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Abstract

In adult cardiomyocytes, T-tubules, junctional sarcoplasmic reticulum (jSR), and mitochondria 

juxtapose each other and form a unique and highly repetitive functional structure along the cell. 

The close apposition between jSR and mitochondria creates high Ca2+ microdomains at the 

contact sites, increasing the efficiency of the excitation-contraction-bioenergetics coupling, where 

the Ca2+ transfer from SR to mitochondria plays a critical role. The SR-mitochondria contacts are 

established through protein tethers, with mitofusin 2 the most studied SR-mitochondrial “bridge”, 

albeit controversial. Mitochondrial Ca2+ uptake is further optimized with the mitochondrial Ca2+ 

uniporter preferentially localized in the jSR-mitochondria contact sites and the mitochondrial Na
+/Ca2+ exchanger localized away from these sites. Despite all these unique features facilitating the 

privileged transport of Ca2+ from SR to mitochondria in adult cardiomyocytes, the question 

remains whether mitochondrial Ca2+ concentrations oscillate in synchronicity with cytosolic Ca2+ 

transients during heartbeats. Proper Ca2+ transfer controls not only the process of mitochondrial 

bioenergetics, but also of mitochondria-mediated cell death, autophagy/mitophagy, mitochondrial 

fusion/fission dynamics, reactive oxygen species generation, and redox signaling, among others. 

Our review focuses specifically on Ca2+ signaling between SR and mitochondria in adult 

cardiomyocytes. We discuss the physiological and pathological implications of this SR-

mitochondrial Ca2+ signaling, research gaps, and future trends.
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INTRODUCTION

In adult cardiomyocytes, the excitation-contraction-bioenergetics coupling (ECB) process 

links electrical stimulation of the plasma membrane with the contraction of the muscle and 

energetics of the mitochondria [1–3]. The excitation of the membrane triggers the opening of 

L-type Ca2+ channels, initiating the Ca2+-induced Ca2+ release mechanism. The 

sarcoplasmic reticulum (SR) then liberates a more substantial amount of Ca2+ to the cytosol, 

resulting in a rapid increase in cytosolic Ca2+ concentration ([Ca2+]c). Free cytosolic Ca2+ 

binds to troponin C, causing the sliding of the thin and thick filaments to generate sufficient 

contractile force during systole for the heart to pump the blood. Meanwhile, a certain 

amount of Ca2+ is taken up by mitochondria to stimulate ATP generation machineries in 

order to meet the energy demands of the heart. During diastole, the increase in the [Ca2+]c is 

then quickly returned to basal levels by Ca2+ export through the plasma membrane Na+/Ca2+ 

exchanger and by re-uptake to SR through the SR Ca2+-ATPase (SERCA). Therefore, the 

[Ca2+]c fundamentally controls the circulatory function of the heart and thus needs to be 

regulated tightly.

The transfer of Ca2+ from SR to mitochondria has been described previously[4–6], however, 

it is worth mentioning that the process not only depends on the Ca2+ transporting proteins’ 

properties, but also on their spatial distribution along the membranes involved. Furthermore, 

the apposition of SR-mitochondria (SR-mito) creates localized signals—including reactive 

oxygen species (ROS), Ca2+, and pH—that can feedback to modulate the nearby ion 

channels and transporters involved in ECB. Adult cardiac myocytes are highly structured 

cells, with little room for membrane reorganization or organelle mobility and 

reconfiguration[7, 8]. Therefore, the cellular components are structured strategically to carry 

out signaling mechanisms locally. Transverse (T) tubules are deep invaginations of the 

plasma membrane, located at every junction of two sarcomeres (Z-line). In the dyadic space, 

the T-tubules are very close to the junctional SR cisternae (jSR) (10-30 nm)[9, 10], 

optimizing the Ca2+ signal transfer from the L-type Ca2+ to the ryanodine receptors (RyRs). 

This close association between the elaborated T-tubules and SR is critical to ensure the 

synchronistic rise of the [Ca2+]c throughout the entire cell for an effective contraction[11, 

12]. Defects in this close apposition lead to non-homogeneous Ca2+ transients that make the 

heart prone to arrhythmias and failure [13].

