (Fig. 5a, b). There is an-
other option to calculate global heterogeneity using the CSH,
also known as the intensity volume histogram (IVH), having a
decline curve form (Fig. 5a, c) [80]. The CSH describes percent
of total tumor volume above percent threshold of SUVmax,
which threshold varies from 0 to 100%. Lower AUC-CSH
indicates more heterogeneity in a tumor [36].

The Second Order: GLCM-Based

The second order texture features are calculated based on
GLCMs also known as spatial gray-level dependencematrices
(SGLDMs) which compute for the second order joint proba-
bilities, namely the local association of intensities of 2 voxels
in a delineated tumor [78]. The information on GLCMs is

Fig. 3 Examples of resampled PET images using RQ and AQ methods.
The 16-bin resampled voxel intensities within tumors are presented as
different colors (see color bars). Even though the tumor in case II has
relatively lower SUVs than the tumor in case I, the tomography of case II
(RQ) is exaggerated and looks similar to that of case I (AQ or RQ).

Applying the AQ method, the tumors in cases I and II show different
tomographies. AQ absolute quantization, IAQ resampled intensity by the
AQ method, IRQ resampled intensity by the RQ method, RQ relative
quantization
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about how many pairs of voxels of resampled intensities (i, j)
which satisfy a certain relationship of a defined direction and
distance (Fig.5a, d) [81]. Theoretically, multiple GLCMs
could be computed for a single PET case with various dis-
tances and directions. The one-voxel distance has been usually
chosen to compute GLCMs in PET radiomics analysis [68,
71]. Given 26 voxels surrounding a voxel in 3D space, 13
directions are usually used to compute GLCMs in 3D space.
The difference of Bsymmetry^ and Basymmetry^ methods is

whether the number of paired voxels including in the reverse
direction is counted or not. Twomethods have been suggested
for GLCM-based 3D texture feature extraction; one is using
13 GLCMs for each direction in 3D space to calculate texture
features independently and then average them; the other one is
using 1 GLCM in consideration of neighbor voxels for all 13
directions directly in 3D space (Fig. 6) [64, 76]. In regard to
the issue of volume-dependence of the RQ-based texture fea-
tures, the single GLCM method showed less volume

Fig. 4 Dependence on SUVmax

and MTVof AQ-based texture
features. The correlogram of 109
texture features shows depen-
dence on conventional PET pa-
rameters, including SUVmax and
MTV (p < 0.0005). AQ absolute
quantization, MTV metabolic tu-
mor volume, SUVmax maximum
standardized uptake value, TLG
total lesion glycolysis. Note:
Color bar, Pearson correlation
coefficient. Modified from Ha
(2017) [47], which is licensed
under a Creative Commons
Attribution 4.0 International
License (http://creativecommons.
org/licenses/by/4.0/)

Table 2 First-order texture features

Feature Definition Description

SUVmax, SUVavg,
MTV, TLG

– Conventional PET parameters

CV Standard deviation of SUVs/SUVavg A global heterogeneity marker. Higher values
indicate more heterogeneity

AUC-CSH Percent of total tumor volume above percent threshold
of SUVmax, which threshold varies from 0 to 100%.

A global heterogeneity marker. Lower values
indicate more heterogeneity

Skewness
1
E∑i HISTO ið Þ−HISTOð Þ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
E∑i HISTO ið Þ−HISTOð Þ2

q� �3

(with E = the total number of voxels in the VOI,

HISTO = the average of gray levels in the histogram)

The asymmetry of the gray-level distribution
in the intensity frequency histogram

Kurtosis
1
E∑i HISTO ið Þ−HISTOð Þ4
1
E∑i HISTO ið Þ−HISTOð Þ2
� �2

(with E = the total number of voxels in the VOI,

HISTO = the average of gray levels in the histogram)

The sharpness of the peak of the gray-level
distribution in the intensity frequency histogram

Entropyhisto ∑
i
p ið Þ∙log p ið Þ þ εð Þ The randomness of the gray-level distribution

in the intensity frequency histogram

AUC-CSH, area under curve of cumulative SUV-volume histogram; CV, coefficient of variation; MTV, metabolic tumor volume; SUV, standardized
uptake values; SUVavg, average of SUVs; SUVmax; maximum of SUVs; TLG, total legion glycolysis; VOI, volume of interest
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dependence than the 13 GLCMs with averaging method [64,
76]. The normalized GLCM can be computed as following
formula [23]:

GLCMdx;dy i; jð Þ ¼ 1

Pairs
∑ n−dx

p¼1

∑ m−dy
q¼1

1 if I p; qð Þ ¼ i and I pþ dx; qþ dy
� � ¼ j

0 otherwise

	

Table 3 summarizes GLCM-based texture features includ-
ing homogeneity, energy, contrast, correlation, entropy, and
dissimilarity.

