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Quantification of frequency-dependent genetic
architectures in 25 UK Biobank traits reveals action
of negative selection
Armin P. Schoech 1,2,3, Daniel M. Jordan 4, Po-Ru Loh 3,5, Steven Gazal 1,3, Luke J. O’Connor 1,2,3,

Daniel J. Balick5,6, Pier F. Palamara 7, Hilary K. Finucane 3, Shamil R. Sunyaev 3,5,6 & Alkes L. Price 1,2,3

Understanding the role of rare variants is important in elucidating the genetic basis of human

disease. Negative selection can cause rare variants to have larger per-allele effect sizes than

common variants. Here, we develop a method to estimate the minor allele frequency (MAF)

dependence of SNP effect sizes. We use a model in which per-allele effect sizes have variance

proportional to [p(1− p)]α, where p is the MAF and negative values of α imply larger effect

sizes for rare variants. We estimate α for 25 UK Biobank diseases and complex traits. All

traits produce negative α estimates, with best-fit mean of –0.38 (s.e. 0.02) across traits.

Despite larger rare variant effect sizes, rare variants (MAF < 1%) explain less than 10% of

total SNP-heritability for most traits analyzed. Using evolutionary modeling and forward

simulations, we validate the α model of MAF-dependent trait effects and assess plausible

values of relevant evolutionary parameters.

https://doi.org/10.1038/s41467-019-08424-6 OPEN

1 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston 02115 MA, USA. 2Department of Biostatistics, Harvard T.H. Chan School of
Public Health, Boston 02115 MA, USA. 3 Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge 02142 MA, USA.
4 Charles R. Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York 10029 NY, USA. 5Division of Genetics,
Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston 02115 MA, USA. 6 Department of Biomedical Informatics,
Harvard Medical School, Boston 02115 MA, USA. 7Department of Statistics, University of Oxford, Oxford OX1 3LB, UK. Correspondence and requests for
materials should be addressed to A.P.S. (email: aschoech@hsph.harvard.edu) or to A.L.P. (email: aprice@hsph.harvard.edu)

NATURE COMMUNICATIONS |          (2019) 10:790 | https://doi.org/10.1038/s41467-019-08424-6 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-9312-9513
http://orcid.org/0000-0001-9312-9513
http://orcid.org/0000-0001-9312-9513
http://orcid.org/0000-0001-9312-9513
http://orcid.org/0000-0001-9312-9513
http://orcid.org/0000-0002-5318-8225
http://orcid.org/0000-0002-5318-8225
http://orcid.org/0000-0002-5318-8225
http://orcid.org/0000-0002-5318-8225
http://orcid.org/0000-0002-5318-8225
http://orcid.org/0000-0001-5542-9064
http://orcid.org/0000-0001-5542-9064
http://orcid.org/0000-0001-5542-9064
http://orcid.org/0000-0001-5542-9064
http://orcid.org/0000-0001-5542-9064
http://orcid.org/0000-0003-4510-5730
http://orcid.org/0000-0003-4510-5730
http://orcid.org/0000-0003-4510-5730
http://orcid.org/0000-0003-4510-5730
http://orcid.org/0000-0003-4510-5730
http://orcid.org/0000-0003-2730-9668
http://orcid.org/0000-0003-2730-9668
http://orcid.org/0000-0003-2730-9668
http://orcid.org/0000-0003-2730-9668
http://orcid.org/0000-0003-2730-9668
http://orcid.org/0000-0002-7999-1972
http://orcid.org/0000-0002-7999-1972
http://orcid.org/0000-0002-7999-1972
http://orcid.org/0000-0002-7999-1972
http://orcid.org/0000-0002-7999-1972
http://orcid.org/0000-0003-3864-9828
http://orcid.org/0000-0003-3864-9828
http://orcid.org/0000-0003-3864-9828
http://orcid.org/0000-0003-3864-9828
http://orcid.org/0000-0003-3864-9828
http://orcid.org/0000-0001-5715-5677
http://orcid.org/0000-0001-5715-5677
http://orcid.org/0000-0001-5715-5677
http://orcid.org/0000-0001-5715-5677
http://orcid.org/0000-0001-5715-5677
http://orcid.org/0000-0002-2971-7975
http://orcid.org/0000-0002-2971-7975
http://orcid.org/0000-0002-2971-7975
http://orcid.org/0000-0002-2971-7975
http://orcid.org/0000-0002-2971-7975
mailto:aschoech@hsph.harvard.edu
mailto:aprice@hsph.harvard.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The contribution of rare variants to the genetic architecture
of human diseases and complex traits is a question of
fundamental interest, which can inform the design of

genetic association studies and shed light on the action of nega-
tive selection1,2. Recently, several studies have investigated the
relationship between minor allele frequency (MAF) and trait
effects3–6. However, these studies have analyzed a small number
of traits and have not evaluated the genome-wide contribution of
rare variants (MAF < 1%), which remains unknown7.

Here we develop a profile likelihood-based mixed model
method to infer MAF-dependent architectures from genotype
and phenotype data. We apply our method to 25 complex traits
and diseases from the UK Biobank data set, analyzing data from
113,851 individuals and 11,062,620 SNPs, including rare variants
(MAF > 0.07%). Our analysis shows that rare variants have sig-
nificantly increased per-allele effect sizes for most traits, with
significant heterogeneity across traits. For each of these traits we
also estimate the phenotypic variance explained by variants in
different frequency ranges, including rare variants.

It is widely believed that frequency-dependence of SNP effect
sizes is due to increased negative selection on variants that affect
complex traits1,2,8–11. Specifically, if SNPs that affect a trait are
more likely to be under negative selection, they will be enriched
in the lower-frequency spectrum, so that lower-frequency SNPs will
on average have larger trait effects. Thus, MAF-dependent archi-
tectures estimated from genotype and phenotype data can shed light
on evolutionary parameters. Previous studies have used MAF-
dependent architectures or related information to estimate a cou-
pling parameter9 between fitness effects and their trait effects for
prostate cancer6 and type 2 diabetes12,13. In this work, we use
evolutionary modeling and forward simulations to investigate
whether our parameterization of MAF-dependent effects (α model;
see below) is consistent with evolutionary models, estimate the
coupling between fitness effects and trait effects, and draw infer-
ences about the average genome-wide strength of negative selection.

Results
Overview of methods. We assume a previously proposed
random-effect model14,15 (here referred to as the α model), in
which the per-allele trait effect β of a SNP depends on its MAF p
via:

E β2jp� � ¼ σ2g;α � 2p 1� pð Þ½ �α ð1Þ

A negative value of α implies that lower-frequency SNPs have
larger per-allele effect sizes, whereas α= 0 implies no depen-
dence, and σ2g;α is the component of SNP effect variance that is
independent of frequency. We note that Eq. (1) pertains to

genome-wide SNPs, including SNPs that do not affect the trait.
The α model is simple and convenient, but has not previously
been validated by evolutionary modeling.

For a given set of genotype and phenotype data, we estimate α
using a linear mixed model framework16. The model likelihood
depends on α, σ2g;α, and the environmental variance (see
Methods). We compute the profile likelihood over values of α
by maximizing the likelihood with respect to σ2g;α and the
environmental variance for a given α. Our estimate α̂ is defined
as the mode of the profile likelihood curve, whose width is used
to compute error estimates. We show that the corresponding
values of σ̂2g;α can be used to estimate the SNP-heritability h2g
while accounting for MAF-dependent SNP effects, which can bias
h2g estimates when not accounted for14,15. We include linkage
disequilibrium (LD)-dependent SNP weights17 in our model,
to avoid biases due to LD-dependent architectures4,14,18,19.
Details of the method are described in the Methods section; we
have released open-source software implementing the method
(see URLs).

