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Abstract

Therapeutic adoptive transfer of natural requlatory T cells (nTreg, CD41 CD25% Foxp3™ T cells) or in vivo selective
expansion of nTreg cells has been demonstrated to improve the cardiac function in various cardiovascular disease
models. The differentiation of nTreg cells is mediated by catecholamines via (3;-adrenergic receptor (3;-AR) activation.
Autoantibody against (3;-adrenoceptor ((3;-AA) as a 3;-AR agonist is closely associated with the occurrence and
deterioration of cardiac dysfunction. However, whether 3,-AA has any impact on nTreg cells has not been reported.
The aim of the present study was intended to assess the potential impact of 3;-AA on nTreg cell differentiation and
explore the underlying mechanism. It was found that the expression of multiple proteins involved in nTreg cell
differentiation, immunosuppressive function, and migration was up-regulated in mice after (3;-AA administration,
suggesting that (3;-AA may promote nTreg cell activation. In vitro, 3;-AA promoted nTreg cell differentiation by up-
regulating mitochondrial fatty acid oxidation (FAO) in activated CD4" T cells via AMP-activated protein kinase (AMPK)
activation and mitochondrial membrane potential reduction. In addition, the AMPK agonist facilitated 3,-AA-mediated
FAO and nTreg cell differentiation. To further confirm the role of AMPK in 3;-AA-mediated nTreg cell differentiation,
B,-AA was acted on the CD4™ T cells isolated from AMPK-deficient (AMPK ™) mice. The result showed that the effect
of B1-AA on nTreg cell differentiation was attenuated markedly after AMPK knockout. In conclusion, AMPK-mediated
metabolic regulation targeting for nTreg cell restoration may be a promising therapeutic target for 3;-AA-positive
patients with cardiac dysfunction.

Introduction
CD4" T cells are known as the most important partici-
pant in adaptive immunity of the organism. Over-activation
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of CD4" T cells and disproportion of their subpopulations
play an important role in the pathogenesis of various car-
diovascular diseases. Functionally, CD4" T cells are classi-
fied as two major categories: effector T cells and regulatory
T (Treg) cells', among which natural Treg (nTreg, CD4 "
CD25" Foxp3™ T) cells play a critical role in inhibiting the
immune response of effector T cells and maintaining
immune tolerance>. Therapeutic adoptive transfer of
nTreg cells or in vivo selective nTreg cell expansion has
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been demonstrated to attenuate post-infraction left ven-
tricular remodeling, relief myocardial injury, and eventually
improve the cardiac function in diverse cardiovascular dis-
ease models*”. Studies have confirmed that the develop-
ment and function of nTreg cells are regulated by
catecholamines via the expression of a-, B;-, and P,-adre-
nergic receptors (By,-ARs)®™®. Compared with effector
T cells, $;-AR expression in nTreg cells is more advanta-
geous than B,-AR expression®, but the effect of B;-AR
activation on nTreg cells remains unclear.

Autoantibody targeting the second extracellular loop of
[;-adrenoceptor (B;-AA) is commonly detected in circu-
lating blood of the patients with cardiac dysfunction
caused by etiologies like dilated cardiomyopathy, ischemic
heart disease, and arrhythmia’™'". B;-AA was found to
exhibit the agonist-like effects on [;-AR, such as
increasing the intracellular calcium level promoting the
beating frequency of neonatal rat cardiomyocytes and
inducing cAMP production'®™"*, The positive rate of ;-
AA was reported to be as high as 80% in different cardiac
dysfunction models'®. Moreover, LVEF of the cardiac
dysfunction patients improved obviously after removing
B1-AA by immunoadsorption (IA) treatment'®. However,
it is not elucidated about the underlying mechanism
related to B;-AA-induced cardiac dysfunction. Our pre-
vious and other studies found that in [;-AA-positive
murine, not only the cardiac function was decreased
but accompanied by an increase in the peripheral CD4"/
CD8" T cell ratio; in addition, part of the myocardium
was infiltrated by large number of T cells'’. In vitro, f;-
AA isolated from the sera of cardiac dysfunction patients
promoted proliferation of CD4" T cells through the ;-
AR/cAMP pathway'*. Furthermore, accompanied by
cardiac function improvement of the P;-AA-positive
cardiac dysfunction after IA treatment, the number of
circulating nTreg cells increased significantly'®'®. It was
shown that nTreg cell proportion in rat peripheral blood
was inhibited by B;-AR blocker propranolol®. However,
whether ;-AA as a agonist-like substance of $;-AR can
exert a direct effect on nTreg cells has not been reported.