The Higher Order: NGTDM-Based

The higher order texture features are calculated from several
texture matrices computed based on interrelationships of 3 or
more voxels [78]. Neighborhood gray-tone difference matri-
ces (NGTDMs) are one of the higher order texture matrices,
which compute for differences between each voxel and neigh-
boring voxels within a certain distance (Fig. 5a, e). When a
distance for NGTDMs are 1 voxel, a centered voxel and 8

surrounding voxels are constructing a 3 × 3 neighborhood
group, namely 3 voxels as the window size. NGTDMs calcu-
late sum of the absolute difference between centered voxel
level and average of the neighboring voxels for g. The win-
dow size (W) of 3 voxels is mostly used [82, 83]. The
NGTDM can be computed as follows [23]:

NGTDM ið Þ ¼ ∑
p
∑
q

M p; qð Þ−i



 


 if I p; qð Þ ¼ i

0 else

(

with M p; qð Þ; the average of the neighbour voxel intensities
� �

NGTDM-based texture features including coarseness, con-
trast, and busyness, which represent local texture within a
delineated tumor, and the measures showed good correspon-
dences with human’s visual perception [84]. Table 4 summa-
rizes NGTDM-based features.

The Higher Order: GLRLM and GLSZM-Based

Gray-level run-length matrices (GLRLMs) are statistical
higher order texture matrices and measure for runs (l) of
voxels with same gray-level (i) along a given direction
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3 4.625
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a b c

d e f g

Fig. 5 2D example of texture matrix design. Using a 2D sample matrix
with four bins of pixel intensity (4 × 4 size (a)), various texture matrices
including IFH (b), CSH (c), GLCM (d), NGTDM (e), GLRLM (f), and
GLSZM (g) were computed. CSH cumulative SUV-volume histogram, d

distance, GLCM gray-level co-occurrence matrix, GLRLM gray-level
run-length matrix, GLSZM gray-level size-zone matrix, IFH intensity
frequency histogram, NGTDM neighborhood gray-tone difference ma-
trix, W window size
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(Fig. 5a, f) [85]. The counting process of GLRLMs is sym-
metrical between a given direction and its reverse; only 13
directions in 3D space are needed to be considered, conse-
quently [86]. Extracting GLRLM-based texture features in
3D space is similar to that of GLCM. One way to obtain a
value of GLRLM-based texture feature in 3D images is
that averaging the texture values separately calculated in
each matrix in 13 directions [87]. The other way is that

simultaneously considering 13 directions to compute 1
GLRLM [88]. Gray-level size zone matrices (GLSZMs)
are alternative to GLRLMs, considering the size (s) of con-
tinued voxels with same gray level (i) rather than the run
length of voxels with same gray level in a certain direction
(Fig.5a, g) [89]. Therefore, the GLSZM has a variable
number of columns determined by the size of the largest
zone [90]. Computing GLSZMs does not need to consider
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Extraction of features
from each matrix 

followed by averaging

Feature extraction

TF
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TF

TF

TF1GLCMTF13

Fig. 6 Approach to extract the multi-directional GLCM-based texture
feature. Two ways extracting the GLCM-based texture feature in multi-
directions are presented. The first method, with averaging, extracts a
multi-directional texture feature (TF13GLCMs) by averaging every texture

feature on each direction. The second method, without averaging, extracts
another multi-directional texture feature (TF1GLCM) from a multi-
directional GLCM. GLCM gray-level co-occurrence matrix, TF a texture
feature