Simulations. We evaluated our method using simulations based
on imputed UK Biobank genotypes20 and simulated phenotypes,
using N= 5000 individuals and M= 100,000 consecutive SNPs
from a 25Mb block of chromosome 1 (see Methods). We used
default parameter settings of α =− 0.3, h2g ¼ 0:4, 1% of SNPs
causal, imputation noise based on actual imputed genotype
probabilities, and LD-dependent effects17, but we also considered
other parameter settings for each of these. Imputation noise was
introduced by randomly sampling the genotypes used to simulate
phenotypes from imputed genotype probabilities, while still using
the expected dosage values for inference (see Methods).

In Table 1, we report α estimates at default and other
parameter settings, both using LD-dependent weights ðα̂Þ and
without using LD-dependent weights ðα̂noLDÞ. In simulations with
LD-dependent effects, α̂ was unbiased at all parameter settings
tested, while α̂noLD was upward biased by approximately 0.1. In
simulations without LD-dependent effects, α̂ was downward
biased by less than 0.1, while α̂noLD was unbiased. These
simulations suggest that our method provides unbiased estimates
of α when LD is correctly modeled, and only modestly biased
estimates of α when LD is not correctly modeled. Importantly,
imputation noise does not induce bias, indicating that our
method is unbiased even if causal SNPs are not perfectly tagged.
Although values of N andM in our main simulations were chosen
to approximately match the power of the UK Biobank traits
analyzed (which scales with N=

ffiffiffiffiffi
M

p
; ref. 21), similar results were

obtained when N was reduced to 2500, a setting with lower power
(Table 1). Finally, we compared our profile likelihood standard
error estimates to empirical standard errors from simulations. We

Table 1 Estimates of α in simulations

α h2g Sample size Polygenicity (%) Imputation noise LD dependent effects Mean α̂ Mean α̂noLD
−0.3 0.4 5000 1 Yes Yes −0.276 ± 0.017 −0.192 ± 0.019
0.0 0.4 5000 1 Yes Yes 0.021 ± 0.020 0.120 ± 0.017

−0.6 0.4 5000 1 Yes Yes −0.573 ± 0.014 −0.471 ± 0.015
−0.3 0.2 5000 1 Yes Yes −0.260 ± 0.024 −0.148 ± 0.024
−0.3 0.4 5000 100 Yes Yes −0.308 ± 0.012 −0.195 ± 0.013
−0.3 0.4 5000 1 No Yes −0.304 ± 0.016 −0.191 ± 0.017
−0.3 0.4 5000 1 Yes No −0.373 ± 0.017 −0.284 ± 0.017
−0.3 0.4 2500 1 Yes Yes −0.269 ± 0.026 −0.157 ± 0.025
−0.3 0.2 2500 1 Yes Yes −0.266 ± 0.052 −0.160 ± 0.034

We simulated phenotypes using imputed UK Biobank genotypes and applied our method to infer α. In each line we show results from phenotypes that were simulated using various values of α, h2g ,
sample size, and the proportion of causal SNPs. In most simulations, imputation noise and LD dependent SNP effects were included in the simulated phenotypes. In each case we report the mean
estimated α and standard error of the mean, using our estimation method either with LD correction α̂ð Þ or without LD correction α̂noLD

� �
.
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determined that standard error estimates slightly underestimated
true standard errors at N= 5000, M= 100,000 (likely due to the
small number of causal SNPs in these simulations), but were well-
calibrated in simulations at larger values of N and M (see
Supplementary Table 1), indicating well-calibrated error esti-
mates when using even larger values of N andM in our analysis of
UK Biobank traits. The profile likelihood curves were smooth and
unimodal at all parameter settings (see Supplementary Figure 1).

Although the main focus of this paper is on obtaining and
interpreting estimates of α, we also used our simulation
framework to evaluate the effectiveness of our method in
obtaining SNP-heritability estimates that avoid biases due to
MAF-dependent and LD-dependent architectures. In Supple-
mentary Table 2 we report SNP-heritability estimates using
our method, both using LD-dependent weights ðĥ2αÞ and without
using LD-dependent weights ðĥ2α;noLDÞ, and using GCTA with a

single variance component ðĥ2GCTAÞ22. ĥ2α and ĥ2α;noLD were
roughly unbiased at all parameter settings, while GCTA with a
single variance component produced biased estimates, consistent
with previous work4,14. Other methods of avoiding bias due
to MAF-dependent and LD-dependent architectures have
recently been proposed, including GREML-LDMS4 and LDAK19;
a complete benchmarking of SNP-heritability estimation methods
is provided in ref. 23.

Analysis of 25 UK Biobank traits. We applied our method
to 113,851 British-ancestry individuals from the UK Biobank with
1000 Genomes- and UK10K-imputed genotypes at 11,062,620
SNPs with at least 5 minor alleles in the UK10K reference panel
(MAF > 0.07%; see Methods). We analyzed 25 heritable, poly-
genic traits with at least 50% of individuals phenotyped (Table 2).
Phenotype values were corrected for fixed effects, including sex
and 10 principal components (see Methods). Profile likelihood
curves for all 25 traits are displayed in Supplementary Figure 2.
We observed that the curves were smooth and unimodal (con-
sistent with simulations; Supplementary Figure 1), suggesting that
estimates of α are likely to be robust.

In Table 2, we report estimates of α for all 25 traits. All traits
had negative α estimates (with most estimates lying between −0.5
and −0.2), and 20 traits had significantly negative estimates (i.e.,
95% credible intervals did not overlap zero), implying that lower-
frequency SNPs have larger per-allele effect sizes. We observed
statistically significant heterogeneity in estimates of α across the
25 traits (P= 0.0014), consistent with different levels of (direct
and/or pleiotropic) negative selection across traits (see Discus-
sion); our test for heterogeneity accounts for estimation noise,
which varies across traits depending on heritability and sample
size (see Methods). We estimated the underlying distribution of
true (unobserved) values of α to have mean −0.38 (s.e. 0.02) and
standard deviation 0.08 (s.e. 0.03), assuming a normal distribu-
tion (see Methods). We obtained very similar results when
repeating the entire analysis using 9,336,687 SNPs with MAF >
0.3% in the UK10K reference panel (Supplementary Table 3); we
note that these results are unlikely to be affected by imputation
error, because simulation results in Table 1 show that our
method is not significantly affected by imputation error under
correctly calibrated imputation accuracies, and because we further
determined that MAF > 0.3% SNPs generally have well-calibrated
imputation accuracies (Supplementary Figure 3).