Therefore, the present study was intended to assess the
potential impact of B;-AA on nTreg cell activation and
differentiation, and the wunderlying mechanism was
explored in an attempt to etiologically find a potential
therapeutic target for B;-AA-positive cardiac dysfunction
patients.

Results
Activation of circulating nTreg cells in mice was promoted
by B1-AA

After 8 weeks P;-AR monoclonal antibody (B;-AR mAb)
administration, optical density (OD) value of serum ;-
AA was increased in mice, indicating that f;-AA-positive
model was created successfully (Supplemental Fig. 1).
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Using the protein microarray chip technique, the
expressions of nTreg cell-related proteins and cytokines
were detected in f;-AA-positive mice at the eighth week
after $;-AR mAb administration. The heat map of cluster
analysis (Fig. la) showed that the expressions of
interleukin-2 (IL-2)/IL-2 receptor (Fig. 1b, ), IL-10/IL-10
receptor (Fig. 1d), cytotoxic T-lymphocyte antigen 4
(CTLA-4) (Fig. le), granzyme B (Fig. 1f), chemokine
receptor 3 (CXCR3) (Fig. 1g), and chemokine receptor
CCR6 (Fig. 1g) in the sera of B;-AA-positive mice were
enhanced significantly as compared with those in the
vehicle group, of which IL-2 is known to be crucial for
nTreg cell proliferation and differentiation®"**, IL-10°,
granzyme B, and CTLA-4*® are known as important
regulators in mediating the immunosuppressive activity of
nTreg cells, while CCR6 and CXCR3 molecules are clo-
sely associated with nTreg cell recruitment**>. Above all,
B1-AA could promote nTreg cell activation in mice by up-
regulating proteins related to nTreg cell differentiation,
immunosuppressive function, and migration.

Differentiation of nTreg cells from activated CD4" T cells
was facilitated by B,-AA

CD4" T cells sorted from the splenocytes of healthy
mice were with or without preactivation by anti-CD3/
CD28 mAbs (1 pg/mL) for 72 h, and then stimulated with
different concentrations of B;-AA (1078, 1077, or 10°°
mol/L). Flow cytometry analysis showed that the pro-
portion of nTreg cells among the preactivated CD4"
T cells was increased significantly 24h after p;-AA
administration (Fig. 2a). In addition, this effect can be
reversed drastically by the B;-AR-specific blocker meto-
prolol (1077 mol/L) (Fig. 2a). However, B;-AA was unable
to promote the differentiation of nTreg cells from quies-
cent CD4" T cells (Fig. 2b, P> 0.05).

A metabolic shift toward fatty acid metabolism was
associated with the increased nTreg cell differentiation
induced by (3;-AA

The mechanism underlying B;-AA-mediated nTreg dif-
ferentiation was explored in the further experiments.
Knowing that mitochondrial fatty acid oxidation (FAO) is a
decisive factor for CD4™ T cell differentiation, which pro-
motes CD4" T cell differentiation towards Treg cells as
opposed to an effector phenotype®®*’. To assess whether
FAO was affected by B;-AA in CD4" T cells, the uptake of
palmitate was measured in the course of stimulation. Flow
cytometry demonstrated that the absorption of palmitate
was increased in activated CD4" T cells with anti-CD3/
CD28 mAbs after $;-AA stimulation (Fig. 3a). Therefore,
we postulated that the metabolic alteration in activated
CD4" T cells induced by B;-AA participated in enhanced
nTreg cell differentiation. Etomoxir, a selective inhibitor of
carnitine palmitoyltransferase I°, was used to confirm our
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Fig. 1 Expressions of nTreg cell-related proteins and cytokines in 8,-AA positive mice. a Heat map of cluster analysis for expressions of nTreg
cell-related proteins in 3;-AA-positive mice at the eighth week after 3;-AR mAb administration. Dark purple and light gray represented high and low
levels of expression for the indicated proteins, respectively. All cytokines and cytokine receptors were detected by protein microarray chip analysis.
b-g The quantitative levels of serum IL-2 (b), IL-2 receptor (c), IL-10/IL-10 receptor (d), CTLA-4 (e), granzyme B (f), and CXCR3 and CCR6 (g) in the sera
of the model mice. Data are presented as means + SD (n =3 per group). **P < 0.01 vs. vehicle group

hypothesis. Indeed, it was found that etomoxir was able to  elicited by B;-AA is accompanied by a metabolic shift
reverse the effect of B;-AA in nTreg cell differentiation  toward FAO in activated CD4" T cells and is reversible by
(Fig. 3b). Thus, the enhanced nTreg cell differentiation FAO inhibitor.
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Activation of AMPK positively regulated nTreg cell
differentiation induced by B,-AA