Table 3 GLCM-based features

Name Definition Description

Normalized
GLCM

Normalized
GLCMdx;dy i; jð Þ ¼ 1

Pairs ∑
n−dx

p¼1

∑
m−dy

q¼1

1 if I p; qð Þ ¼ i and I pþ dx; qþ dy ¼ j
� �

0 otherwise

	 2nd-order texture matrix

HomogeneityGLCM ∑
i
∑
j

GLCM i; jð Þ
1þ ji− jj The homogeneity of gray-level voxel

pairs

EnergyGLCM ∑
i
∑
j
GLCM i; jð Þ2 The uniformity of gray-level voxel pairs

ContrastGLCM ∑
i
∑
j
GLCM i− jð Þ2∙GLCM i; jð Þ The local variations in the GLCM

CorrelationGLCM ∑
i
∑
j

i−μið Þ∙ j−μ j

� �
∙GLCM i; jð Þ

σi∙σ j
The linear dependency of gray levels

in GLCM

EntropyGLCM −∑
i
∑
j
GLCM i; jð Þ∙log GLCM i; jð Þ þ εð Þ The randomness of gray-level voxel pairs

DissimilarityGLCM ∑
i
∑
j
ji− jj∙GLCM i; jð Þ The variation of gray-level voxel pairs

GLCM gray-level co-occurrence matrix
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directions like computing GLCMs or GLRLMs. Tables 5
and 6 summarize GLRLM and GLSZM-based features.

Issues: Reproducibility of Texture Features

Several studies have explored the issues of the repeatability of
texture features using test–retest data sets using the same set-
ting of image acquisition, reconstruction, segmentation, and
quantization. A test–retest study, with the RQ preprocessing,
proved that most GLCM texture features including entropy,

homogeneity, and dissimilarity, and some GLSZM texture
features including intensity variability and size zone variabil-
ity had comparable reproducibility to SUVmax. However, sev-
eral GLSZM-features including small area emphasis and low
intensity emphasis had low reproducibility [91]. Another test–
retest study, using the AQ preprocessing with 0.5 SUV inten-
sity resolution, proved that the majority of texture features had
a high reproducibility, although GLSZM texture features
showed the overall lowest reproducibility compared with
global and GLCM texture features [70]. A greater number of

Table 5 GLRLM-based features

Name Definition Description

GLRLM GLRLM(i, j), the number of runs with intensity i of
homogenous runs of j voxels in some direction
(where H corresponds to the number of
homogenous runs)

Higher order, regional texture matrix

Short-run emphasis (SRE) 1
H ∑

i
∑
j

GLRLM i; jð Þ
j2

The distribution of short runs, which is
larger for fine textures

Long-run emphasis (LRE) 1
H ∑

i
∑
j
GLRLM i; jð Þ∙ j2 The distribution of long runs, which is

larger for coarse textures

Low gray-level run emphasis (LGRE) 1
H ∑

i
∑
j

GLRLM i; jð Þ
i2

The distribution of low gray-level runs

High gray-level run emphasis (HGRE) 1
H ∑

i
∑
j
GLRLM i; jð Þ∙i2 The distribution of high gray-level runs

Short-run low gray-level emphasis (SRLGE) 1
H ∑

i
∑
j

GLRLM i; jð Þ
i2∙ j2

The distribution of the short homogeneous
runs with low gray levels

Short-run high gray-level emphasis (SRHGE) 1
H ∑

i
∑
j

GLRLM i; jð Þ∙i2
j2

The distribution of the short homogeneous
runs with high gray levels

Long-run low gray-level emphasis (LRLGE) 1
H ∑

i
∑
j

GLRLM i; jð Þ∙ j2
i2

The distribution of the long homogeneous
runs with low gray levels

Long-run high gray-level emphasis (LRHGE) 1
H ∑

i
∑
j
GLRLM i; jð Þ∙i2∙ j2 The distribution of The long homogeneous

runs with high gray levels

Gray-level non-uniformity for run (GLNUr) 1
H ∑

i
∑
j
GLRLM i; jð Þ

 !2

The non-uniformity of the gray levels of
the homogeneous runs

Run length non-uniformity (RLNU) 1
H ∑

j
∑
i
GLRLM i; jð Þ

� �2

The non-uniformity of the length of the
homogeneous runs

Run percentage (RP) H
∑i∑ j j∙GLRLM i; jð Þð Þ The homogeneity of the homogeneous runs

GLRLM gray-level run-length matrix

Table 4 NGTDM-based features

Name Definition Description

NGTDM NGTDM ið Þ ¼ ∑
p
∑
q

M p; qð Þ−i

 

 if I p; qð Þ ¼ i
0 else

	