We estimated the proportion of SNP-heritability explained by
SNPs in each part of the MAF spectrum, for different values of α.
This computation relies on the empirical MAF spectrum in
UK10K, as heritability per MAF bin depends both on heritability
per SNP and number of SNPs per MAF bin (see Methods).
Results are reported in Fig. 1. We determined that rare and low-

Table 2 Estimates of α for 25 UK Biobank traits

Phenotype Sample size α̂ [95% CI]

Age of menarche 58,329 −0.40 [−0.63, −0.11]
Blood pressure
(diastolic)

104,835 −0.39 [−0.54, −0.20]

Blood pressure
(systolic)

104,835 −0.38 [−0.54, −0.18]

BMI 113,540 −0.24 [−0.38, −0.06]
Bone mineral density 110,611 −0.35 [−0.45, −0.23]
FEV1/FVC 97,075 −0.44 [−0.55, −0.31]
FVC 97,075 −0.15 [−0.31, 0.04]
Height 113,660 −0.45 [−0.52, −0.39]
Smoking status 113,560 −0.16 [−0.43, 0.21]
Waist-hip ratio 113,668 −0.17 [−0.43, 0.19]
Allergic eczema 113,707 −0.60 [−0.85, −0.26]
Asthma 113,707 −0.25 [−0.60, 0.28]
College education 112,811 −0.32 [−0.54, −0.04]
Hypertension 113,689 −0.18 [−0.46, 0.21]
Eosinophil count 108,957 −0.40 [−0.54, −0.24]
High light scatter
reticulocyte count

108,785 −0.53 [−0.65, −0.38]

Lymphocyte count 108,664 −0.52 [−0.63, −0.38]
Mean corpuscular
hemoglobin

108,513 −0.42 [−0.53, −0.31]

Mean sphered cell
volume

109,523 −0.43 [−0.56, −0.28]

Monocyte count 110,026 −0.19 [−0.35, −0.01]
Platelet count 109,971 −0.19 [−0.32, −0.03]
Platelet distribution
width

109,938 −0.27 [−0.44, −0.07]

Red blood cell count 110,054 −0.39 [−0.51, −0.25]
Red blood cell
distribution width

109,913 −0.20 [−0.36, −0.01]

White blood cell
count

110,186 −0.25 [−0.42, −0.03]

We computed α estimates for 25 UK Biobank traits, including 10 quantitative traits, 4
case–control traits, and 11 blood cell traits (all quantitative). The reported 95% credible intervals
were calculated from the profile likelihood curves using a flat prior
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Fig. 1 Fraction of SNP-heritability in different MAF ranges given α. We
report the fraction of SNP-heritability explained by SNPs up to a certain
MAF (x-axis), for different values of α. For example, assuming α=−0.4,
SNPs with MAF ≤ 5% collectively explain about 20% of the total SNP-
heritability. These results are based on the UK10K allele frequency
spectrum and our model assumption that squared per-allele effects
are proportional to [2p(1− p)]α. Source data are provided as a Source
Data file

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08424-6 ARTICLE

NATURE COMMUNICATIONS |          (2019) 10:790 | https://doi.org/10.1038/s41467-019-08424-6 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


frequency variants contribute a very small proportion of SNP-
heritability at the mean α estimate of −0.38, and a relatively
small proportion of SNP-heritability even for the most negative
α estimate of −0.60. Specifically, at α=−0.38 (s.d. 0.08), only
8.9% (s.d. 2.7%) of SNP-heritability is explained by SNPs with
MAF < 1%. We also used α̂ to obtain total SNP-heritability
estimates corrected for biases due to MAF-dependent and LD-
dependent architectures for each of the 25 traits (Supplementary
Table 4; see Methods).

The above analysis used LD-dependent weights based on a
model of ref. 17, with an LD-dependent architecture parameter of
τ*=−0.3. (A negative value of τ* implies that, at a given MAF,
low-LD SNPs have larger causal effect sizes.) We also performed
an analysis in which MAF-dependent and LD-dependent effects
are estimated jointly, maximizing the profile likelihood over
values of both α and τ* for each of the 25 UK Biobank traits
(see Methods). Results are reported in Supplementary Table 5.
The best-fit τ* was generally close to τ*=−0.3. Although a
different value of τ* provided the best fit for some traits, the
overall impact on α estimates was small, with the best-fit
distribution of true (unobserved) values of α across traits
changing from −0.38 (s.d. 0.08) to −0.35 (s.d. 0.11).

Effect of negative selection on MAF-dependent architectures.
Frequency-dependent trait effect sizes have been widely attributed to
negative (purifying) selection on variants that affect complex traits,
which causes them to be enriched for lower-frequency variants, so
that lower-frequency SNPs will have larger traits effects1,2,8–11. Here
we use evolutionary modeling to predict the frequency-dependent
architecture of a trait, given the coupling between fitness effects and
trait effects. The aim of this analysis was to investigate whether the α
model (Eq. 1) is consistent with the predictions of evolutionary
models, and to draw conclusions about evolutionary parameters
from our estimates of α across 25 UK Biobank traits.

We used an evolutionary model of Eyre-Walker9, which
introduces a parameter τ quantifying the coupling between a
SNP’s fitness effect (selection coefficient s) and target trait effect
size (β); τ > 0 implies that SNPs under negative selection have
larger trait effect sizes on average, whereas τ= 0 corresponds to
no coupling. Using this model, we derived two analytical results.
First, it is straightforward to show that

E β2jp� � / Eðs2τ jpÞ ð2Þ

where p is minor allele frequency (see Methods). This implies that
increased trait effects for lower-frequency variants requires both
that lower-frequency variants have significantly larger selection
coefficients s and that τ > 0. Second, based on Eq. (2), we
analytically evaluated E(s2τ|p) to quantify the MAF-dependence
of SNP effects under the Eyre-Walker model (see Methods). In
this derivation, we ignored LD between selected SNPs, assumed a
constant effective population size Ne, and assumed that selection
coefficients s of SNP loci across the genome are drawn from a
gamma distribution, with mean �s and shape parameter k (ref. 24).
(We note that k parametrizes the polygenicity of fitness and trait
effects; see Methods.) Under these assumptions, we derived the
result that there exists a MAF threshold T such that for p > T the
α model approximately holds, but for p < T trait effects are
approximately independent of frequency (see Methods). The
threshold is

T ¼ k
4Ne�s

ð3Þ

Intuitively, this threshold corresponds to the maximum
frequency at which even the most strongly selected SNPs are

still only affected by genetic drift, with their frequency being
too low to be significantly affected by selection. We note that T is
independent of the trait analyzed, since �s and k parametrize
the distribution of genome-wide selection coefficients.

Although our derivation of Eq. (3) ignored the effects of
demographic changes and LD, we confirmed this result by
performing forward simulations using SLiM225, using a European
demographic model26 and realistic LD patterns (see Methods).
Specifically, for a given τ we computed E(s2τ|p) in Eq. (2) from
the s and p values of simulated SNPs. Our main simulations
assumed τ= 0.4, Ne= 10,000, �s ¼ 0:001 and k= 0.25 (ref. 24), so
that T= 0.006 (Eq. 3). Results are reported in Fig. 2, which shows
that for p > T= 0.006 the α model with best-fit α=−0.32
provides a good fit, but for p < T= 0.006 the effect sizes are less
MAF-dependent and are thus significantly smaller than expected
under the α model. Results at other parameter settings were
qualitatively similar, with the threshold varying according to Eq.
(3) (see Supplementary Figure 4). These simulations provide an
important validation of our analytical derivations, which are
limited by unrealistic assumptions of no LD and constant
population size.