AMP-activated protein kinase (AMPK) activation is
known to enhance mitochondrial FAO in response to
decreased ATP level®®, which is a crucial pathway attri-
butable to nTreg cell differentiation®”*°, AMPK is mainly
activated by increased AMP level and phosphorylation of
a threonine residue (Thr-172)%%. To investigate the role of
AMPK in B;-AA-induced nTreg cell differentiation,
AMPK phosphorylation and ATP levels were estimated in
the primary CD4" T cells isolated from the splenic tissue
of B1-AA-positive mice. Significant decrease in ATP levels
has been observed in the primary CD4" T cells since the
fourth week of B;-AR mAb administration until the 12th
week (Fig. 4a), accompanied by constantly increased Thr
(172)-AMPKa phosphorylation (Fig. 4b). Unlike the
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expression changes in the inhibitory phosphorylation site
serine 491%%, which increased at the fourth week, and then
decreased at the eighth week (Supplemental Fig. 2), Thr
(172)-AMPKa phosphorylation have been constantly
increased since the fourth week of f;-AR mAb adminis-
tration until the 12th week. What is more, the direct
AMPK activator, 5-aminoimidazole-4-carboxamide ribo-
side (AICAR) facilitated p;-AA-mediated nTreg cell dif-
ferentiation in vivo (Fig. 4c) and promoted palmitate
absorption in activated CD4" T cells with anti-CD3/
CD28 mAbs (Fig. 4d). Metformin, known as a indirect
activator of AMPK by lowering the energy supply™,
exhibited similar effects on P;-AA-mediated nTreg cell
differentiation and palmitate absorption (Fig. 4c—d).

To further explore the role of AMPK in [B;-AA-
induced nTreg cell differentiation, B;-AA was utilized
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on the CD4" T cells isolated from AMPK-deficient
(AMPKa2 ') mice (Fig. 5a, b). Percentage of the cir-
culating CD4" CD25" Treg cells in AMPKa2 '~ mice
was lower than that in wild=type mice, and it was fur-
ther reduced by 4-week B;-AA administration (Fig. 5¢).
In vitro, the result showed that nTreg cell proportion in
the preactivated AMPK /~ CD4" T cells was lower than
that in CD4" T cells isolated from wild-type mice after
B1-AA stimulation (10~7 mol/L) for 24 h (Fig. 5d). The
evidence suggesting that knockout of the AMPKa?2 gene
decreased the effect of f;-AA in promoting nTreg cell
differentiation. To sum up, these data demonstrate that
AMKP activation plays a moderate positive role in
nTreg cell differentiation mediated by ;-AA.
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Enhancement of fatty acid metabolism mediated by MMP
reduction promoted (3;-AA-induced nTreg cell
differentiation

The mitochondrial FAO is closely associated with
mitochondrial membrane potential (MMP) level. When
MMP is reduced, intracellular absorption and utilization
of palmitate are enhanced, and FAO is up-regulated®>>*,
To determine whether B;-AA-induced nTreg cell differ-
entiation resulted from MMP alteration in CD4" T cells,
cyclosporin A, an MMP stabilizer, was used in the course
of B;-AA stimulation. It was found that the enhanced
palmitate absorption elicited by B;-AA in activated CD4"
T cells with anti-CD3/CD28 mAbs was reversed drasti-
cally by cyclosporin A and metoprolol (Fig. 6a). As shown
by JC-1 staining, a concurrent reduction in the MMP of
preactivated CD4" T cells was found in the B,-AA group
(Fig. 6b, c). Subsequently, cyclosporin A inhibited the
elevation of nTreg cell differentiation mediated by ;-AA
(Fig. 6d). Therefore, enhanced fatty acid metabolism
mediated by MMP reduction in preactivated CD4™" T cells
is one of the mechanisms underlying nTreg cell differ-
entiation induced by B;-AA.

Discussion

B1-AA was first identified in the sera of patients with
dilated cardiomyopathy by Wallukat et al. in 1987°°.
Subsequently, ample evidence has confirmed the patho-
genic effect of B;-AA in cardiac dysfunction”"'>. How-
ever, both our study and others found that f;-AA was
positive in about 10% of healthy individuals of different
age groups®®>®, suggesting that p;-AA may participate in
maintaining physiological homeostasis, although the cor-
relative mechanism is unclear. nTreg cells play a very
important role in maintaining the balance of the immune
system by inhibiting effector T cells>?, and their differ-
entiation and function are regulated by the sympathetic
nervous system”®, Nevertheless, whether B;-AA as a
agonist-like substance of $;-AR, could exert a direct effect
on nTreg cells has not been reported. Therefore, the
present study sought to assess the potential impact of f;-
AA on nTreg cell differentiation and explore the under-
lying mechanism. It was found that ;-AA promoted
nTreg cell differentiation by up-regulating fatty acid
metabolism in activated CD4" T cells via the AMPK
pathway and MMP reduction.

