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The TOPAS Monte Carlo (MC) system is used in radiation
therapy and medical imaging research, having played a
significant role in making Monte Carlo simulations widely
available for proton therapy related research. While TOPAS
provides detailed simulations of patient scale properties, the
fundamental unit of the biological response to radiation is a
cell. Thus, our goal was to develop TOPAS-nBio, an extension
of TOPAS dedicated to advance understanding of radiobio-
logical effects at the (sub-)cellular, (i.e., the cellular and sub-
cellular) scale. TOPAS-nBio was designed as a set of open
source classes that extends TOPAS to model radiobiological
experiments. TOPAS-nBio is based on and extends Geant4-
DNA, which extends the Geant4 toolkit, the basis of TOPAS,
to include very low-energy interactions of particles down to
vibrational energies, explicitly simulates every particle
interaction (i.e., without using condensed histories) and
propagates radiolysis products. To further facilitate the use
of TOPAS-nBio, a graphical user interface was developed.
TOPAS-nBio offers full track-structure Monte Carlo simu-
lations, integration of chemical reactions within the first
millisecond, an extensive catalogue of specialized cell
geometries as well as sub-cellular structures such as DNA
and mitochondria, and interfaces to mechanistic models of
DNA repair kinetics. We compared TOPAS-nBio simulations
to measured and published data of energy deposition patterns
and chemical reaction rates (G values). Our simulations
agreed well within the experimental uncertainties. Addition-
ally, we expanded the chemical reactions and species
provided in Geant4-DNA and developed a new method based
on independent reaction times (IRT), including a total of 72
reactions classified into 6 types between neutral and charged
species. Chemical stage simulations using IRT were a factor
of 145 faster than with step-by-step tracking. Finally, we
applied the geometric/chemical modeling to obtain initial

yields of double-strand breaks (DSBs) in DNA fibers for
proton irradiations of 3 and 50 MeV and compared the effect
of including chemical reactions on the number and complex-
ity of DSB induction. Over half of the DSBs were found to
include chemical reactions with approximately 5% of DSBs
caused only by chemical reactions. In conclusion, the TOPAS-
nBio extension to the TOPAS MC application offers access to
accurate and detailed multiscale simulations, from a macro-
scopic description of the radiation field to microscopic
description of biological outcome for selected cells. TOPAS-
nBio offers detailed physics and chemistry simulations of
radiobiological experiments on cells simulating the initially
induced damage and links to models of DNA repair
kinetics. � 2019 by Radiation Research Society

INTRODUCTION

A Brief Introduction to TOPAS

Improvements to radiotherapy and imaging can be
achieved by understanding how subatomic particles travel
through apparatus and tissue. The most precise calculations
of such phenomena follow the Monte Carlo (MC) method.
The TOol for PArticle Simulation (TOPAS) software
project, launched in 2009, has helped to greatly improve
the use of Monte Carlo simulations for cancer research and
treatment (1). Requiring no programming knowledge by its
users, TOPAS provides a flexible framework to design
simulations for radiation therapy. It enables both clinical
applications (e.g., high-precision patient dose calculation)
and research (e.g., four-dimensional time-of-flight simula-
tions for detector developments), while its design promotes
inter-institutional collaboration (2–5).

One of the main reasons for the success of TOPAS is the
parameter control system at its core. Parameters specified in
one or more text files define the properties of the simulation.
For instance, when used for proton dose calculations, they
define the extent of the simulated geometry along each
cartesian coordinate, the number of voxels in each direction
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of the patient computed tomography (CT) scan, the beam
angle and the scanning pattern of the beam. The hierarchical
nature of these text files allows for sharing and adaptation
across radiotherapy centers that use similar equipment
(treatment machines, detectors, etc.). The parameter control
system syntax is described in detail on the ‘‘Welcome to the
TOPAS documentation!’’ (https://topas.readthedocs.io/en/
latest/) website and by Perl et al. (1).

TOPAS has been expanded from its initial focus on
medical physics to also cover radiation biology, offering
scoring options that include linear energy transfer (LET),
multiple relative biological effectiveness (RBE) models for
proton therapy and organ-based outcome models [tumor
control probability (TCP) and normal tissue complication
probability (NTCP)] (6, 7). TOPAS is now part of the U.S.
National Cancer Institute’s (NCI) Informatics Technology
for Cancer Research (ITCR) Initiative.

An extension system was developed for TOPAS that
allows customization for users who need additional features
specific to their own application, such as custom scorers or
geometries. The extension manager allows users to add new
features by writing a short section of simple, very specific
Cþþ classes (a building block of the code) based on
templates and Cþþ helper functions provided within
TOPAS. This Cþþ code can then be integrated into the
main TOPAS executable by running a single CMake
(https://cmake.org/) command.

Documentation of the latest version of the TOPAS system
and the available parameters can be found at ‘‘Welcome to
the TOPAS documentation!’’ (https://topas.readthedocs.io/
en/latest/).

Motivation for TOPAS-nBio

TOPAS has been successfully applied to research in
radiation therapy physics and macroscopic organ or cellular
biology. However, more fundamental research is needed to
understand the underlying mechanisms of radiation action,
describe effects of oxygenation, intracellular signaling,
drug-induced radiation sensitization or resistance and many
other effects (8–10). Variations at the (sub-)cellular (cellular
and sub-cellular) level, both for tumors and surrounding
normal tissues, need to be considered. Such research is
ideally supported by detailed in silico simulations at the
sub-cellular level (11).