Mitochondria comprise approximately 30% of the volume in adult cardiomyocytes[14]. This 

significant amount of mitochondria is essential to satisfy the high demand of the heart for 

ATP[15, 16]. However, ATP production is not the only function of the mitochondria. 

Mitochondria also take advantage of their positioning next to the SR Ca2+-releasing sites to 

uptake cytosolic Ca2+ and, as a final consequence, to sharpen the [Ca2+]c[17–19]. 

Mitochondrial uptake of Ca2+ during the ECB is widely known to modulate ATP production 

to ensure the homeostasis of energy demand and supply[20]. This review will focus on what 

is less well-known: the physical interaction among SR and mitochondria[21–23] in adult 

cardiomyocytes, how both organelles are connected, and why this connection is critical to 

control not only a proper Ca2+ signal transfer between SR and mitochondria but also other 

cellular processes, including bioenergetics, ROS, and mitochondrial dynamics
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SR-MITOCHONDRIA CONTACTS IN ADULT CARDIOMYOCYTES.

Cellular organelles are not static and independent structures but rather highly dynamic and 

interconnected. The connection between endoplasmic reticulum (ER) and mitochondria was 

reported years ago[24], and recently, fluorescence and EM techniques were used to reveal 

physical interactions[25, 26]. These techniques revealed that the extent and characteristics of 

these contacts differ among the different organisms and cell types. Depending on the type of 

ER involved, the gap distance varies from 10-15 nm for smooth ER to 20-30 nm for rough 

ER[27]. Regarding the composition, for closer contracts (<30 nm), electron-dense and 

protein-like structures link the two membranes[28]. The most extensively studied ER-

mitochondria (ER-mito) tethering protein complex is the ER-mito encounter structure 

(ERMES). ERMES complex has been fully characterized in yeast, but no homologous 

structures have been identified in mammals[29]. Many proteins seem to be involved in the 

ER-mito contacts in mammals, including the complex IP3R-Grp75-VDAC, VAPB-PTPI51, 

FUNDC1, and PDZD8[30–33]. However, there is no solid proof that their absence 

completely abolishes the ER-mito contacts. The complexity of the system is unexpectedly 

high, and the different components involved may compensate each other upon removal of 

some individual components.

Cardiac mitochondria can uptake cytosolic Ca2+ most dominantly through a channel called 

the mitochondrial calcium uniporter complex (MCUC)[34, 35]. However, the reported 

activation Km for the uniporter is 10 μM, meaning that the channel requires a free Ca2+ 

concentration of at least 2-5 μM in the sarcoplasm in order to be activated [36]. This 

concentration is not reached in the bulk sarcoplasm, but it is in Ca2+ microdomains, formed 

at the mouth of Ca2+-releasing RyR2 channels[37] located in the jSR . In adult 

cardiomyocytes, the close apposition between jSR and mitochondria favors the Ca2+ transfer 

from one organelle to the other through these high Ca2+ microdomains[38]. Recent data 

suggest that the jSR and mitochondria is physically connected through the protein mitofusin 

2 (MFN2) as a tether[39]. It is probable that additional tethers are existed for connecting jSR 

and mitochondria in adult cardiomyocytes. For instance, it has been reported that the 

mitophagy-related protein FUNDC1 is located in the outer mitochondrial membrane to 

tether mitochondria for interacting with the IP3R2 on the ER surface of mouse neonatal 

cardiomyocytes and intact hearts[33]. The role of other classical ER-mito tethers like 

GRP75 has not been investigated in adult cardiomyocytes.

It is still not clear whether MFN2 acts as a tether or as a spacer in the ER-mito interaction. 