We sought to draw inferences about the threshold T for UK
Biobank traits. To do so, we computed values of α̂common � α̂,
where α̂common is similar to α̂ but uses only SNPs with MAF > 5%
for inference (6,273,557 SNPs with MAF > 5% instead of
11,062,620 SNPs with MAF > 0.07%). If a large proportion of
SNPs had MAF below T, we would expect to obtain smaller
(more negative) values of α̂common, since SNPs of MAF below T
with less MAF-dependent effects would be ignored. However,
α̂common � α̂ was not significantly different from zero for any of
the 25 UK Biobank traits (see Supplementary Table 6), nor was
the best-fit estimate across traits, which actually increased slightly
from −0.38 (s.e. 0.02) for α̂ to −0.35 (s.e. 0.02) for α̂common. We
subsequently simulated traits using Tsim of 0%, 5% and 10% and
genome-wide UK Biobank genotypes (see Methods), in order to
assess which value of Tsim was most consistent with α̂common � α̂
for UK Biobank traits. (We caution that this should not be viewed
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Fig. 2 MAF-dependence of SNP effects in evolutionary forward simulations.
Forward simulations confirm that α model approximately holds above the
MAF threshold T ¼ k

4Ne�s
. We report simulated mean squared SNP effect

sizes at a given MAF on a log-log plot, assuming τ= 0.4 and a genome
wide selection coefficient distribution with mean �s ¼ 10�3 and shape
parameter k= 0.25. Data points represent the mean squared effect size
of 1000 SNPs of similar MAF, calculated assuming Eq. (2). The blue curve
represents mean squared effect sizes under the α model (Eq. 1) with
α=−0.32, fitted to SNPs above the MAF threshold T. The MAF threshold
T= 0.006 is indicated by a dotted red line. Source data are provided as
a Source Data file
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as a formal hypothesis test for the value of T.) Specifically, we
simulated traits mimicking UK Biobank height in heritability,
sample size and α. Due to computational constraints, we did not
simulate traits other than height; however, since T is the same
across traits (see Eq. 3), we expect conclusions to be similar. (We
note that these simulations did not make any assumptions about
demography, but simply simulated SNP effects on the target trait
using the α model with threshold Tsim and UK Biobank imputed
genotypes.) We determined that the α̂common � α̂ value of 0.02
(s.e. 0.05) for UK Biobank height was significantly different from
the value for Tsim= 0% (−0.10 (s.d. 0.02); p= 0.01 for
difference), and very significantly different from values for Tsim

= 5% (−0.16 (s.d. 0.01); p= 0.0002 for difference) and Tsim=
10% (−0.19 (s.d. 0.02); p= 0.0007 for difference) (see Supple-
mentary Table 7), suggesting some form of model misspecifica-
tion. In simulations with more strongly LD-dependent
architectures for common variants, results were concordant with
UK Biobank height for Tsim= 0% only (−0.01 (s.d. 0.07); p= 0.7
for difference) (see Supplementary Table 7). However, other
forms of model misspecification are possible, such as violations of
the Eyre-Walker fitness-trait coupling model9 (see Discussion
and refs. 27,28) or of the assumption of gamma distributed SNP
fitness effects. In summary, our results are somewhat supportive
of T < 5%, i.e., the α model provides a good fit for common SNPs
(MAF ≥ 5%) but may overestimate SNP effect magnitudes of
SNPs with MAF < 5%, but this should not be viewed as a
conclusive finding.

Finally, we sought to draw conclusions about the values of the
average genome-wide selection coefficient �s and the Eyre-Walker
coupling parameter τ. First, a threshold T < 5% would imply an
average selection coefficient �s> 5k

Ne
. Assuming Ne= 10,000 (ref. 29)

and k= 0.25 (ref. 24), �s would be on the order of 10−4 or stronger.
We caution that this bound on �s relies on our bound on T, which
should not be viewed as a conclusive finding. Second, we
determined that the best-fit estimate of α̂ ¼ �0:38 across 25 traits
corresponds to a τ value in the range [0.3,0.5] (Fig. 3; see
Methods). We reached this conclusion by repeating our forward
simulations for τ 2 0; 1½ � (vs. τ= 0.4 above), �s 2 0:0001; 0:001f g
(vs. 0.001 above) and k2 0:125; 0:25f g (vs. 0.25 above) and fitting
the α model using SNPs above the threshold T from Eq. (3).
Figure 3 shows that the best-fit α depends primarily on τ, with
only weak dependence on �s and k. Estimates of τ for each of the
25 traits are provided in Supplementary Table 8. We caution that
the above conclusions about �s and τ rely on an estimate of the
shape parameter k from ref. 24, which focused on coding SNPs. It
is possible that k may differ substantially between coding and
non-coding variants. We thus repeated our analyses at a wider
range of values of k (0.0625, 0.125, 0.25, 0.5, and 1). First, a value
of k ≥ 0.0625 would imply that �s is likely on the order of 3 × 10−5

or stronger. Second, the best-fit estimate of α̂ ¼ �0:38 across 25
traits now corresponds to a τ value in the range [0.3,0.8]
(Supplementary Figure 5).

Discussion
We have quantified the MAF-dependent architectures of 25 dis-
eases and complex traits under the α model14,15 (Eq. 1). We
inferred negative values of α̂ for all 25 traits and significantly
negative values for 20 traits, corresponding to higher trait effects
for lower-frequency SNPs. The best-fit distribution of α across
traits had mean −0.38 (s.e. 0.02) and standard deviation 0.08 (s.e.
0.03), implying that only 8.9% (s.d. 2.7%) of SNP-heritability is
explained by rare SNPs (MAF < 1%), despite significantly larger
effects for rare variants. Although rare variants explain relatively
little heritability, rare variant association studies may still identify
variants of large effect that reveal interesting biology and

actionable drug targets11,30. On the other hand, rare variants will
likely play only a limited role in polygenic risk prediction, which
will be largely driven by common variants.

Using evolutionary modeling and simulations, we determined
that our results are somewhat supportive of T < 5%, i.e., the αmodel
provides a good fit for common SNPs (MAF ≥ 5%) but may
overestimate effect magnitudes of rare and low-frequency SNPs; our
estimate of 8.9% (s.d. 2.7%) of SNP-heritability explained by rare
SNPs (MAF < 1%) should therefore be viewed as a suggestive upper
bound. This would imply an average genome-wide negative selec-
tion coefficient on the order of 10−4 or stronger, given the MAF-
dependent architectures that we inferred. The best-fit α estimate
across 25 traits implies an Eyre-Walker9 τ parameter between 0.3
and 0.5, quantifying the coupling between fitness effects and trait
effects. These findings are conditional on the assumption that the
shape parameter k of the fitness effect distribution of genome-wide
SNPs does not substantially differ from the value inferred for coding
variants by ref. 24. Under a broader range of possible values of k, �s
would be on the order of 3 × 10−5 or stronger, and the best-fit α
estimate across 25 traits implies a τ value between 0.3 and 0.8. We
caution that these results may be impacted by violations of model
assumptions, such as the Eyre-Walker fitness-trait coupling model9

(see discussion below) or the gamma distribution of SNP fitness
effects; these assumptions have been frequently employed6,9,12,13,
but may not perfectly fit UK Biobank traits. Our finding that esti-
mates of α (and hence τ) vary only modestly across traits is con-
sistent with the action of pleiotropic selection, in which SNPs that
affect the target trait also affect other selected traits27,31; under
direct selection, greater variation in τ would be expected, and traits
that are not directly selected would have τ= 0.

Recent studies have investigated MAF-dependent architectures
in genome-wide analyses of schizophrenia3,5, as well as height
and BMI4. These studies analyzed a small number of traits, and
either did not analyze rare variants3,5 or aggregated all MAF <
10% variants into a single MAF bin4, underscoring the difficulty
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Fig. 3 Value of α as a function of τ and other parameters in forward
simulations. We report best-fit α estimates for simulations at each value of
τ at a given genome-wide average selection coefficient �s. Selection
coefficients were sampled using a gamma distribution shape parameter of
k= 0.25 (solid lines) or k= 0.125 (dotted lines). α estimates where
calculated by fitting the model in Eq. (1) to simulated SNP effects above
twice the MAF threshold 2T ¼ k

2Ne�s
(in order to avoid edge effects near T),

with error bars representing standard errors calculated by bootstrap
resampling of 25 independent SLiM2 simulations. The horizontal dashed
line indicates α=−0.38, the best-fit α across the 25 UK Biobank traits.
Results for a broader range of k values are reported in Supplementary
Figure 5. Source data are provided as a Source Data file
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of obtaining precise estimates of rare variant heritability
using the MAF bin approach. Another study used targeted
sequencing of 63 prostate cancer risk regions to conclude that
42% (s.e. 11%) of the prostate cancer SNP-heritability attributable
to these regions in African Americans is due to rare SNPs
(MAF < 1%), although rare variant heritability in Europeans was
non-significant6.