The goal of this work was to lay the foundation to a
deeper understanding of the biological effects of radiation in
order to facilitate new research at the boundary between
physics, chemistry and biology. By providing detailed
physics and chemistry simulations in combination with
detailed representations of biological systems, such as cells
and their nuclei, we aim to promote a mechanistic
description connecting sub-cellular energy deposition
phenomena to observable biological outcomes. We have
thus developed TOPAS-nBio, an extension to TOPAS
specifically aimed at the simulation of radiobiological

experiments by modelling detailed biological effects at the
nanometer scale. By taking advantage of the simplicity and
reliability engineered into TOPAS while providing nano-
meter-scale Monte Carlo simulations, we have made
complex code accessible to researchers who may consider
using Monte Carlo simulations to improve the physical,
chemical and biological description of their experimental
design or data analysis.

METHODS

TOPAS-nBio was, in large part, developed as a library of
extensions to the main TOPAS system (www.topasmc.org and
https://topas.readthedocs.org). The extension files are to be released,
open source, under the Berkeley Software Distribution (BSD) 3-clause
or similar. Some of the new features required modification of the
TOPAS core to provide additional functionality, made available in
TOPAS version 3.2 and above. TOPAS version 3.2 is based on
Geant4 version 10.4.p2 (12–14).

TOPAS-nBio uses the TOPAS parameter system to control the
simulation setup, separating parameters into categories such as
geometries (Ge), scoring (Sc), source (So) and time features (Tf).
Parameters related to biological damage repair kinetics, specific to
TOPAS-nBio, are grouped into the scoring category Sc. An additional
category was created to control the chemistry (Ch). A sample
parameter file for TOPAS-nBio is shown in Fig. 1.

TOPAS-nBio Extensions

The TOPAS-nBio extensions provide options for sub-cellular
geometries, scoring, physics and chemistry. While most users will
just need to adjust the values of the parameters used by the new
classes, the classes can be modified with minimal coding requirements
to adjust each aspect of a user’s simulation. Due to the modular nature
of the extensions, users can select to only install the features they need
for their simulations by downloading the necessary files and adding
them to their TOPAS executable.

TOPAS-nBio facilitates and extends the use and configuration of
the physical and chemical processes provided by Geant4-DNA (15–
18). The physical processes of Geant4-DNA, originally intended for
radiation transport in liquid water, have recently included cross
sections for DNA constituents (19), due to the availability of elastic
and inelastic cross sections for these materials, which are also
available in TOPAS-nBio.

The Geant4 toolkit provides users with basic 3D geometric shapes
(solids), which include volumes such as boxes, ellipsoids, cylinders
and spheres. All geometries in TOPAS-nBio are made up of either a
single Geant4 solid, computer-aided-designed (CAD) solids or a
combination of two or more of these solids. In some cases, unions of
these solids are used (e.g., to create the double-helix DNA backbone
from the union of spheres). The Geant4-DNA user community and
others working on track-structure codes also work on new DNA or cell
geometries and new DNA repair models. We actively collaborate with
some of these groups to include the latest developments in our
simulation framework. Several of the features presented here, e.g.,
interfaces to the DNAFabric code (20–22) and DNA repair models
(23–26), were developed as part of such collaborations.

Physics and Regions

For Monte Carlo track-structure simulations, the transport of
charged particles and their interactions are performed in a step-by-
step fashion by using the physical processes, their valid energy ranges
and associated models provided by Geant4-DNA, described elsewhere
(15, 17, 19, 27–30). An overview of the performance using different
sets of the most recent physics models available in Geant4-DNA is
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given by Incerti et al. (15). Physical processes are available through
Geant4 constructors. A constructor is a Cþþ class which implements
a physics list, composed of a specific set of physical processes and
associated models, configured according to the energy limits of the
models and the particle types associated with the processes. Geant4-
DNA currently offers seven physics list constructor options: the
default constructor, plus options 1 through 6 that offer different
scattering models. Geant4-DNA provides cross sections for electrons,
photons, protons and a few selected ions (H through O, Si and Fe).
Photon cross sections are based on the Livermore models in Geant4.
Currently, Geant4-DNA physics cross sections are available for water
and DNA-related materials, i.e., tetrahydrofuran (THF), trimethyl-
phosphate (TMP), and pyrimidine (PY) and purine (PU), which serve
as precursors for the DNA (and RNA) (19). The only other material
that has dedicated low-energy cross sections in Geant4-DNA is silicon
(31, 32) using the ‘‘MicroElec’’ package (33, 34). Gold cross sections
are expected to be available in Geant4-DNA soon (35, 36).

TOPAS-nBio gives access to the physics list defined in constructors
through parameter settings, while providing flexibility to control the
model type involved in each process. Using this approach, the energy
cut for applying electron capture or electron solvation is automatically
readjusted according to the lower energy limit of the physical models.
This makes it possible to combine the elastic models from the CPA100
implementation (28) available in constructor G4EmDNAPhysics_opt6
with the inelastic models from the Emfietzoglou-based implementa-
tion (30) available in G4EmDNAPhysics_opt4.

Regions were originally developed in Geant4 to allow the use of
different physics settings (e.g., production cuts of secondary particles)
in different parts of the simulated World, i.e., a volume encompassing
the entire simulated geometry. This has been exploited in Geant4-
DNA to use different physical models in different geometry
components (37), such as limiting tracking of detailed particle
interactions to specific components, in order to speed up the
simulation. This feature has been implemented in TOPAS-nBio. An
example of parameter settings used to simulate two regions with
different physics settings, together with the resulting simulation of a
gold nanoparticle (GNP) in water, is shown in Fig. 2.