MFN2 is a dynamin-family GTPase that is mostly present in the outer mitochondrial 

membrane but can also be found in the ER/SR membranes. It has many functions in the 

heart, the most well-known being SR-mito tethering and a component of the outer 

mitochondrial membrane fusion process[40]. The physical structure of MFN2 determines 

the attachment between SR and mitochondria. Four types of domains configure the MFN2 

structure: an N-terminal GTP binding domain; an alpha-helical first heptad repeat (HR1); 

two following lipophilic transmembrane domains; and a second alpha helical heptad 

repeated (HR2) C-terminal[41]. It has been broadly accepted that both coiled-coil domains 

(HR1 and HR2) are exposed to the cytosol, but a recent study showed that in fact the 

GTPase and HR1 domains are exposed to the cytosol, while the HR2 and the C-terminus are 
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exposed to the intermembrane space[42]. The C-terminal segment of the protein contains the 

redox-sensitive cysteine residues, which are essential modulators of the MFN2 

oligomerization processes. This discovery has challenged the actual view of mitochondrial 

dynamics and organelle tethering because it means that the whole MFN2 regulation comes 

from the mitochondrial intermembrane space side instead of from the cytosolic side. In 

addition to the MFN2 topology controversy, the functional role of MFN2 is also under 

debate. Two opposite effects have been observed in non-cardiac muscle cells when MFN2 is 

removed. Scorrano’s lab has shown that the ER-mito distance in MFN2 knockout (KO) cells 

increases[39, 43] while Pizzo’s lab has shown that is decreases[44, 45].

To elucidate the effects of MFN2 removal in vivo, two independent labs generated cardiac-

specific MFN2 KO mouse models. The Dorn lab genereated the mice using a myh6-driven 

“turbo-cre” which promotes the gene removal only after birth[46] while the Walsh lab using 

myh6-cre to ablate MFN2 in the embryonic heart[47]. When they analyzed transmission 

electron microscopic images from their mouse model, the Dorn lab found that the distance 

between the SR and mitochondria significantly increased (~30%), however, the Walsh lab 

did not see this change. This discrepancy makes the comparision of phenotypes between 

these two mouse models challenging, considering the importances of SR-mito associations 

in dictating cardiac functions. Furthermore, it confirms the complexity of manipulating 

MFN2 genetically for studying SR-mito associations. It is plausible that this difference is 

related to the timing of the gene deletion. In Walsh’s studies, MFN2 is removed at the 

embrionic stage, which may allow other thether mechanims to compensate for the lack of 

MFN2 and as such render no diference in the SR-mito distance. This difference in the time 

point for the MFN2 ablation could also be the reason that while the Walsh results showed a 

significant phenotype in both cardiac and mitochondria in young adults (10-14 weeks), the 

Dorn lab only showed significant differences between control and MFN2 KO mice in mature 

animals (16-44 weeks) and not in young mice (6 weeks).

With the detection of a decrease in SR-mito contacts after MFN2 ablation, Dorn’s lab 

further studied its impacts on Ca2+ signaling between the two organelles. They found that 

the SR Ca2+ content was increased[46]. The authors interpreted this finding by saying that 

mitochondria that are physically and functionally linked to SR Ca2+ can act as Ca2+ 

sponges. In the absence of SR-mito connections, the Ca2+ released by the SR cannot be 

buffered by mitochondria and will be taken up again by SR, making the SR Ca2+ content 

higher. Since the authors have previously shown that the Ca2+ uptake by the mitochondria 

during EC coupling increased the rate of NAD(P)H production and therefore the production 

of ATP[48], they further confirmed that the decreases in mitochondrial Ca2+ uptake in 

MFN2 null cardiomyocytes hampered Ca2+-induced stimulation of Krebs cycle 

dehydrogenases during β-adrenergic stimulation[46]. Surprisingly, the authors also found 

that MFN2 deficiency cardiomyocytes had similar mitochondrial membrane potential (ΔΨm) 

and contraction, suggesting that the loss of MFN2 had no direct impact on respiratory chain 

function or ATP production. It appears that there is a disconnect between the defect in 

mitochondrial Ca2+ uptake and bioenergetics in MFN2 KO cardiomyocytes. The reasons for 

diminished mitochondrial Ca2+ uptake without an energetic consequence are not obvious, 

however, these findings bear some similarities with recent publications showing that the 

MCU-KO mice don’t experience an energy crisis[49–51].
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The major phenotype found in vivo MFN2 null hearts was similar in both models. Cardiac 

hypertrophy and contractile depression were observed in older mice (30 weeks) but not in 

younger mice (6 weeks). Only minor hypertrophy was notice for the 6- to 10-week-old mice. 