To study the effect of B;-AA on Treg cells, a passive
immunization mouse model was established successfully
with the highly active and purified B;-AR mAb (Sup-
plemental Fig. 3). Naive CD4" T cells differentiate into
different subsets (Thl, Th2, Thl7, or Treg cells) to
establish immune tolerance and defense against patho-
gens. To quantify CD4" T cell-related cytokine levels,
the levels of Thl cytokine (IFN-y), Th2 cytokine (IL-4),
Th17 cytokine (IL-17), and Treg cytokine (IL-10) in the



Xu et al. Cell Death and Disease (2019)10:158

Page 6 of 13 158

A B Ow 4w 8w 12w
Phospho-AMPKa2
— — w— e | 60 kD
(Thr172)
0204 [ N AVPKQ? | e e e e | 60 kD
X
[ #
S 0.5 5 bl
£ *% ~ o *k
= ]
2 #it S 08
E 0.10 - ok =
Y # 3
= T
< 0.05- o 044
o
7]
o
=
0.00 . o o0 -
0 4 8 12 0 4 8 12
Time (weeks) Time (weeks)
c _
xX ##
~ *%k
o )
8 o *%
(=]
o
- u
G
> o
(o))
S 3
=
[0
2
[0l
o 0. :
Vehicle + + + + +
IgG - = s +
AICAR - = + -
Metformin - - - * -
B1-AA(10 "moll) - + + + -
80
D {1 —— Vehicle #t
250 i ##
] B1'AA group - *k
1 — B1-AA+AICAR Skl o
200 £9
] S&
] 2g w4
150 .3 ==
= ] o £
3 1 38
S 100 @ > 204
o ] oa
8 | g
50 Lo 0 .
] Vehicle  + + + +
0 T T T T T T T T T
0 10 16 10° 10* 10° AICAR = - * -
Fluorescence intensity of BODIPY-palmitate Metformin ~ — - - &
(Green-B Fluorescence-HLog) B4-AA (10 Tmolll) - + + +
Fig. 4 The role of AMPK in ,-AA-induced nTreg cell differentiation. ATP levels (a) and Thr(172)-AMPKa phosphorylation (b) were estimated in
the primary CD4" T cells isolated from the splenic tissue of B;-AA-positive mice at different time points during B;-AR mAb administration (n = 4 per
group). ¢ Percentage of nTreg cells in activated CD4™ T cells after B1-AA stimulation with or without AICAR (n = 5 per group). d The absorption level
of palmitate in activated CD4™ T cells after 3,-AA stimulation with or without AICAR/metformin (n = 5 per group). Data are presented as means + SD.
a, b: **P < 0.01 vs. 0 week since B;-AR mAb administration; 7P < 0.01 vs. the eighth week. ¢, -d **P < 0.01 vs. vehicle group; 7P < 0.01 vs. B;-AA group

sera of B;-AA-positive mice was assessed by a bead-
based multianalyte flow assay kit. Quantitative analysis
demonstrated that levels of Treg cytokine (IL-10) (Sup-
plemental Fig. 4A), Th17 cytokine (IL-17) (Supplemental
Fig. 4B), Thl cytokine (IFN-y) (Supplemental Fig. 4C),
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and Th2 cytokine (IL-4) (Supplemental Fig. 4D)
increased in mice 8 weeks after f;-AA administration,
indicating that $;-AA promoted a systemic activation of
CD4" T cell in vivo. What is more, the expression of
multiple proteins related to nTreg cell differentiation,
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immunosuppressive function, and migration increased in
mice peripheral blood, suggesting that 3;-AA was able to
promote nTreg cell activation. However, ultrasound
analysis showed that $;-AA-induced cardiac dysfunction
in mice, as illustrated by decreases in LVEF (Supple-
mental Fig. 5A), fractional shortening (Supplemental
Fig. 5B), and cardiac output (Supplemental Fig. 5C),
accompanied with a decreased proportion of circulating
CD4" CD25" Treg cells (Supplemental Fig. 6). These
results are consistent with the finding of many other
studies that Treg cell frequency in cardiac dysfunction
patients was decreased significantly**~*!, and the num-
ber of Treg cells was positively correlated with LVEF,
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and negatively correlated with the NT-proBNP level*’.
Nevertheless, increased Treg cell infiltration was
observed in the myocardium of mice with cardiac dys-
function®. For this reason, we explored whether B;-AA
had a direct effect on nTreg cell differentiation in our
subsequent experiment in vitro.