A more recent study introduced a revised LDAK method19

(revising an earlier LDAK method14) and estimated a parameter
that it referred to as α. We refer to this parameter as αLDAK,
because it is different from the parameter α that was previously
described in refs. 14,15 and that is defined and estimated in this
paper. Specifically, the Discussion section of ref. 19 states that the
SNP effect size variance is proportional to ½pjð1� pjÞ�αLDAK .
However, that statement is incorrect. Actually, under the model
of ref. 19, the SNP effect size variance is proportional to
½pjð1� pjÞ�αLDAK � wj, where wj is an LD-dependent weight (see Eq.
(1) of ref. 19). Unlike the LD-dependent weights that we use17,
wj is dependent on MAF, with lower frequency SNPs having
higher values of wj. Thus, SNP effect size is specifically not pro-
portional to ½pjð1� pjÞ�αLDAK , and αLDAK is a parameter that is
different from α. Indeed, our simulations confirmed that esti-
mates of αLDAK obtained using the LDAK software were upward
biased by roughly 0.4 compared to the true α as defined in pre-
vious work14,15 and this paper (see Supplementary Table 9).
Thus, the revised LDAK method and software19 cannot be used
to estimate α.

A study conducted in parallel to this work investigated MAF-
dependent architectures of 28 UK Biobank traits32 using a
Bayesian method to estimate a parameter identical to the α
parameter that we estimate. Results of ref. 32 were broadly similar
to our results, but we note four key differences between the
studies. First, ref. 32 analyzed 483,634 Affymetrix SNPs with
MAF > 1%, noting that analyzing a larger number of imputed
SNPs would be computationally challenging for their BayesS
inference model. On the other hand, we were able to analyze
11,062,620 typed and imputed SNPs with MAF > 0.07%, because
the most computationally intensive step of our method (running
REML; see Methods) is independent of the number of SNPs.
However, we determined here that inclusion or exclusion of rare
variants does not significantly affect our results (see Supple-
mentary Table 6). Second, ref. 32 used an elegant approach to
infer the polygenicity of each trait. Third, ref. 32 estimated SNP
effects jointly and conditionally using a sparse model, which
accounts for LD between SNPs but does not account for LD-
dependent causal effect sizes17. Our method accounts for LD-
dependent causal effects, and we show that this has a non-
negligible impact on our estimates of α (see Table 1); it is cur-
rently unclear whether estimates of ref. 32 would be impacted by
LD-dependent causal effect sizes. Fourth, although ref. 32 per-
formed forward simulations to show that their findings implicate
negative selection on trait-affecting SNPs, they did not use these
simulation results to investigate the validity of their parametric
inference model or to investigate evolutionary parameters. We
note that both ref. 32 and our method rely on the α model (Eq. 1),
a 1-parameter model of the relationship between allele fre-
quencies and trait effect sizes. Evaluating the full joint distribu-
tion of allele frequencies and trait effect sizes could yield
interesting additional information, but would require new
approaches that might be extremely computationally intensive
when applied to very large data sets.

In addition, several recent studies have drawn inferences about
evolutionary parameters that affect complex traits. Refs. 12,13, esti-
mated τ in type 2 diabetes to be approximately 0.1, by comparing
the number of rare and low-frequency associations in empirical

studies to the number in simulations. Ref. 6 estimated τ by
matching the heritability explained by rare SNPs (MAF < 1%)
in their analysis of prostate cancer to simulation results, inferring
τ̂ ¼ 0:48 (95% CI [0.19,0.78]). We are not aware of any previous
study that investigated plausible values of the genome-wide average
strength of negative selection, although ref. 27 used a different
modeling approach to estimate the mutational target load.

We note several limitations in our work. First, our analyses are
restricted to high-prevalence diseases and quantitative traits, as
low-prevalence diseases are not well-represented in the UK Bio-
bank due to random ascertainment. This motivates additional
analyses of low-prevalence diseases, which could potentially be
subject to stronger direct selection. However, we caution that our
method might be susceptible to biases when used to analyze
ascertained case-control traits, as previously described for linear
mixed model based heritability estimation methods33,34, meriting
further investigation. Second, we use the Eyre-Walker model9 to
parameterize the coupling between fitness effects and trait effects.
The Eyre-Walker model has previously proven useful in a variety
of settings6,12,13, but other coupling models are also possible27,28

and merit further exploration. One limitation of the Eyre-Walker
model is that it does not allow for signed correlations between
SNP trait effect and selection coefficient, i.e., the damaging allele
is equally likely to reduce or increase the trait value. This
assumption is violated when the target trait is under direct
selection, but is plausible if selection on the SNP is mainly
pleiotropic, which appears to be the dominant form of selection
for the traits analyzed here (see above). Third, we assume that
the distribution of selection coefficients follows a gamma dis-
tribution. This assumption implies that there are no outlier
SNPs under exceptionally strong negative selection. Such extre-
mely selected SNPs would stay at very low frequencies and only
affect our results if they had extreme effects on the target trait.
However, such SNPs have not been identified for most complex
traits2. Fourth, our analytic derivations ignore LD and assume
a constant population size. Our derivations imply that α=−2τ
(see Methods), but our forward simulations, which include rea-
listic LD patterns and demography, suggest that α=−τ. The
direction of this change is consistent with the action of back-
ground selection due to LD, since strong LD leads to a SNP’s
frequency being influenced not only by its own selection coeffi-
cient but also by the selection coefficients of many other corre-
lated SNPs, leading to a less negative α value for a given τ.
However, this difference could potentially also be due to demo-
graphy35. The impact of LD and demography on α could
potentially be investigated further using forward simulations.
Finally, our forward simulations assume that negative (purifying)
selection is the dominant mode of selection affecting complex
traits. Although positive selection is likely to affect some loci,
recent work has suggested that selective sweeps were rare in
human evolution36 and hence unlikely to have substantial
genome-wide effects on MAF-dependent trait architectures. We
also did not investigate the potential effects of stabilizing selec-
tion27. Despite these limitations, our quantification of MAF-
dependent effect sizes and investigation of the underlying evo-
lutionary parameters is broadly informative for the genetic
architectures of diseases and complex traits.

Methods
Inferring frequency dependence of SNP effects. We assume a linear complex
trait model for N individuals and M SNPs with

y ¼ Xβþ ε;with εi � N 0; σ2ε
� �

i:i:d: ð4Þ
Here, y is a vector of N phenotype values with mean zero, X is the mean-

centered genotype matrix, β is the vector of M SNP effects and ε is a vector of
environmental effects (i.e., any non-SNP effects). Furthermore we assume the effect
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size of SNP j to be a random variable that follows a distribution depending on its
minor allele frequency (MAF) pj:

βj � N 0; σ2g;α � 2pj 1� pj
� �h iα� �

; ð5Þ

where effect sizes of two SNPs are independent conditional on their allele
frequencies. A negative α value indicates larger trait effects on average for lower-
frequency SNPs, whereas σ2g;α is the component of the SNP effect variance
independent of frequency. This model, which we call the α model, has been used in
previous analyses of complex traits14,15. We note that β defines the per-allele SNP
effect which is distinct from the heritability explained by a SNP. Under Hardy-
Weinberg equilibrium and given Eq. (5), the average heritability explained by a
SNP of frequency p is proportional to [2p(1− p)]1+α.