This finding points to a progressive increase of the hypertrophy and contractile depression 

upon MFN2 deletion. The researchers observed also that the MFN2 null hearts are less 

sensitive to ischemia-reperfusion injury. At the single cardiomycocyte level, the absence of 

Ca2+ transfer to the mitochondria may prevent mitochondrial matrix overload and therefore 

avoid mitochondrial permeability transition pore (mPTP) mediated cell death.

Taken together, the structural tethering of SR and mitochondria in adult cardiomyocytes 

through MFN2 could facilitate the Ca2+ transfer between these two organelles. However, due 

to the multiple roles of MFN2, the diversity of the ER-mito contact protein family, and the 

compensatory mechanism between MFN2 and MFN1, the physiological and pathological 

implications of MFN2 as a SR-mito tether in adult cardiomyocytes are still not yet clear.

MITOCHONDRIAL Ca2+ UPTAKE AND EXTRUSION IN CARDIOMYOCYTES

The central mechanism for the Ca2+ to enter in the mitochondria is the MCUC. The 

molecular identity of the channel has been elucidated recently, opening a new era for the 

mitochondrial calcium signaling field[52, 53]. Located in the inner mitochondrial membrane 

and showing high selectivity for Ca2+, MCUC is a conjunction of several accessories and 

regulatory subunits. So far, the following proteins have been found to form the MCUC: 

MCU, MCUb, EMRE, MICUs (1, 2, and 3), EMRE, and MCUR1. MCU is responsible for 

the pore-forming structure[52, 53], and the most recent studies using Cryo-EM techniques 

report a tetramer conformation for the channel[54, 55]. MCUb is also a pore-forming 

component, but its presence in the complex limits the Ca2+ uptake[56]. EMRE is a single-

transmembrane subunit essential for the proper function of the whole complex[57]. MICU1 

acts both as a gatekeeper at low [Ca2+]c and as an activator for higher [Ca2+]c [58, 59]. 

MICU2 inhibits Ca2+ at low extramitochondrial Ca2+ concentrations [60]. MICU3, the least 

studied subunit, appears to act as an activator of the channel[61]. Lastly, MCUR1 binds to 

MCU and EMRE and functions as a scaffold factor[62]. Early studies reported that the 

MCUC shows a half-maximal activation (K0.5) in the upper micromolar range[63], and 

recent patch-clamp experiments have reported an ever higher K0.5, in the millimolar 

range[64]. These levels are not typically reached in the cardiomyocyte sarcoplasm, so the 

only plausible explanation for the mitochondrial Ca2+ uptake is that the MCUC is exposed to 

high Ca2+ microdomains[65]. Taking all of the activation properties of the MCUC into 

account, the close apposition between SR and mitochondria is necessary to create a high 

enough Ca2+ microdomain to optimize SR to mitochondria Ca2+ transfer.

The MCUC is not the only mechanism proposed to uptake Ca2+ into cardiac mitochondria. 

Other described mechanisms include the rapid mode of Ca2+ uptake (RaM) and the 

ryanodine receptor type 1 (mRyR1). RaM was described in isolated heart mitochondria and 

found to function in the initial period of repeated extramitochondrial [Ca2+] increases[66]. 

The Ca2+ uptake is several times faster than the uptake via MCUC, nevertheless, it takes 

more than 60 s to recover the basal Ca2+ level, making the system unsuitable for a sustained 

Ca2+ oscillation such as in the heart. Meanwhile the mitochondrial Ca2+ uptake via mRyR1 
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located in the inner mitochondrial membrane is still controversial. mRyR1 shows similarities 

with skeletal RyR1 but not with the cardiac RyR2, and several methods prove its presence in 

the IMM, excluding a potential SR contamination. mRyR1 can be activated at low [Ca2+]c, 

where the MCUC is still inactive[67, 68]. In addition, a more recent study showed that 

mRyRl overexpression in H9C2 myoblast increases the ATP amount, consistent with the fact 

that elevated mitochondrial Ca2+ concentrations ([Ca2+]m) through mRyR1 enhances ATP 

production[69]. The uncoupler proteins UCP2 and UCP3[70], as well as LETM1[71], have 

been proposed as possible mitochondrial Ca2+ uptake mechanisms, but their role has not 

been studied in further detail since the molecular identification of the MCUC.