It was found that B;-AA induced a metabolic shift
towards FAO in activated CD4" T cells, thus promoting
nTreg cell differentiation. In addition, the effect of f;-AA
in promoting nTreg cell differentiation could be reversed
drastically by the P;-AR-specific blocker metoprolol.
Other studies also demonstrated that atecholamines
such as epinephrine and norepinephrine increased the
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proportion of Treg cells, and the B;-AR blocker propra-  differentiation, and FAO is crucial in inducing Treg cell
nolol attenuated such elevation of Treg cells**. Regulation differentiation vs. Teff cell lineages*>*”*°, In other words,
of metabolism decides the fate of CD4" T cell Treg cell differentiation depends on FAO, and we found
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that the FAO inhibitor etomoxir reversed ;-AA-medi-
ated nTreg cell differentiation. MMP which effects fatty
acid uptake®*** and AMPK activation®***® are two
pivotal regulator for FAO. Furthermore, the underlying
mechanism involved in ;-AA-mediated nTreg cell dif-
ferentiation was explored.

Indeed, B;-AA reduced MMP of activated CD4" T cells,
and the MMP stabilizer cyclosporin A drastically reversed
B1-AA-induced fatty acid absorption enhancement and
nTreg cell differentiation. Our previous study**>*
demonstrated that B;-AA-induced cardiomyocyte apop-
tosis by reducing MMP. Similarly, the present study
demonstrated that the level of CD4" T cell apoptosis was
increased significantly after f;-AA stimulation shown by
Annexin V-FITC and propidium iodide double staining
(Supplemental Figure 7). These findings suggest that p;-
AA promoted nTreg cell differentiation through up-
regulating FAO and reducing MMP, and this effect is
closely associated with B;-AA-induced CD4" T cell
apoptosis. In addition, MMP reflects the integrity of
mitochondrial function and is a key indicator of mito-
chondrial function*®. The mitochondrial function altera-
tion may participate in nTreg cell differentiation elicited
by Bi-AA.

AMPK is a key regulatory molecule in response to
energy deprivation of the organism®”. It provides energy
quickly by promoting FAO and inhibiting the activity of
acetyl coenzyme A carboxylase®””°. AMPK-dependent
metabolic regulation plays an important role in Treg cell
differentiation®**®, We found that the ATP level in the
primary CD4" T cells isolated from the splenic tissue of
B1-AA positive mice was significantly lower than that in
the vehicle group, which was accompanied by enhanced
Thr(172)-AMPKa phosphorylation. It was reported that
AICAR, a pharmacological analog of AMPK?***®, pro-
moted Treg cell differentiation without affecting effector
T cells®. Besides, norepinephrine induced AMPK acti-
vation via the cAMP/B-AApathway>. The present study
showed that both the direct AMPK activator AICAR and
the indirect AMPK activator metformin facilitated p;-AA-
mediated FAO enhancement and nTreg cell differentia-
tion in vitro. Moreover, AICAR promoted IL-2 level in the
supernatant of activated CD4" T cells after B;-AA sti-
mulation, which is crucial for nTreg cell differentiation
(Supplemental Figure 8). To further confirm the role
of AMPK in B;-AA-mediated nTreg cell differentiation,
B1-AA was acted on the CD4" T cells isolated from the
AMPKa2 '~ mice. It was found that knockout of the
AMPKa?2 gene reduced the effect of f;-AA in promoting
nTreg cell differentiation markedly, confirming that
AMPK-induced FAO is a key mechanism underlying f;-
AA-mediated nTreg cell differentiation.