From Eqs. (4) and (5) it follows that the distribution of the phenotype vector y
is a multivariate normal distribution with

y � NN 0;XDαX
Tσ2g;α þ Iσ2ε

� �
;Dα diagonal with ðDαÞjj ¼ 2pj 1� pj

� �h iα ð6Þ

Given the genotype matrix X, SNP frequency vector p and phenotype vector y,
the likelihood over the three parameters σ2g;α , σ

2
ε and α is fully defined by Eq. (6).

Hence, the MLE of the parameter triple ðσ2g;α; σ2ε ; αÞ can be found directly by
maximizing the corresponding likelihood. Since we are primarily interested in
estimating α, we used a profile likelihood based approach, with the profile
likelihood of α defined as Lprof ðαÞ ¼ maxðσ2g;α ;σ2ε ÞLðσ2g;α; σ2ε ; αÞ. In this analysis we

use α̂ ¼ argmaxα Lprof ðαÞ as the estimator of α, given genotype and phenotype data
X and y. α̂ is also equal to the α value in ðσ2g;α; σ2ε ; αÞ that maximizes the total
likelihood in Eq. (6).

In practice, the profile likelihood Lprof(α) was derived in the following way: for
some α′, XDα′XT was calculated. Given phenotype values y and for a given α′, we
inferred maximum likelihood estimates for σ2g;α and σ2ε via restricted maximum
likelihood estimation37, using the GCTA software implementation37. This
procedure was repeated for a range of α′. Here we used a minimal range of
α′∈{−1.00, −0.95,…,0.00} for all traits, but extended the range to higher values if
necessary, such that there is a minimal difference of 5 in log profile likelihood
between the mode and the boundary. This ensures that the part of the curve that is
significantly above zero is sampled. These data points were then interpolated with a
natural cubic spline, yielding the final profile likelihood curve. Credible intervals
for α̂ were estimated by combining the profile likelihood curve with a flat prior.
Although our above modeling assumes a quantitative trait, this method is equally
applicable to randomly ascertained case–control traits since all likelihood
calculations are performed using the GCTA software, which analyzes case–control
traits accordingly via a liability threshold model38.

Given α̂ for a set of phenotypes, the cross-trait estimate, α̂cross�trait , was
calculated as the inverse variance weighted mean across the traits. We tested for
heterogeneity of true underlying α values across n traits by comparingPn
i¼1

ðα̂i�α̂cross�traitÞ2
std:error2i

to a χ2n null statistic. The best-fit standard deviation in true α values

across traits, was calculated by assuming normally distributed true α with mean
α̂cross�trait, and then choosing the standard deviation, for which the variance of the
simulated α̂ using the inferred standard errors matched the variance of the 25 α
estimates most closely. We note that by accounting for the standard errors in our
estimates of α, our approach ensures that any heterogeneity that is detected reflects
true differences in frequency-dependent architectures and not merely differences
due to estimation noise, which varies across traits depending on heritability and
sample size.

Correcting for LD-dependent architectures. Ref. 17 showed that for a given MAF,
SNPs with higher LD have lower per-allele effects on average. Specifically, they use
level of LD (LLD), defined as the rank-based inverse normal transform of the LD
score. LLD is transformed separately in each part of the MAF spectrum, ensuring
that it is independent of MAF. Ref. 17 reported that SNPs that have LLD one
standard deviation above the mean have a squared per-allele effect size reduced by
(30 ± 2)% on average. This violates our assumption that, at a given MAF, all SNP
effects are independent and identically distributed.

To avoid bias in our estimation due model misspecification, we incorporated
LD-dependent SNP effects by changing Eq. (5) to

βjjpj; LLDj � N 0; σ2g;α � 2pj 1� pj
� �h iα

� 1� 0:3 � LLDj

� �� �
ð7Þ

This expression incorporates the LD dependence of ref. 17, however, since LLD

has mean zero and is independent of MAF, βjjpj � N 0; σ2g;α � 2pj 1� pj
� �h iα� �

still holds, even though effect sizes β are not i.i.d. given p. To remove the LD
dependence in the effect size distribution, we calculated a renormalized genotype

matrix ~X, with ~Xij ¼ Xij � ð1� 0:3 � LLDjÞ1=2. This effectively changes the complex

trait model in Eq. (4) to y ¼ ~X~βþ ε, where now ~βjjpj �

N 0; σ2g;α � 2pj 1� pj
� �h iα� �

is again i.i.d. for a fixed p. Unless otherwise stated, we

hence estimated α using ~X instead of X to avoid biases due to LD-dependent
architectures.

When estimating LD-dependent architectures, we used an LD-weight
parameter τ*, similar to ref. 17. We assume that

βjjpj; LLDj � N 0; σ2g;α � 2pj 1� pj
� �h iα

� 1þ τ� � LLDj

� �� �
ð8Þ

We jointly estimated α and τ* by identifying the pair of values (α, τ*) that
maximizes the profile likelihood using a 2D grid, with τ*=−0.60, −0.45, −0.30,
−0.15, 0.00 and α=−1.00, −0.95, −0.90,…(the same set of α values that we
analyzed previously).

Genotype data. We use the UK Biobank phase 1 data release (see URLs), which
comprises of data from 152,729 individuals genotyped at 847,131 SNP loci. Here,
we only used data from 113,851 individuals following selection criteria previously
used by ref. 39: individuals were selected to have self-reported and confirmed
British ancestry and related individuals were removed from the analysis such that
the pairwise genetic relatedness is < 5% (after LD-pruning SNPs). Individuals that
had withdrawn consent to participate in the UK Biobank project after initial
publication were removed from the analysis. We used imputed genotype data
as provided by UK Biobank. These genotypes were imputed using the
IMPUTE2 software40 and a joint reference panel from the UK10K project41 and
1000 Genomes Phase 3 (ref. 42). The resulting imputed genotype data includes
roughly 70,000,000 SNP loci across the 22 autosomal chromosomes. The data was
downloaded in the BGEN file format (see URLs), a compressed file format that
includes—for each individual and variant site—the probability of being homo-
zygous reference, heterozygous, or homozygous alternative. Due to imputation
uncertainty, the genotype matrix X and the allele frequencies p are not known
precisely. Instead, we use the expected genotypes given these probabilities (geno-
type dosages). To exclude large-effect SNP loci from human leukocyte antigen
genes, SNPs on chromosome 6 in the 30–31Mb region were masked and we
verified that no significant associations were found in nearby regions after masking.
Due to memory constraints, GCTA could not be run using a GRM of all 113,851
individuals at once. Instead, we divided all individuals into three equally sized
batches, calculating the profile likelihood of α for each batch and using the sum of
the resulting log likelihoods to compute the final likelihood curve.