Simulation Settings and Scenarios

The main difference when setting up simulations using TOPAS-
nBio, compared to TOPAS, is the setting of specialized physics lists
and chemistry lists to define the basic interaction properties for the
simulations. In addition, some settings are optimized by default for all
TOPAS-nBio simulations to improve the overall performance. For
example, the Geant4 geometric tolerance is adjusted depending on the
size of the World or can be adjusted by the user. The tolerance defines
an envelope around a surface (similar to an uncertainty band) at which
Geant4 considers a point to be on the surface. This is a critical
parameter at nanometer scales.

The following are typical, distinct simulation scenarios:

1. Simulations of physics interactions at the nanometer scale using
track-structure physics settings. Physics cross sections for
simulations using the full track structure are currently limited to
water (G4_WATER) and DNA-related materials. The type of the
source particles and the energy limits of the physical models can
be found on the Geant4-DNA website (http://geant4-dna.org/),
updated for the current Geant4 version. To invoke the correct
chemistry processes, users should include the settings listed in Fig.
1B.

2. Track-structure simulations that include tracking of chemical
species. Simulations of chemical reactions are currently limited to
pure water. To invoke the correct chemistry processes, users
should include the settings described by Ramos-Méndez et al.
(38).

3. Track-structure simulations that include biological response
models. Several published models to predict DNA damage and
repair have been included. TOPAS-nBio supports the output of
DNA damage in the Standard for DNA Damage (SDD) format
[see (39) and www.standard-for-dna-damage.readthedocs.org],
which can be used as input to several of the available models
(23–26). In addition, some models have been directly included in
TOPAS-nBio to model the biological stage of cell repair.

4. Track-structure simulations containing mixed scales/materials.
TOPAS-nBio offers to define regions of interest where Geant4-

FIG. 1. Example parameter files for TOPAS-nBio. Parameters are specified by parameter type (pink),
category and name (orange), value type (green) and value. A hashtag (#) denotes the start of each comment line.
Panel A: Setting up the physics list (Geant4-DNA), a cell with nucleus and DNA and scoring a tuple on the DNA
for DSB estimation. Panel B: Setting up a simulation using standard ‘‘step-by-step’’ chemical reactions and
displaying tracks of selected species. Panel C: Setting up a TOPAS-nBio simulation using the newly
implemented independent reaction time (IRT) method.
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DNA processes are activated while using the standard Geant4

electromagnetic physics lists in all other regions (37). Figure 2

shows an example parameter file. This is mainly aimed at two

scenarios: 1. Simulating larger (.10 lm) volumes but requiring

detailed track-structure simulations in smaller sub-volumes, e.g.,

when simulating irradiation of a flask containing cells in solution

and only using track-structure simulations in the nucleus of

selected cells; 2. Track-structure simulations in a small volume,

but including materials for which there are no cross sections

defined yet in Geant4-DNA, e.g., simulating a cell (G4_WATER),
which has taken up gold or silver nanoparticles.

Time Dependence

The TOPAS time feature system (4) is used to handle time
dependencies within the TOPAS-nBio extension. All time features
available in the standard TOPAS are available; that is, beam
parameters can vary over time, geometries can move over time,
scorers can be switched on or off for certain times, and so on. For
example, sources can be defined to have different dose rates,
influencing the time between potential cellular damage, which can
be important information influencing repair kinetics in the biological
effect models linked to TOPAS-nBio, e.g., by including the damage
time in the SDD format (see sub-section, ‘‘The standard for DNA
damage scorer’’).

Code Maintenance

TOPAS-nBio was developed by a core team. In addition, alpha
users (e.g., University of Manchester) contribute code to the project.
Code reliability is fundamental in the development of TOPAS.
TOPAS-nBio uses the same system of rigorous development
procedures as TOPAS. Each time code is committed to the GitHub
repository, a series of instant tests are initiated, including one that
checks for a successful build, several ‘‘sanity checks’’ that guarantee
the committed code does not fundamentally break the code and a
simple regression test, ensuring consistency at several key aspects. In
addition, before a new version release, each committed code is
checked to conform with internal coding guidelines and a more
extensive regression test is initiated. This also occurs every time
TOPAS is linked to a new Geant4 release. TOPAS-nBio itself is an
extension to TOPAS, thus most TOPAS modules are independent of
TOPAS-nBio. In addition, similar to TOPAS releases, TOPAS-nBio
releases will check each module for coding consistency and initiate a
set of sanity checks and regression tests before code is added to the
repository.

RESULTS

The main developmental achievements of TOPAS-nBio
are access to and control of physics settings, addressed in the
Methods section, and the implementation of (sub-)cellular
geometries, speed-up options, chemistry and a graphical user
interface (GUI). Results of comparison to published studies
to test and validate our simulation settings are also reported.
In addition, the power of TOPAS-nBio for performing
complex simulations is demonstrated by simulating the
difference between induced damage on a chromatid with
and without tracking of chemical species.

