Table 3.
Neural network classifier confusion matrix.
Neural network classifier | ||||||
---|---|---|---|---|---|---|
Training | Confusion matrix | Predicted | ||||
Neglect | Non-neglect | |||||
Actual | Neglect | 0.87 | 0.13 | Sensitivity (recall) | 0.87 | |
Non-neglect | 0.21 | 0.77 | Specificity | 0.77 | ||
Positive predictive value (precision) | Negative predictive value | Accuracy | 0.83 | |||
0.80 | 0.85 | |||||
Cross-validation | Confusion matrix | Predicted | ||||
Neglect | Non-neglect | |||||
Actual | Neglect | 0.85 | 0.15 | Sensitivity (recall) | 0.85 | |
Non-neglect | 0.28 | 0.72 | Specificity | 0.72 | ||
Positive predictive value (precision) | Negative predictive value | Accuracy | 0.79 | |||
0.75 | 0.83 | |||||
95% CI: 0.82–0.89 | 95% CI: 0.68–0.76 |