Although our analysis does not require knowing all imputed genotypes
precisely, we do assume that the genotype probabilities are well calibrated, i.e., that
we are not overly confident in the imputation accuracy. Since imputation accuracy
is difficult to assess if the number of minor alleles in the reference panel is very low,
we only used SNP loci that had 5 or more minor alleles in the UK10K reference
panel (MAF > 0.07%) in our main analysis. To further assess calibration of
imputation noise, we compared the uncertainty implied by the genotype
probabilities with an empirical assessment of imputation accuracy performed by
the UK Biobank study (see URLs). Supplementary Figure 3 shows that imputation
accuracy is significantly overestimated for SNPs of frequency 0.1% or less, which
could potentially bias our results. However, repeating α estimation only using SNPs
of MAF > 0.3% did not lead to significantly different results, implying that our
results are not significantly affected (see Supplementary Table 3).

Simulations. Simulations were performed using genotype data from an N= 5000
random subset of the 113,851 unrelated British UK Biobank individuals. We used
M= 100,000 consecutive SNPs from a 25Mb block of chromosome 1. N and M
where chosen to approximately match the power of the UK Biobank traits analyzed
(which scales with N=

ffiffiffiffiffi
M

p
; ref. 21). As in the main analysis of UK Biobank traits,

only SNPs with at least 5 minor alleles (MAF > 0.07%) in the UK10K reference
panel were included. Phenotype values were generated using the linear model
described in Eq. (4). The trait effect of the jth SNP was drawn from
βjjpj; LLDj � Nð0; σ2g;α � ½2pjð1� pjÞ�α � ð1þ τ� � LLDjÞÞ, with τ*=−0.3 when
simulating LD-dependent architectures17, and τ*= 0 otherwise. The environmental
noise variance was chosen such that the simulated trait had the desired heritability.
In simulations with only 1% of SNPs causal, the causal SNPs were chosen at
random. Imputation noise was introduced by randomly sampling the genotypes
used to simulate phenotypes from imputed genotype probabilities, as reported by
UK Biobank. In simulations without imputation noise, genotype dosages, i.e., the
expected number of minor alleles, were used. In the inference procedure, we used
genotype dosages in both types of simulations. In analyses reported in Supple-
mentary Table 1, we used a larger set of SNPs (860,000) and individuals (15,000).
As above, these values were chosen to approximately match the power of the UK
Biobank traits analyzed; we note that chromosome 1 contains < 900,000 SNPs in
our analysis.

Simulations to estimate αLDAK were performed using the same set of 5000
individuals and 100,000 SNP loci. Phenotype values were simulated as described
above. αLDAK estimation was performed in the same way as in the previous set of
simulations, only now using the LDAK software19 to calculate the likelihood for a
given α value instead of the GCTA software. This approach hence includes the LD

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08424-6 ARTICLE

NATURE COMMUNICATIONS |          (2019) 10:790 | https://doi.org/10.1038/s41467-019-08424-6 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


weights proposed by LDAK and is identical to their proposed approach for estimating
α, although, to enable a more accurate comparison, we used a finer set of tested α
values (α′∈ {−1.00, −0.95,...,0.60}) than in their study (α′∈ {−1.25, −1.00, −0.75,
−0.50, −0.25, 0.00, 0.25}). Due to computational constraints we did not use their
workflow for imputed genotypes, but rather used the same hard-called genotypes for
both phenotype simulations and estimation, an option available in LDAK.

When simulating trait values with Tsim= 0%, Tsim= 5% and Tsim= 10%, we
used genome-wide SNPs (MAF > 0.07%; M= 11,062,620) and set the number of
samples (N= 113,660), α=−0.45 and h2= 0.61, to match UK Biobank height. We
randomly selected 1% of SNPs to be causal. In simulations with Tsim= 0%, causal

effect sizes were sampled from N 0; σ2g;α � 2pj 1� pj
� �h iα

� 1þ τ� � LLDj

� �� �
. In

simulations with Tsim= 5%, causal effect sizes were sampled from

N 0; σ2g;α � 2 � 0:05 1� 0:05ð Þ½ �α� 1þ τ� � LLDj

� �� �
for all causal SNPs with MAF ≤

5%, and accordingly in simulations with Tsim= 10%.

Correcting for bias in heritability estimation. Heritability estimation methods
based on standard restricted maximum likelihood (REML) estimation in a linear
mixed model framework16 require that all SNP effects are i.i.d. distributed in order
to avoid biases. In the case of MAF-dependent SNP effects, this assumption is
clearly broken. This issue has been addressed in previous work and several solu-
tions to this problem have been suggested15,19. Here we show that knowing α for a
given trait can provide another way to avoid heritability estimation biases due to
MAF-dependent architectures. As previously stated, our model assumes y=Xβ+

ε, with εi � N 0; σ2ε
� �

i.i.d. and βj � N 0; σ2g;α � 2pj 1� pj
� �h iα� �

. Here βj is the

per-allele effect, the average effect on the phenotype of having one minor allele.
However, one can define renormalized genotypes ~X, with

~Xij ¼ Xij � 2pj 1� pj
� �h iα=2

. The per-normalized-allele effects are now ~βj �
Nð0; σ2g;αÞ i.i.d. in y ¼ ~X~βþ ε. Since ~βj are now iid, σ2g;α and σ2ε can now be

estimated without bias from ~X and y using REML. The variance in the phenotype
explained by M SNPs can be calculated in the following way:

σ2g ¼ Var ~x~β
� � ¼ ~β

T
Var ~xð Þ~β � E~β

~βTVar ~xð Þ~β� � ¼ XM
j¼1

σ2g;α 2pj 1� pj
� �h i1þα

;

ð9Þ

where ~x is a random renormalized genotype row vector. Here we used the fact that

Var ~xð Þð Þjj¼ 2pj 1� pj
� �

under Hardy-Weinberg equilibrium and cross terms

cancel since ~βj are independent and mean zero. We define

A ¼ PM
j¼1

2pj 1� pj
� �h i1þα

, with the genetic variance σ2g ¼ A � σ2g;α . If α=−1, as has

been used in many previous methods14,16, A is simply equal to M.
In practice, heritability estimation was performed in the following way: the

renormalized genotype matrix ~X was calculated using the α̂ as estimated from the
data. From ~X and the phenotype vector, σ̂2g;α and σ̂2ε were obtained using GCTA

REML37. Our SNP heritability estimate ĥ2α;noLD is then defined as

Âσ̂2g;α=ðÂσ̂2g;α þ σ̂2ε Þ, with Â ¼ PM
j¼1

2pj 1� pj
� �h i1þα̂

. ĥ2α was calculated equivalently

only now including previously described LD weights, i.e. we used

2pj 1� pj
� �h iα̂=2

� 1� 0:3 � LLDj

� �1=2
instead of 2pj 1� pj

� �h iα̂=2
when

calculating ~X and Â.

Phenotype selection and preprocessing. In this analysis we investigated 25
highly heritable and polygenic human traits (see Table 2) from the UK Biobank
study (see URLs). Specifically, we required a SNP heritability of 0.2 or more for
quantitative traits and 0.1 or more for case-control traits (on the observed scale, see
ref .38), as well as at least 50% of the 113,851 British ancestry individuals to be
phenotyped. We also removed phenotypes for which the top 10 SNPs explained
10% or more of the trait variance, so as to avoid α estimates that are dominated by
a few top SNPs, as our goal is to study polygenic architectures. (Only one trait,
mean platelet volume, was removed due to this restriction.) The 25 traits that we
chose include 21 quantitative traits and 4 case–control traits. Eleven of the
quantitative traits are blood cell traits, whereas the remaining 14 include a wider
range of physiological measurements and diseases. Since the number of available
blood cell traits was large and many of them were highly correlated, we additionally
required blood cell traits to have a pairwise phenotypic correlation of r2 < 0.5,
removing the less heritable trait for any correlated pair.