Geometries

TOPAS-nBio offers the user a catalogue of geometries
ranging from the micrometer scale (e.g., cells) down to the
nanometer scale (e.g., DNA strands). Each geometry has its
own set of parameters that can be controlled by the user in
the parameter file. For example, the cell geometry has
parameters for the size of the cell and also the option to
include organelles such as a nucleus. Advanced users also
have the option of editing or writing their own geometry
extension classes to define new unique geometries. A

FIG. 2. The use of different models in different regions. Panel A:
Parameter file setting physics lists for different regions to combine
macroscopic and nanometer scale simulations with several parameters
that should be considered. Panel B: Protons (1 MeV) traversing a gold
nanoparticle (GNP) surrounded by liquid water. In water, the transport
is handled by Monte Carlo track-structure simulations, whereas in the
GNP the transport is handled by condensed-history Monte Carlo
(Geant4 Livermore EM physics processes). Proton tracks are shown
with blue lines and electron tracks are shown with red lines connected
with yellow points that represent inelastic and elastic interactions.
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detailed description of the TOPAS-nBio geometries can be

found in (40).

Possible targets in radiobiological studies may include the

whole cell and nucleus or a specific molecule. A collection

of geometries is included to cover a range of anticipated

simulations, including several cell morphologies, organ-

elles, nuclei models, various DNA models and proteins. An
example parameter file setting up a chromatin fiber using
the TsFiber geometry, described in detail by Henthorn et al.
(26), is shown in Fig. 3 and a representation of the geometry
is shown in Fig. 4C.

Available cell geometries include simple cells such as
spherical or ellipsoid cells, as well as highly specialized
cells such as neurons (Fig. 4A). Neuron or glial cell
geometries are modeled via the TOPAS-nBio interface to
the NeuroMorpho database, www.neuromorpho.org (41,
42). Since radiation-induced damage to DNA is an
important measurement in radiobiology studies, several
published DNA models are available, including three full
nuclear DNA models incorporating the full hierarchal
folding scheme of the DNA in the nucleus (Fig. 4B).

Variance Reduction with Flagged Uniform Particle Splitting

A method to reduce simulation time, in addition to
optimization of regions as discussed in the sub-section,
‘‘Physics and regions,’’ is variance reduction. Population
control methods such as particle splitting and cross-section
enhancement are examples of variance reduction techniques
that have been successfully applied to condensed-history
simulations with an impressive reduction in computation
time [e.g., (43, 44) and papers therein]. In such cases, the
quantity of interest is averaged over multiple histories where
the track structure of each history is not considered. For

FIG. 3. Parameter file to set up a chromatin fiber defined by a class
called TsFiber.

FIG. 4. Geometries available in TOPAS-nBio. Panel A: An ellipsoid cell shown with a nucleus (blue) and
mitochondria (red), a spherical and a fibroblast cell with nucleus and mitochondria. Also shown is a
hippocampal neuron with a soma (red) and dendrites (black and blue). Panel B: Three full nucleus models, one
based on the Geant4-DNA example (left side) and two different fractal models (center and right side). Panel C: A
chromatin fiber consisting of nucleosomes each composed of histone proteins (blue) wrapped by two turns of a
double helix DNA (green and red). Panel D: A circular plasmid consisting of 100 basepairs. Panel E: RNA
strand recreated using the TOPAS-nBio interface to the protein database. Panel F: A lipid (membrane) layer.
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track-structure simulations, however, the stochastic nature
of each single history is paramount and the artificial
generation of new tracks within the same history potentially
biases the results. For example, the use of particle splitting
will result in an overestimation of the cluster sizes of
ionizations in small volumes and the frequency of DSBs. To
exploit the large benefits of variance reduction without bias,
we implemented a flagged uniform particle split in TOPAS-
nBio, specifically designed for track-structure simulations.
This technique performs uniform splitting (45) to secondary
electrons produced in ionization events at strategically
located regions within the geometry and assigns a unique
flag number, which is inherited by their progeny (46). The
flag permits reclassification of each split event as if they
were produced by independent histories. This method
reduces the variance by improving the statistics of
secondary electrons, while keeping the time increase small
compared to the generation of additional particles, by only
producing them in strategically selected regions. As a result,
improvements of the computational efficiency up to a factor
of approximately 65 can be achieved without loss of
accuracy (46).

Chemistry

Step-by-step method. Geant4-DNA is capable of simu-
lating the physical, pre-chemical and chemical stages of the
interaction of radiation with biological tissue in a single
application (47, 48). Configuration of all the simulation
parameters can be cumbersome due to the large number of
variables involved: dissociation channels for water and their
probabilities, reaction rates and diffusion coefficients for
each and every reaction, along with configuration of the
simulation setup for validation against measured data.
TOPAS-nBio provides functionality that facilitates the

configuration of simulations that include chemistry (38).

TOPAS-nBio further allows expansion of the Geant4-DNA

default reaction database and type of chemical species. In

addition, TOPAS-nBio provides a set of specialized scorers

for the spatiotemporal information of chemical species and

their yield through a G-value scorer. The chemical

parameters were updated from those used by Geant4-DNA

and verified through a comparison with experimental data,

obtaining satisfactory agreement, as shown in Fig. 5 and

(38).

Independent reaction time. The pre-chemical stage from

Geant4-DNA has been linked to the independent reaction

time (IRT) approximation, which has been made available

for access in TOPAS-nBio extensions via the TOPAS

scoring manager. IRT (54, 55) is a computationally efficient

alternative to the Brownian dynamics simulation for the

calculation of chemical yields resulting from water

radiolysis. IRT is a stochastic technique consisting of the

sampling of reaction times and chemical reactions of pairs

of species, independent from the surrounding neighbors.