Two pathways, Na+-dependent and Na+-independent, remove the Ca2+ from the 

mitochondrial matrix. The Na+-independent extrusion plays little or no role[72] while the Na
+-dependent efflux is the predominant pathway in adult cardiomyocytes[73, 74]. The Na+-

dependent extrusion occurs via the mitochondrial Na+/Ca2+ exchanger (NCLX), which was 

recently identified[75]. Early on, researchers debated whether NCLX is electroneutral or 

electrogenic[74, 76], but then it was found that the exchanger extrudes 1 Ca2+ out of 

mitochondria per 3 Na+ transported into the mitochondrial matrix[77]. As an electrogenic 

exchanger, Ca2+ extrusion would lead to the depolarization of mitochondrial membrane 

potential. It was recently hypothesized that transient opening of the Ca2+-dependent mPTP 

may prevent Ca2+ overload by providing mitochondria with a fast Ca2+ release channel[78]. 

Electrophysiological studies have revealed that the mPTP is a large conductance channel 

with multiple subconductance states, and it may flicker rapidly between a fully closed and 

subconducted state[79]. Also, oxidative stress has been shown to trigger the repetitive 

opening and closing of the mPTP in isolated cardiac mitochondria[80]. Finally, during ECB, 

mitochondria-accumulated Ca2+ can trigger transient mPTP openings and reset matrix Ca2+ 

and mitochondrial energetics[81].

In such extremely structured cells like the adult cardiomyocytes, both Ca2+ uptake and Ca2+ 

extrusion are expected to be tightly regulated, not only temporally but also spatially. Our 

group has reported recently that the MCUC and NCLX are reciprocally excluded in the 

cardiac mitochondrial inner membrane (IMM). MCUC is located specifically in those areas 

where the mitochondria are in close contact with the jSR, whereas the NCLX is actively 

excluded from those areas[82, 83]. Having the Ca2+ uptake and Ca2+ extrusion physically 

distributed in two separated regions, as mentioned, enormously maximizes the mitochondrial 

Ca2+ signal and minimizes the energy expenses (depolarizations of mitochondrial membrane 

potential). In this context, it is worth mentioning that MCU absence in the heart has a very 

mild phenotype[49], while NCLX absence has catastrophic consequences for the heart[84]. 

These results suggest that Ca2+ overload could be much more harmful to cardiac 

mitochondria than Ca2+ depletion.

Figure 1 shows all of the mitochondrial Ca2+ uptake and extrusion mechamisms that have 

been proposed.

De la Fuente and Sheu Page 6

Arch Biochem Biophys. Author manuscript; available in PMC 2020 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ca2+ SIGNALS DURING ECB: CONTROVERSY BETWEEN TWO MODELS

The cardiac MCUC certainly has the capacity to uptake Ca2+ from the high Ca2+ 

microdomains created at the SR-mito interface. However, how mitochondria decode the 

rapid cytosolic Ca2+ transients in contracting cardiomyocytes remains controversial[85]. 

Traditionally two models have been proposed. The first one suggests that, in responding to 

beat-to-beat cytosolic Ca2+ oscillations, the [Ca2+]m increase is slow and gradual until 

reaching a new steady state where the Ca2+ influx and the efflux are entirely balanced[86]. 

Nonetheless, slow increases in [Ca2+]m may not be able to stimulate ATP production fast 

enough to match the immediate energy demands of the beating heart. The second model 

suggests that the fast cytosolic Ca2+ oscillations are fully sensed by the mitochondria. Thus, 

a finite amount of Ca2+ goes rapidly into mitochondria from beat to beat. This second model 

implies not only that the influx is extremely fast but also that a rapid efflux is required. 