According to the published paper®>>®, the B,-AR/
cAMP/PKA pathway played a positive moderate role in
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the immunosuppressive activity of Treg cells. Indeed,
cAMP levels increased in the supernatants of nTreg cells
after 30-min f;-AA stimulation, which is also the down-
stream signal molecule of ;-AR (Supplemental Fig-
ure 9A). However, immunofluorescence staining showed
that the fluorescein-labeled f;-AA was incapable of
binding to B,-ARs on Treg cells compared to the anti-[3,-
AR mAb (Supplemental Figure 9B). Moreover, by contrast
to the activation effect of B,-AR pathway, proliferation
assay of the CD4" CD25 T effector cells revealed that
compromised suppressive activity of nTreg cells were
resulted from 48h B;-AA administration (Supplemental
Figure 10). The inhibitory effect of nTreg cells on Teff
cells is mainly mediated by IL-10 production®. In view of
the fact that nTreg cell dysfunction may induced by
B1-AA, IL-10 level was measured in the supernatant of
nTreg cells after B;-AA stimulation. It was found that
IL-10 secretion from nTreg cells was suppressed by
Bi-AA at concentrations of 10® and 10”7 mol/L com-
pared with vehicle groups (Supplemental Figure 11).
However, 10~ ® mol/L B;-AA had a remarkable opposite
effect, and 10~° mol/L B;-AA did not appear to be a factor
(Supplemental Figure 11). The evidences above indicated
that f;-AA had bidirectional impact on the immuno-
suppressive function of nTreg cells. Yet, the decline in
cardiac function induced by B;-AA (Supplemental Fig. 5)
seems to outweigh the potentially beneficial effects
on nTreg cell restoration. Nevertheless, like many
other physiological processes, the influence of B;-AA
on organism is a double-edged sword with therapeutic
potential that is associated with the concentration of
Bi1-AA.

Limitation and clinical perspective

Till now, the influence of $;-AR gene knockout on Treg
maturation and function has not been reported. In order
to investigate the role of ;-AR in B;-AA-induced nTreg
differentiation, our lab had already acquired three pairs of
homozygous [B;-AR gene knockout mice (C57BL/6]
background) from Nanjing BioMedical Research Institute
of Nanjing University recently. However, yet the number
of available transgenic mice is not sufficient to build our
model.

Cardiac dysfunction associated with myocardial injury
triggers B1-AA generation in different cardiac dysfunction
models, and the positive rate of p;-AA is nearly 80%'*.
However, there is no specific and effective therapeutic
strategy for P;-AA-positive patients. P;-AR blockers
cannot entirely reverse the injurious effect of 3;-AA on
cardiomyocytes®>®. The present study showed that the
impacts of B;-AA on nTreg cell differentiation cannot be
fully counteracted by [;-AR-specific blocker metoprolol
(Fig. 2a, Fig. 3a, and Fig. 6a—c), indicating that there are
other mechanisms involved except for a receptor pathway.
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It is therefore an urgent task to find a more effective
therapeutic target specific for p;-AA-positive cardiac
dysfunction patients. The present study demonstrated
that AMPK-mediated metabolic regulation targeting for
nTreg cell restoration might be a promising therapeutic
target for B;-AA-positive cardiac dysfunction patients.

Materials and methods
Synthesis and identification of 3;-AR mAb

The sequence (amino-acid residues 197-222) of the
second extracellular loop of the 3;-AR: H-W-W-R-A-E-S-
D-E-A-R-R-C-Y-N-D-P-K-C-C-D-F-VT-N-R-C was syn-
thesized by solid-phase method using an automated
peptide synthesizer. Subsequently, 0.5 mg synthetic poly-
peptide was coupled with the carrier protein keyhole
limpet hemocyanin and bovine serum albumin (BSA) to
acquire immunogenicity. The coupled polypeptide was
applied to BALB/c mice to create active immunization
and induce the production of B;-AR-ECII-specific anti-
bodies. Finally, these specific antibodies were fused with
the hybridoma cell line to synthesize mAbs specific to
B1-AR-ECII. The synthesis of B;-AR-ECII peptide was
conducted by Qiang Yao Bio Scientific Commercial
Development Co., Ltd (Shanghai, China), and the hybri-
doma cells secreting B;-AR mAb were constructed by
AbMax Biotechnology Co., Ltd (Beijing, China).

To induce the generation of ascites containing (;-AR
mAb, log-phase hybridoma cells were injected intraper-
itoneally to female BALB/c mice aged 10 weeks at a dose
of 10° cells per mL, 0.5mL per mouse biweekly. The
ascites was collected and then purified by using Protein G
Affinity Chromatography Column (GE Healthcare Life
Sciences, USA). The specificity and activity of the purified
B1-AR mAbs were determined by enzyme-linked immu-
nosorbent assay (ELISA) and the neonatal mouse cardi-
omyocyte beating experiment, respectively.