The method has been shown to be equivalent to full step-by-

step Brownian dynamics (56). For a given pair of reactive

species initially separated by a known distance, the aim is to

determine at what time the pair reacts together. For that, the

solution to the diffusion equation given by the Green

function is inverted to retrieve the reaction time. The form

of the Green function depends on the type of reaction

(totally or partially diffusion controlled) and the charge

between species. The position of reactive products was

estimated using the position approach described by Clifford

et al. (54) due to its ease in coding. The iterative sampling

process is performed until a time cut specified by the user

(e.g., the time to achieve the steady state of the system) is

FIG. 5. TOPAS-nBio calculated G values as a function of LET100eV for mono-energetic electrons (e�), protons
(p) and alpha (a) particles. Point-to-point differences with experimental data are shown at the bottom of each
panel with error bars (1 standard deviation) including both experimental and simulation errors. Experimental
data: (u) (49), (*) (50), (fl) (51), (n) (52) and (þ) (53). (Reproduced with permission. Ramos-Mendez J, Perl
J, Schuemann J, McNamara A, Paganetti H, Faddegon B. Monte Carlo simulation of chemistry following
radiolysis with TOPAS-nBio. Phys Med Biol. 2018; 63:105014.)
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reached or all possible combinations between species are

sampled.

Independent reaction time is computationally more

efficient than propagating reactants using Brownian dy-

namics. However, as the number of species in the track

increases, the efficiency decreases due to the iterative

process. To mitigate this, Green et al. (55) proposed the

sampling of reaction times only between chemical species

separated by a distance of no more than dmax, the distance

traveled by the most diffusive species before reacting (H3O
þ

in this work). This is done in TOPAS-nBio. In addition, the

particle track is binned spatially into a sparse three-

dimensional matrix to further reduce computation time.

For a given chemical species located at position ~r, only

those species contained in rectangular parallelepiped voxels

fully or partially contained in a virtual sphere of radius dmax

and centered at~r are used for the sampling. The voxel size

is set to dmax/2 but it can be defined by the user.

The number of species and reactions currently imple-

mented in the IRT of TOPAS-nBio are those used by

Frongillo et al. (57) and recently by Plante and Devroye

(56). This implementation includes a total of 72 reactions

classified into six types covering first-order reactions,

partially and totally diffusion controlled, between neutral

and charged species.

Figure 6 shows G values as a function of time for 300

MeV (;0.3 keV/lm) proton track segments of 100 lm in

length calculated with both step-by-step Brownian dynam-

ics using TOPAS-nBio with Geant4-DNA chemistry and

with IRT from TOPAS-nBio. Statistical uncertainties in

both calculations were below 0.5% (1 standard deviation).

A revised physics list from Ramos-Méndez et al. (38) was

used, where the relevant Geant4-DNA physics models

included the elastic scattering from the CPA100 implemen-

tation and the Born model for ionization and excitation.

Chemistry parameters with the electron thermalization

distance were also from (38). As shown, the IRT and

step-by-step results are in comparable agreement with the

experiment. Both simulation methods used the same input

data at the 1-ps starting point (within statistical uncertain-

ties). Note that the different chemical species are tested for

contact reactions at zero time by Geant4-DNA before IRT is

performed. There is an indication that IRT has improved

accuracy of
�
OH yields at 1 ls. This is attributed to the more

complete scheme of reactions and the use of partially

diffusion-controlled reactions in the implemented IRT. The

FIG. 6. G values as a function of time for Geant4-DNA/TOPAS-nBio step-by-step simulation (dash-dot line)
and IRT (solid line). Experimental data from different sources are represented by symbols. For

�
OH: (u)¼ 60Co

c rays (58), (&)¼;2 MeV electrons (59), (�)¼ 20–22 MeV electrons (60), the latter with data scaled by a factor
of 0.8 [see (61)] and plus sign (þ)¼ 7 MeV electrons (62). For e–

aq: (u)¼;35 MeV electrons (63), (&)¼;45
MeV electrons (64), (*)¼;40 MeV electrons (65, 66), (�)¼;2.9 MeV electrons (67) and plus sign (þ)¼ 20
MeV electrons (68). For H3O

þ: (u) ¼ 5 MeV electrons (69), (&) ¼ 60Co and 8 MeV electrons (70), (*) ¼ 3.5
MeV electrons (71) and (�)¼ 15 MeV electrons (72). For H2O2, ‘‘3’’ indicates 60Co c rays (58). For H2: (n)¼
60Co c-rays (73). For H

�
: (n)¼ 60Co c rays (74). [Reprinted (and expanded) with permission. Ramos-Mendez J,

Perl J, Schuemann J, McNamara A, Paganetti H, Faddegon B. Monte Carlo simulation of chemistry following
radiolysis with TOPAS-nBio. Phys Med Biol. 2018; 63:105014.]
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execution time was dramatically reduced with IRT, by a
factor of ;145, taking less than 6 s per proton track on a 2.7
GHz Intelt Xeont processor.

Scorers

TOPAS provides flexibility in scoring quantities for
further analysis. We extended the geometry-coupled scoring
of TOPAS to cell and sub-cellular geometries. Note that the
physical quantities one might want to score will depend on
the scale and should be selected accordingly [e.g., macro-
dosimetric LET vs. microdosimetric lineal energy (y)
distributions].

Track-based scoring. While it is generally sufficient for
macroscopic Monte Carlo simulations to provide volume
and surface scorers, simulations at the sub-cellular scale
often require scoring parameters based on each single
particle track. For this purpose, the concept of n-tuples, (i.e.,
an ordered set of values, each containing n elements), has
been incorporated. The contents of each different tuple were
defined in a new extension class. We have provided a
template for users to define the scored quantities, as well as
a few options of n-tuple scoring. The n-tuples can be written
out in files using ASCII, binary or root data formats. Two
special cases of track-based scorers are described below.