(with M p; qð Þ; the average of the neighbor voxel intensities)

Higher order, local texture matrix

CoarsenessNGTDM 1
∑ip ið Þ∙NGTDM ið Þ The level of spatial rate of change in intensity

ContrastNGTDM ∑
i
∑
j
p ið Þ∙p jð Þ∙ i− jð Þ2

" #
∙ ∑iNGTDM ið Þ

E∙G∙ G−1ð Þ

(with E = the number of voxels in VOI, G = the number of gray levels)

The intensity difference between neighboring
regions of voxels

BusynessNGTDM
∑ip ið Þ∙NGTDM ið Þ
∑i∑ j ji∙p ið Þ− j∙p jð Þj (with p(i) ≠ 0, p(j) ≠ 0) The spatial frequency of changes in intensity

NGTDM neighborhood gray-tone difference matrix
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GLCM- and GLRLM texture features had better repeatability
with the AQ preprocess compared with that of the RQ prepro-
cess [74]. CV and AUC-CSH, which are ITH-related global
texture features, had moderate-to-high reproducibility. Other
global texture features, such as skewness and kurtosis, had
various levels of reproducibility from low to high [70, 91, 92].

Analysis for Radiomics Data

Statistics

The traditional approach to the clinical image research is driv-
en by medical statistics. This approach is still valuable while
focusing on the clinical usefulness of ITH-related parameters
from images. For this purpose, several ITH-related parameters
carefully selected by researchers would be tested to identify
certain clinical importance such as the role of prognostic
markers for drug resistance [93, 94]. Multiple comparison
problems should be considered when using multiple parame-
ters such as radiomics features. To correct the multiple com-
parison problems, P values in statistics should be adjusted by
post-hoc analysis for the multiple tested parameters [95]. The
Bonferroni correction, having type I error rate α/m for each of

m tests, is the most conservative and commonly used method
to correct the multiple comparison issue. Sometimes, the
Bonferroni’s correction is too conservative to find the clinical
significance within given samples. Various methods have
been suggested, such as less conservative post-hoc analyses,
e.g., the Holm’s procedure and false-discovery rate, which use
sequentially adjusted P values [96, 97]. In addition, multivar-
iable analysis is recommended to evaluate additional useful-
ness and independent significance of texture features com-
pared with SUVmax and MTV, on which the parameters have
dependence, as well as already established clinical parameters.

Machine Learning

Machine learning methods used in radiomics researches are
classified as supervised learning and unsupervised learning
[98]. Supervised learning is used to solve problems of regres-
sion predicting continuous variables, and classification
predicting categorical variables. Supervised learning trains a
function fw based on a labeled training data set consisting of a
paired input (x) and desired output (y). There are various types
of supervised learning algorithms including support vector ma-
chines, linear regression, logistic regression, linear discriminant
analysis, decision trees, k-nearest neighbor algorithms, and

Table 6 GLSZM-based features

Name Definition Description

GLSZM GLSZM(i, j), the number of homogeneous
zones of j voxels with the intensity i
(where H corresponds to the number
of homogenous zones)

Higher order, regional texture matrix

Short zone emphasis (SZE) 1
H ∑

i
∑
j

GLSZM i; jð Þ
j2

The distribution of the short homogeneous zones

Long-zone emphasis (LZE) 1
H ∑

i
∑
j
GLSZM i; jð Þ∙ j2 The distribution of the long homogeneous zones

Low gray-level zone emphasis (LGZE) 1
H ∑

i
∑
j

GLSZM i; jð Þ
i2

The distribution of the low gray-level zones

High gray-level zone emphasis (HGZE) 1
H ∑

i
∑
j
GLSZM i; jð Þ∙i2 The distribution of the high gray-level zones

Short-zone low gray-level emphasis
(SZLGE)

1
H ∑

i
∑
j

GLSZM i; jð Þ
i2∙ j2

the distribution of the short homogeneous zones with low
gray levels

Short-zone high gray-level emphasis
(SZHGE)

1
H ∑

i
∑
j

GLSZM i; jð Þ∙i2
j2

the distribution of the short homogeneous zones with high
gray levels

Long-zone low gray-level emphasis
(LZLGE)

1
H ∑

i
∑
j

GLSZM i; jð Þ∙ j2
i2

the distribution of the long homogeneous zones with low
gray levels

Long-zone high gray-level emphasis
(LZHGE)