ELISA

The specificity of the purified f;-AR mAb and the OD
value of B;-AA in mice serum were detected by ELISA.
Briefly, the 3;-AR-ECII peptide was dissolved in 100 mM
10 pg/mL Na,COj solution (pH =11.0) at 4°C over-
night. The embedded 96-well plate was incubated with
1% BSA at 37°C for 1h, and then cultured with the
primary antibody. Biotin-labeled anti-mouse immu-
noglobulin G (IgG) was diluted with the sealing solution
at a ratio of 1:3000 and cultured at 37°C for 1h.
Horseradish enzyme-labeled streptavidin was diluted at a
ratio of 1:2000 and cultured at 37 °C for 1h. The sub-
strate ABTS (2,2’-azino-di-(ethyl-benzthiazoline) sulfo-
nic acid) was dissolved in the substrate buffer with a final
concentration of 1.1 mmol/L and cultured at 37 °C for
30 min. The optical density (OD) value of each well was
measured at 405nm. The titer of ;-AR mAb was
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determined by the positive/negative (P/N) ratio using the
following equation: P/N = (sample OD-blank control
OD)/(positive control OD-blank control OD). The
positivity or negativity of B;-AA was determined by
P/N =2.1 or P/N < 1.5, respectively.

Establishment of the B;-AA-positive mouse model

Male C57BL/6 mice aged 8—10 weeks (weighing 19-28 g)
were purchased from the Vital River Laboratory Animal
Technology Co., Ltd (Beijing, China). Homozygous
AMPKa2-deficient (AMKPoa2 ') mice in the C57BL/6
background (weighing 18-26 g) were kindly provided by
Dr. Benoit Viollet (Institute National de la Santé et de la
Recherche Médicale U567, Paris). The genotype of the
AMKPa2 '~ mice was evaluated by PCR using tail
DNA. All the experimental mice were housed under the
26 +1.5°C, 40-60% humidity and specific pathogen-free
conditions (fewer than five animals in a cage). All animal
experiments were performed according to the regulation
for animal management issued by the Ministry of Health of
the People’s Republic of China (Document No. 55, 2001),
and approved by the ethics committee of the Capital
Medical University (Beijing, China; Ethical number: AEEI-
2016-013).

Twenty-four C57BL/6 mice which were 3;-AA negative
confirmed by ELISA were equally randomized to three
groups: vehicle group, f;-AR mAb group, and negative
IgG group. Mice in B;-AR mAb group received intra-
peritoneal injection of B;-AR mAb at a dose of 5pug/g
biweekly. Mice in the vehicle group received the same
dose of normal saline, and the mice in the negative IgG
group received the same dose of negative IgG.

Protein microarray chip analysis

The expression of Treg cell-related proteins and cyto-
kines in the B;-AA-positive mice was detected using a
biotin-labeled mouse protein chip reagent kit. Briefly,
each chip well was added with 100 uL sealing solution,
cultured on the rocking bed for 30 min at room tem-
perature. After sucking out the sealing solution, each well
was added with 100 pL serum, cultured by oscillation at 4
°C overnight, and centrifuged at 13,000 rpm for 8 min.
Each well was added with 70uL biotin-labeled
antibody and cultured at room temperature for 1h
after two washes of the plate. Then, 70 pL fluorant
Cy3-streptomycin avidin was added to each well and
cultured by oscillation at room temperature for 2h.
Finally, the fluorescent signal was detected by the Cy3 or
green channel (532 nm).

Flow cytometric sorting for CD4" T cells

Specific fluorescent antibody-labeled CD4" T cells were
separated from mouse spleen mononuclear cells by flow
cytometry. C57BL/6 mice aged 10 weeks were euthanized
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by cervical dislocation to isolate splenocytes. Then, a
single-cell suspension was prepared by using mechanical
trituration method where the tissue was ground through a
300-mesh sieve. Subsequently, mouse spleen mono-
nuclear cells were re-suspended using 50% and 70% Per-
coll separating media (GE Healthcare Life Sciences, USA).
Density-gradient centrifugation was undertaken at 2500
rpm for 25 min following red blood cell lysis. The steps
mentioned above were performed at a fast pace, at 4 °C or
on ice. For cell surface staining, the antibodies (FITC-
anti-CD4) were incubated with the single-cell suspension
for at least 30 min at 4 °C. FITC-anti-CD4 antibody was
purchased from BD Bioscience (USA). Cells were sorted
with the flow cytometer FACS Aria II (Becton, Dickinson
and Company).

Flow cytometric analysis for the proportion of nTreg cells

CD4" T cells sorted from the splenocytes of healthy
mice were with or without preactivation by anti-CD3/
CD28 mAbs (1 pg/mL) (eBioscience, USA) for 72 h. Then,
the cells were stimulated with different concentrations of
Bi-AA (1078 1077, or 10 ®mol/L), with or without
metoprolol (the B;-AR-specific blocker, 10~® mol/L), for
24 h. Subsequently, CD4" T cells were surface stained
with anti-CD4/CD25 mAbs (FITC/phycoerythrin (PE))
for 30 min at 4°C. After staining, cells were fixed and
permeabilized using an intracellular fixation and per-
meabilization buffer set (eBioscience, USA), followed
by intracellular staining with anti-FoxP3 mAb (BV421)
(BD Bioscience, USA). The stained cells were centrifuged
at 1500rpm for 5min, and re-suspended in 250 pL
flow cytometric buffer solution (1% FBS in phosphate-
buffered saline (PBS)). Flow cytometry was performed on
the FACS Aria II flow cytometer (Becton, Dickinson and
Company).