SSB and DSB scorers. Simulations of radiation damage
often focus on damage to the nucleus, in particular to the
DNA double helix. Breaks in the DNA fall into two main
categories: SSBs, i.e., breaks that involve only one strand of
the DNA, and DSBs, i.e., breaks on both strands of the
double helix within a certain defined distance, typically set
to be within 10 basepairs. The complexity of the breaks, i.e.,
how many backbone sugars and bases are damaged within
one damage site, is assumed to greatly influence the
probability of repair. Accordingly, most studies define
additional sub-categories such as a DSBþ, a DSB with
additional damage within a predefined surrounding base-
pair.

Defining an SSB and DSB scorer for generic represen-
tations of DNA is nearly impossible due to the inherent
subtleties in the design of each DNA geometry. Such
scorers need to know how basepairs are defined and how
the geometries are set up within Geant4, e.g., as replicas,

parameterizations or independent geometries. In TOPAS-
nBio, these scorers are thus linked to a specific geometry.
Currently, TOPAS-nBio offers two scorers that can generate
geometry-dependent SSB and DSB distributions in a tuple
format, TsScoreDSBFibre for the TsFibre geometry, and
TsScoreDSBFractal for the TsFractal geometry. For both
scorers, the user has to select an energy threshold to
generate a break (e.g., 17.5 eV) and the number of basepairs
between breaks that still count as a single break (e.g., 10
basepairs). These scorers can be used as templates to design
scorers for other DNA geometries by updating the geometry
dependence of the scorer for each specific implementation.

Another method to score DSBs without considering the
actual geometry is one based on the density-based spatial
clustering of applications with noise (DBSCAN) algorithm
(75) that has been adopted by Geant4-DNA (76). DBSCAN
is used to estimate the number of DSBs based on the
distribution of energy deposition events in a given volume
(e.g., nucleus) and a likelihood of clusters to form a DSB
based on geometric considerations (e.g., the fraction of the
volume covered by DNA). We have adopted the DBSCAN
algorithm in TOPAS-nBio. A sample parameter file for this
scorer is shown in Fig. 7.

The standard for DNA damage scorer. TOPAS-nBio
fully supports a new standard data format for DNA damage
(SDD) scoring, which has recently been developed (39)
both to score damage induction and as an input for repair
modeling. The SDD scorer is a more generic version of a
DNA damage scorer, such as the DSB/SSB scorers, and
captures more information about radiation-induced changes
to the DNA. However, similar to the SSB/DSB scorers,
such a scorer requires detailed information about the
simulated geometry. Accordingly, each TOPAS-nBio
SDD-scorer has been linked to a specific DNA geometry
class. We provide SDD scorers for the same two DNA
geometries as for the DSB scorer (TsFibre and TsFractal).
These scorers can again be used as templates to design
scorer extensions for other DNA geometries. To record
damage in an SDD format, users must select one of the two
DNA structures, select the SDD fields to be filled and add
the information for the DNA repair kinetic modeling that is
required by the SDD format or that can optionally be filled.

FIG. 7. Sample scoring parameter files. Left side: Scorer for the DBSCAN algorithm to determine DSBs
without detailed geometry simulation. Right side: Parameter file to create a SDD scorer.
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An example parameter section of an SDD scorer is shown in
Fig. 7 for a nucleus containing the fractal walk DNA (Fig.
4B).

Graphical User Interface

The TOPAS text-based parameter system facilitates the
setup of Monte Carlo simulations. To further ease the
burden of setting up, running and reviewing results of
TOPAS-nBio simulations such as virtual radiobiology
experiments, we developed a GUI. The goal was to give
users access to all the parameters available through the text-
based parameter system while at the same time offering a
visual interface to TOPAS-nBio (see Fig. 8). The GUI was
implemented as part of TOPAS. Thus, while the GUI was
designed for TOPAS-nBio users, it will eventually be
included in standard TOPAS releases. While users will see
the GUI as a whole new front end to TOPAS, the internal
design is such that the GUI can be used to adjust values of
TOPAS and TOPAS-nBio parameters and then run their
simulation from those parameters, so that the already well
tested TOPAS parameter control system is still in control.
Users can also save the parameter setup with the GUI as a
new set of parameter files to later run with or without the
GUI. This allows users to run their revised simulations on
non-GUI machines such as batch or cloud systems.

The GUI allows users to set up complete simulations. A
selection of predefined physics settings is adjusted to be
optimal for the length scales of the simulation setup. The
user may add geometric objects, such as cells, their nuclei,

and their DNA, and scorers to the geometric components,
such as a double-strand break (DSB) scorer or scoring DNA
damage in the SDD format. In particular, all of the
developments described here are available to view and
change in the GUI. To allow such multiscale simulation
design, the GUI provides a convenient method to zoom
between the scales.

Comparisons and Validations of Track-Structure
Simulations

Here we summarize our previously published studies
validating the simulated track structure, comparing initial
DNA damage induction to other codes and experimental
data.