1
H ∑

i
∑
j
GLSZM i; jð Þ∙i2∙ j2 The distribution of the long homogeneous zones with high

gray levels

Gray-level non-uniformity for zone
(GLNUz)

1
H ∑

i
∑
j
GLSZM i; jð Þ

 !2

The non-uniformity of the gray levels of the homogeneous
zones

Zone length non-uniformity (ZLNU) 1
H ∑

j
∑
i
GLSZM i; jð Þ

� �2

The non-uniformity of the length of the homogeneous zones

Zone percentage (ZP) H
∑i∑ j j∙GLSZM i; jð Þð Þ The homogeneity of the homogeneous zones

GLRLM gray-level run-length matrix
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neural networks. The typical data structure of supervised learn-
ing is composed of three subsets: the training set fitting models,
the validation set estimating prediction error for model selec-
tion, and the test set assessing the generalization error of the
final chosen model [99]. The validation set is also regarded as a
part of model training and a test set should be separated from
training parts. Enough samples are needed for each set to get
the best learning and testing results. If the data set is not enough
to split into training and testing parts, the cross-validationmeth-
od could be more efficient for use in order to validate the
established model. In k-fold cross-validation, the data set D is
randomly partitioned into k mutually exclusive subsets D1, D2,
…, Dk of equal size. In each of learning experiments, one of
those subsets is picked as a test set and the remaining subsets
then as a training set. Learning experiments and testing perfor-
mances are performed k separate times and the performance of
k-fold cross-validation is obtained by averaging the test results
from the k different learning experiments [100]. Unsupervised
learning is used for unlabeled data to find hidden structure of
data set. Typical algorithms include k means clustering, hierar-
chical clustering, etc. To perform clustering, it is important to
determine how represent a cluster of more than one point and
how calculate the distance between clusters. A cluster center
called centroid is often used to represent each cluster. Most
commonly used distance functions are Euclidean distance and
Manhattan distance.

Issues: High Dimensionality in Machine Learning
with Radiomics Data

One thing should be considered in radiomics research using
machine learning is the high-dimensionality of radiomics fea-
ture space. Although hundreds of radiomics features could be
extracted from cases, most radiomics studies usually have a
restricted number of cases for analysis usually no more than
200. The small sample size but high dimensionality causes
lower information density in radiomics research, which results
in the higher risk of an overfitted model. This is related to one
of well-known issues in the machine learning field, namely
BThe Curse of Dimensionality^ [101]. As the number of fea-
tures or dimensions grows, the amount of data needed to gen-
eralize accurately grows exponentially. As the dimensionality
grows over the optimal number of features without increasing
the number of training samples, the classifier’s performance
decreases. To avoid the curse of dimensionality, training ma-
chine with carefully selected features is the most commonly
used strategies in radiomics field [87, 102]. Further, highly
correlated features provide redundant rather than complemen-
tary information; it can be used as a basis for selecting features
in radiomics analysis [28, 103]. Non-linear classifiers are more
vulnerable to overfitting due to high dimensionality than linear
and simple classifiers [104]; therefore, non-linear classifiers are
more restricted in feature number. Another approach like

dimensionality reduction such as the principal component anal-
ysis, by combining the original feature values to have the larg-
est variance, would help to manage the problems [105].
However, combined features with the largest variance do not
guarantee having the most discriminative information.

Conclusions

Radiomics studies have been conducted in two perspectives:
ITH assessment and high-throughput extraction of informa-
tion. Radiomics feature extraction is less intuitive than con-
ventional PET parameters and served as an entry barrier to this
field of study. All the steps including PET/CT imaging, pre-
processing, matrix design and feature extraction, and
statistics/modeling affect the quality of radiomics analysis.
Therefore, it is important to understand the issues of metabolic
radiomics including tumor segmentation, quantization, ro-
bustness/repeatability, and dependence on SUVmax/MTV.
Further, statistical validity should be ensured with cares in
analyzing hundreds of parameters. Based on the successful
validation of the clinical role of radiomics by individual stud-
ies, multicenter research or meta-analysis is expected to be
actively pursued in a near future. In this regard, standardiza-
tion of methodology and harmonization of radiomics results
will becomemore important in later studies. Despite the pend-
ing issues of methodology, radiomics is expected to be clini-
cally useful in precision medicine for oncology.
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