For each trait, phenotype values had outliers removed and fixed effects were
regressed out. Specifically, phenotype values 4 or more standard deviations away
from the mean (or similarly extreme outliers for skewed distributions) were
removed from the analysis. Sex and ten principal components of the GRM were
included as fixed effects for all traits, with additional trait specific covariates also

included for some traits (see Supplementary Table 10). All trait values were then
rank-based inverse normal transformed before being analyzed.

Inferring fitness-trait coupling and selection parameters. We aimed to use the
frequency dependence of SNP effects to draw conclusions about the fitness effects
of SNPs, as well as the coupling between fitness and the target trait effects. Let β2|p
be the squared trait effect size of a SNP given its MAF p, and s the fitness effect of
the SNP, which is here assumed to be deleterious or neutral. From the law of total
expectation it follows that E(β2|p)= E(E(β2|s, p)|p). The main assumption of this
analysis is that, at a given selection coefficient, the effect size of the SNP is inde-
pendent of its frequency, i.e., E(β2|s, p)= E(β2|s). This is equivalent to the state-
ment that the frequency dynamics of a SNP is influenced by β2 only through s. We
then use the model of Eyre-Walker9, where the absolute value of β is proportional
to sτ(1+ ε), with ε ~N(0, σ2) and τ indicating how strongly β depends on s. It
follows that E(β2|s) ∝ s2τ and from above, for some constant c,

E β2js� � ¼ c � E s2τ jp� � ð10Þ
Given a positive τ, this equation shows that increased average effects of lower-

frequency SNPs requires lower-frequency SNPs having increased s and hence
implies significant negative selection. Some previous analyses4,6,32 have argued that
in the absence of selection, SNPs of MAF ranges of equal width (e.g., 5–10% and
10–15%) are expected to explain an equal fraction of heritability. However, even in
the absence of selection, population expansion can lead to excess rare variants,
leading to increased rare variant heritability43. Increased rare variant heritability is
therefore not necessarily a sign of selection.

Assuming we know τ and the joint distribution of s and p, E(β2|p) can be
derived from Eq. (10). We simulated samples of this distribution using the
evolutionary forward simulation framework SLiM2 (ref. 25). Simulations were run
with a European demographic model inferred by ref. 26, a burn-in of 3880
generations before the bottleneck, a mutation rate of 2 ´ 10�8 per base pair per
individual per generation44, and a recombination rate of 10−8 per base pair per
individual per generation45. These simulations also require assumptions about the
distribution of fitness effects (DFE), i.e., the distribution of s for de novo mutations,
but the DFE for genome-wide SNPs in humans is currently not known. We
assumed a gamma distributed DFE, using a plausible range of average fitness
effects, �s 2 10�3; 10�4f g (note that �s � 10�5 would lead to T close to or greater
than 0.5 and hence no or almost no frequency dependence; see Supplementary
Figure 4, panel (e)), and shape parameters of k= 0.125 and 0.25 which includes the
range of plausible values derived by ref. 24. In the analyses reported in
Supplementary Figure 5, we considered a broader range of shape parameters (k=
1, 0.5, 0.25, 0.125, 0.0625). Although the gamma distribution does not include
variants with exactly zero effect size, k effectively parametrizes the polygenicity of
fitness effects. For example, at k= 0.0625, the mean SNP fitness effect is almost
7000 times larger than the median SNP fitness effect, indicating that fitness effects
are extremely sparse. At k= 1, the mean is only 1.4 times larger than the median,
indicating that fitness effects are extremely polygenic. Since SNPs with negligible
fitness effects also have negligible effects on the target trait under the Eyre-Walker
model9, the shape parameter k determines the polygenicity of both fitness and the
target trait.

For each choice of DFE we simulated 25 independent replicates over a 4Mb
block each, for a total of 100Mb with each DFE. In all simulations the Eyre-Walker
noise parameter, σ2, was set to zero. This parameter does not change SNP effects on
average and is therefore negligible in the limit of large SNP numbers. This was also
noted in original analysis by ref. 9.

In the absence of LD between selected SNPs and assuming a constant effective
population size Ne, E(β2|p) can also be derived analytically. Under these
assumptions and assuming mutation rate per base pair μ≪ 1/Ne (ref. 44), it is
known that P pjsð Þ / ½p 1� pð Þ��1e�4Ne sp (ref. 46). Given s is drawn from a gamma
distribution with mean �s and shape parameter k, we obtain

E β2jp� � ¼ c � E s2τ jp� � ¼ c �
R1
0 s2τP pjsð ÞP sð ÞdsR1
0 P pjsð ÞP sð Þds

� c � Γ 2τ þ kð Þ
Γ kð Þ 4Neð Þ�2τ pþ k

4Ne�s

� ��2τ
ð11Þ

This result shows that for p 	 k
4Ne�s

, E(β2|p) is constant, whereas for p 
 k
4Ne�s

it

falls off as p−2τ. We note that these calculations imply α ≈−2τ, whereas α is
significantly less negative in simulations (see Fig. 3), with the difference likely being
due to LD between SNPs with different selection coefficients (see Discussion). For
simplicity, we have here assumed that p is the derived allele frequency – if p is the
minor allele frequency (MAF), results are generally similar, although they differ for
very common SNPs. Specifically, when using MAF, E(β2|p) ∝ ([p+ T]−2τ−k+ [1
−p+ T]−2τ−k)/([p+ T]−k+ [1−p+ T]−k), with threshold frequency T ¼ k

4Ne�s
(see

caption of Supplementary Figure 6). We show in Supplementary Figure 6 that our
analytical result using MAF matches the α model more closely (though not
perfectly), as the correction terms for very common SNPs match the (1− p) factor
in the E(β2|p)∝ [p(1− p)]α model.

When fitting α to SNP effects from a simulation with a given �s, k and τ in Fig. 3,
we only used SNPs with frequency above k

4Ne�s
. ĉ′; α̂ð Þ is calculated by minimizing

the squared deviation between c′ � ½p 1� pð Þ�α and the simulated SNP effects
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summed over all SNPs from 25 independent simulations. Error bars were obtained
by bootstrap resampling of these 25 simulations. The proportionality constant in
Eq. (10) does not affect α̂ and was set to c= 1. When estimating τ from α̂ of a given
trait, we assumed a flat prior on α over [−1,0] and on τ over [0,1], in which case

P τjdatað Þ / R0
�1

P αjτð ÞP αjdatað Þdα. Here, P αjdatað Þ is proportional to the

calculated profile likelihood and P αjτð Þ is based on estimates and error bars
displayed in Fig. 3, assuming equal probability for �s ¼ 10�3 and �s ¼ 10�4, and k=
0.25. Using k= 0.125 lead to similar results, e.g., α=−0.38 then corresponds to
τ 2 ½0:33; 0:43� instead of τ 2 ½0:32; 0:48� for k= 0.25.

URLs. Open-source software package implementing our method, https://github.
com/arminschoech/GRM-MAF-LD; UK Biobank website, http://www.ukbiobank.
ac.uk/; BGEN file format, http://www.well.ox.ac.uk/~gav/bgen_format/; UK Bio-
bank genotype imputation manual, http://www.ukbiobank.ac.uk/wp-content/
uploads/2014/04/imputation_documentation_May2015.pdf

Code availability. Source code of the GRM-MAF-LD software developed for this
analysis is publicly available at https://github.com/arminschoech/GRM-MAF-LD.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
This work used data from the UK Biobank study (http://www.ukbiobank.ac.uk/).
The data is not publicly available but researchers can apply to use the resource.
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