Stochastic proton interactions in fluorescent nuclear
track detectors. In an effort to validate the simulated track
structure, we compared the simulations to experiments
performed with fluorescent nuclear track detectors (FNTDs)
at the MGH proton beamline (77). Multiple measurements
were taken at 2–4 mm intervals along pristine and spread-
out Bragg peaks; however, due to limited microscope time,
only a few data points were evaluated. We concluded that
the intensity of the fluorescent signal observed with
confocal microscopy should correspond to the number of
secondary electrons stopping within a radius corresponding
to the optical resolution of the microscope (207 nm). We
compared the total intensity of the spot summed from the
image data within our region of interest, defined by the
microscope resolution and the simulated number of

FIG. 8. GUI developed for TOPAS-nBio. Changeable parameters can be set in the GUI, new geometrical components, sources, and scorers
(shown) can be added via a drop box interface. The GUI can show the visualization of the simulated geometries and particle tracks once the
‘‘Run’’ button is pressed. Images can be exported to PDF.
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electrons stopping within the same radius of primary proton

tracks. The resulting intensity plots at different depths were

fitted using a skewed Gaussian. The comparison of the fit

results of the Gaussian widths is shown in Fig. 9. We further

found strong correlations between the FNTD track intensity

and both the track-averaged LET and the frequency mean

microdosimetric lineal energy yF. While this study was

limited by detector resolution, it provided a first validation

of the Monte Carlo simulated track structure at the sub-
cellular scale.

Simulations in a simple DNA geometry. To validate
TOPAS-nBio using historical Monte Carlo track-structure
data, a DNA segment using a representation developed by
Charlton et al. (81) was modeled and simulated with both
monoenergetic alpha particles and electrons to compare to
the simulated results in (78). The energy deposited within
the DNA segments was modeled using the Geant4-DNA
physics processes and both the number and type of strand
break within the segment were calculated and compared to
that reported in Charlton et al. Breaks were defined when
the energy deposited within the sub-volume (sugar-
phosphate cylinder) was greater than 17.5 eV and then
categorized into six different types: SSB, 2SSB, SSBþ,
DSB, DSBþ and DSBþþ. Differences between the
Charlton et al. study and TOPAS-nBio included the
generation of more low-energy events as well as more
DSBs and fewer DSBþþs. However, the overall occurrence
of breaks showed similar trends to the Charlton et al. study
[see (79) for details]. The observed differences were
attributed to the physics models of the very low-energy
events between the two track-structure codes, with TOPAS-
nBio predicting more low-energy deposition events com-
pared to the MOCA8 code, which was utilized in the
Charlton et al. study. Better agreement was found between
Geant4-DNA, CPA100 and OREC simulations than with
MOCA8, since the cross sections in MOCA8 are based on
data for gaseous water, while the other codes are all based
on calculations for liquid water (see Fig. 9B). This was
consistent with that reported in another comparison study of
dose point kernel distribution calculations (82).

Plasmid DNA. To validate TOPAS-nBio using experi-
mental data we modeled the irradiation of a dry circular
plasmid DNA model with 200 basepairs to compare to the
measurements in Vysin et al. (80). The energy deposited
within each component of the DNA plasmid (i.e., the sugar-
phosphate backbone) was scored in an n-tuple scorer to
determine the total number of SSBs and DSBs as a function
of proton LET. Both the experimental and simulation data
show an increase in both SSB and DSB yields with
increasing LET. Both studies also show that protons are
more effective at producing SSBs than DSBs in dry
samples. The experimental data, however, predicted higher
SSB to DSB ratios for all LET values by approximately a
factor of 2 (see Fig. 9C). Differences between the two data
sets are likely due to an oversimplified DNA model
geometry or other experimental factors not accounted for
in the simulation (79, 80).

Example of Complex Simulation with TOPAS-nBio

As a proof of concept, and to illustrate application of
TOPAS-nBio to an artificial, complex simulation, we
simulated protons of 3 and 50 MeV impinging on a
chromatin section consisting of seven nucleosomes based

FIG. 9. Validation studies for TOPAS-nBio. Panel A: Comparison
of TOPAS-nBio track-structure simulations to measurements using
FNTD detectors as described elsewhere (77). Shown are correlations
of the width of skewed Gaussian fits to the simulated number of
electrons stopping within a 207-nm radius of primary proton tracks
and experimentally derived integrated brightness of FNTD tracks
within a radius of 207 nm. Panel B: Comparison of the frequency of
energy depositions in nucleosome-sized cylinders between different
codes, TOPAS-nBio, MOCA8, OREC and CPA100 used by Charlton
et al. (78, 79). Panel C: Comparison of TOPAS-nBio SSB and DSB
yields in dry plasmids and experimental data (79, 80). (Reprinted with
permission. McNamara AL, Ramos-Méndez J, Perl J, Held K,
Dominguez N, Moreno E, et al. Geometrical structures for radiation
biology research as implemented in the TOPAS-nBio toolkit. Phys
Med Biol. 2018; 63:175018.)
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on the TsFibre class, as developed in (26), to assess the
difference between simulations with and without chemical
reactions activated. Damage was scored on the backbones of
the DNA geometry (see Fig. 10A). All physics interactions
were scored as a damage to the backbone without requiring
an energy threshold and a chemical damage was scored
when a

�
OH entered a backbone of the DNA geometry,

resulting in the immediate removal of the
�
OH from the

simulation. Other radicals (e.g., solvated electrons) were
tracked but not scored as damage inducing in this simulation
unless they produced an

�
OH. The propagation of chemical

reactants may be even more important for larger volumes
where DNA at more distant sites can be affected.
Scavengers limit the distance of chemical propagation in
the cell environment. The effect of scavengers was
approximated in this demonstration by limiting the transport
of chemical reactant propagation to a time of 1 ns. The
propagation time can be adjusted through the parameter
system to match the anticipated lifetime of chemical species
in cell environments with different scavenger concentra-
tions.