Effect of B,-AA on CD4" T cell absorption of palmitic acid
and subsequent FAO

BODIP is a fat-soluble fluorescent probe. Coupling
of BODIP and palmitate can be used to observe the cellular
FAO level (Life Technologies, USA). A 5mmol stock
solution was prepared by dissolving the BODIPY—palmitate
into dimethyl sulfoxide, and then diluted in PBS buffer to a
working concentration of 0.5 pmol. All intervention factors
and BODIPY—palmitate were added to the activated CD4"
T cells and cultured at 37°C for 48 h. Finally, the fluor-
escent intensity of each tube was detected with the FACS
Aria II flow cytometer (Becton, Dickinson and Company).

Measurement of the ATP content

The ATP content in CD4" T cells of B;-AA-positive
mice was determined using a kit purchased from Beyo-
time Institute of Biotechnology (China) according to the
manufacturer’s protocol.
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Western blotting

The expression of AMPK in CD4" T cells was deter-
mined by Western blot analysis. CD4" T cells were
separated from the splenic tissues of the ;-AA-positive
mice and immediately lysed. The supernatant protein was
extracted by centrifugation. The supernatant protein was
analyzed by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis at a 50 pug sample volume. After electro-
phoresis, the PVDF membranes were transferred and
blocked with 5% non-fat milk powder in TBST buffer for
1 h, and then incubated with anti-AMPKa2 mAb (1:1000;
Abcam, Cambridge, UK), anti-phospho-AMPKa2 (Thr-
172) mAb (1:1000; Abcam, Cambridge, UK) or anti-
phospho-AMPKa2 (S491) mAb (1:1000; Abcam, Cam-
bridge, UK) or anti-GAPDH mAb (Cell Signaling Tech.,
Danvers, MA, USA) at 4°C overnight. The membranes
were incubated with the corresponding secondary anti-
bodies. Finally, the grayscale values of the straps were
analyzed by Image ] software after development.

Genotype identification of IL-10~'~ mice

The genotype of AMPKa2 '~ mice was identified by
PCR of tail genomic DNA, using the following specific
primers: 5'-GCT TAG CAC GTT ACC CTG GAT GG-3'
(forward, common), 5'-GCA TTG AAC CAC AGT CCT
TCC TC-3’ (reverse 1, mutation), and 5'-GTT ATC AGC
CCA ACT AAT TAC AC-3’ (reverse 2, wild type). Each
25-ul PCR mixture contained 20 pmol of each primer.
The reaction conditions of PCR were as follows: 95 °C, 5
min; 94 °C, 30s; 64 °C, 355, then 35 cycles of 72°C, 45,
followed by a final 3 min at 72 °C.

JC-1 staining

When the cellular MMP remained stable, JC-1 aggre-
gated in the mitochondrial matrix, producing red fluor-
escence; when MMP was reduced, JC-1 was present as a
monomer in the cellular matrix, producing green fluor-
escence. Therefore, changes in MMP can be detected by
observing the percentage of the red and green fluores-
cence. Briefly, 48 h after stimulation of activated CD4"
T cells (10° cells per well) with B;-AA, cells were re-
suspended in 0.5mL RPMI medium 1640 (Hyclone,
USA). After the addition of 0.5 mL JC-1 dye, cells were
cultured in a 37 °C incubator for 20 min. Then, cells were
re-suspended by the addition of 300 uL JC-1 staining
buffer after being washed with JC-1 staining buffer in a
centrifuge at 600 x g and 4 °C for 3 min twice. Finally, the
red and green fluorescent intensity of each tube were
detected and analyzed using the FACS Aria II flow
cytometer.

Statistical analysis
Data are presented as mean * SD. Statistical analysis was
performed with the SPSS Statistics software (version 16.0,
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SPSS Inc., Chicago, IL, USA). The differences between
groups were analyzed using independent sample ¢ tests,
one-way or two-way analysis of variance (between dif-
ferent mice strains). Histograms were produced by
GraphPad Prism 6 (GraphPad Software Inc., USA). A
P value <0.05 was considered statistically significant.
Differences in the heat map of cluster analysis were sta-
tistically significant when the fold change between two
groups was >1.5.
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