Figure 10A shows the results of the simulations on the
geometry displayed in that panel. Figure 10B shows the
overall number of breaks (SSBs and DSBs) for 3 MeV
proton irradiations and the number of breaks that involved
�
OH interactions. Over one half of the DNA damage

included at least one
�
OH interaction, with some damage

sites involving up to four
�
OH interactions. Damage sites

here are defined as a group of DNA lesions (physical energy
depositions or

�
OH interaction) with no more than 10

basepairs between neighboring lesions. Accordingly, dam-
age sites can spread over significantly higher numbers of

basepairs than 10; in our simulations, the largest DSB
observed spread across 41 basepairs. Figure 10C (and F)
shows the number of

�
OH interactions involved in damage

categorized as DSBs for 3 MeV (50 MeV) protons. It can be
seen that the fraction of

�
OH damages in DSBs is slightly

less than for all breaks combined. DSBs are defined by
having at least one damage pair on opposing strands within
10 basepairs.

Figure 10D and E (G and H) show the complexity of the
DSBs, i.e., how many backbones were involved in the
damage site for 3 MeV (50 MeV) protons. Multiple physical
or chemical damage within the same backbone were
counted as single instance. Figure 10D and G show damage
including chemical reactions in dark brown and the
complexity only from ionization events, i.e., damage sites
not involving any chemical reactions in light beige color,
and Fig. 10E and H show DSB complexity for damage sites
caused entirely by chemical reactions. This latter damage
has lower complexity (maximum 5) but would be absent in
physics-only simulations. Furthermore, damage involving
chemical reactions may be more difficult to repair, since
�
OH attachments can alter the DNA molecules and structure

and thus potentially the repair mechanism. Thus, while the
damage patterns may be similar, repair probabilities
between DSBs induced by physics events alone or a
combination of physical and chemical events may differ.
Multiple other factors such as chromatin structure (euchro-
matin vs. heterochromatin) also influence damage induction
and repair (20, 83). In the presented simulations, only a
small section of the TsFibre irradiated with a monoenergetic
and monodirectional source was simulated. The propagation
of chemical reactants may be even more important for larger

FIG. 10. Simulation of a chromatid fiber irradiated with 3 and 50 MeV protons, including the chemistry of
radiolysis. The center shows a representation of the simulated geometry and particle tracks, including the
propagation of chemical species. Panels B–E and F–H: The results for 3 and 50 MeV proton irradiations,
respectively. The plots demonstrate the effects of including chemical reactions. Here, only interactions with
hydroxyl radicals are scored. Approximately one half of the DSBs include a reaction with hydroxyl, which not
only influences the overall number but also the complexity of DNA damage (defined as number of lesions within
a DSB).
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volumes where DNA at more distant sites can be affected.
The inclusion of scavengers or, as in this case, the limitation
of chemical reactant propagation to a time of 1 ns, limits the
distance of chemical propagation to more realistic cell

environments. Overall, these simulations show that it is
important to study differences in damage patterns and
severity when chemistry is considered in order to better
understand the processes within a cell.

CONCLUSION

With TOPAS-nBio, we have developed a Monte Carlo
framework to model nanometer scale physics and chemical

reactions for radiobiology experiments with a graphical user
interface that collates progress in the field of track-structure
simulations for radiation biology, making these develop-
ments accessible to all interested researchers. We summa-
rized our previously published studies validating the

simulation framework with improvements to simulation
efficiency, validated our implementation of efficient
simulation with the independent reaction time approxima-
tion, and highlighted the importance of detailed simulations
of complex geometries when comparing DSB induction

with and without accounting for chemistry.

Thanks to renewed funding by the NCI as part of their

program for Informatics Technology for Cancer Research
(https://itcr.cancer.gov), TOPAS has recently become free
to all nonprofit researchers world-wide with the intention of
becoming open source by June 2023. TOPAS-nBio will
also be released free and open source in 2019. Licenses will

be of the BSD/MIT sort that encourage maximum reuse. We
hope that the release of both tools without restrictions for
non-profit users will generate further interest from the
medical physics and radiation chemistry and radiation
biology research communities. We envision that new

developments in the field by the Geant4-DNA user
community and other researchers working on track-structure
codes, new DNA and cell geometries and new DNA repair
models, will be included in the TOPAS-nBio code to foster
collaborations across the research communities.

The SDD scorer included in the current release is
designed as an interface between the physics and chemistry

simulations and the biological effect modeling. In addition,
biological models can also be directly linked to TOPAS-
nBio. The open source format of TOPAS-nBio allows
model developers to change any parameter within their
simulation framework, or design entirely new geometries or

damage induction scorers. This flexibility, in combination
with the availability of a large number of precompiled
geometries and scorers, provides an ideal framework to
design and test new mechanistic models of DNA repair
kinetics. TOPAS-nBio further offers new means to test

model dependencies on various parameters, for example, by
changing geometries or damage definitions such as the
damage induction energy threshold.

The developments of TOPAS-nBio presented in this
article are early steps to provide researchers with basic tools
to further understanding and simulate realistic damage
induction from radiation, (sub-)cellular scale responses and
eventually tissue and organ level response. In addition, the
framework of TOPAS-nBio allows researchers to contribute
their own developments as independent extensions to the
repository. Such external contributions to the ongoing
developments of TOPAS-nBio are highly encouraged and
will likely play a significant role to help TOPAS-nBio move
the field of mechanistic cell response modeling forward,
with the goal to close the gap between simulation of physics
events and the biologically observed outcome.
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