Furthermore, if the amount of Ca2+ uptake by mitochondria in each heartbeat is large, then 

in addition to regulating energy production, mitochondria can also play a critical role in 

shaping the [Ca2+]c pulses. Indeed one group has reported that the magnitude of cytosolic 

Ca2+ transients increases upon inhibition of the MCUC, but not all studies have found 

evidence for this[17, 87].

The controversy between the two models relates in part to limitations in the available 

methods for measuring free mitochondrial [Ca2+], so depending on the method used, the 

results support one model or the other[88]. Two groups of fluorescent indicators were used 

to measure free [Ca2+]m. The first group is small molecule fluorescent dyes, such as rhod-2. 

Although these dyes are designed to be preferentially located in the mitochondria, cytosolic 

contamination is expected and needs to be removed for accurate [Ca2+]m determinations. 

The second group is the genetically encoded calcium indicators (GECIs). This group of 

indicators can be designed genetically to target a specific organelle, however, the application 

of these indicators to adult cardiomyocytes is technically challenging because expression of 

GECIs requires either infection of cultured adult cardiomyocytes with a consequent time 

lapse (a few days) between the infection and the experimental performance, or the delivery 

of the virus to the heart in vivo through adeno-associated vectors (AAV9). To resolve this 

controversy, it would be helpful to have a probe that accumulates solely inside the 

mitochondiral matrix with Ca2+ binding affinity and kinetics that can respond to the 

dynamic ranges of [Ca2+]m changes.

Model I: mitochondrial free Ca2+ slowly integrates the cytosolic Ca2+ transients.

A significant number of the studies use fluorescence microscopy techniques, specifically 

fluorescent dyes such us rhod-2 or fluo-3, to measure mitochondrial Ca2+ concentrations 

([Ca2+]m). As described above, the main concern about these dyes is their unspecific 

localization in the cytosol, which can lead to misinterpretation of the mitochondrial Ca2+ 

kinetics. In order to avoid this cytosolic signal contamination, cells can be treated with 

manganese or cobalt[86, 89] or the plasma membrane can be permeabilized[90]. In adult rats 

the data show slow increases in [Ca2+]m occurred upon β-adrenergic stimulation[91] or Ca2+ 

loading via sarcolemmal NCX [92]. However, in adult cat cardiomyocytes, increases in 

[Ca2+]m were only barely detectable upon basal electrical stimulation without β-adrenergic 
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stimulation. Another study performed in rats showed a [Ca2+]m increase of only 2-10 nM 

during a single cytosolic Ca2+ pulse, supporting the idea that mitochondria barely sense the 

cytosolic Ca2+ oscillations[93]. Lastly, when permeabilized adult cat cardiomyocytes were 

loaded with fluo-3 in mitochondria and computer-control rapid Ca2+ pulses were added, 

mitochondria sequestered Ca2+ slowly rather than on the pulse-to-pulse basis. Only after the 

Ca2+ additions had elapsed for at least 5 min the [Ca2+]m was then able to rise quickly and 

return slowly to the basal level, showing that the recovery of rapid Ca2+ uptake kinetics is 

slow[90].

Model II: beat-to-beat mitochondrial Ca2+ oscillations.

Evidence for fast [Ca2+]m transients came from laser scanning confocal microscopy and 

fluorescent dyes[4, 94]. The experiments were performed in adult rabbit cardiomyocytes 

upon electrical or β-adrenergic stimulation. The shape of [Ca2+]m transients was almost 

identical to that of the [Ca2+]c transients, which made the separation of fluorescence signals 

from mitochondria and from cytosol more challenging. To distinguish these two signals, 

control experiments were performed to show that MCU blocking with ruthenium red 

abolished the rhod-2 signal ([Ca2+]m) but did not affect the fluo-3 ([Ca2+]c) signal[95, 96]. 

As mentioned, to avoid the cytosolic signal contamination, mitochondria-targeted GECIs, 

such us aequorin or pericam, were used to monitor [Ca2+]m [97] in cardiomyocytes from 

neonatal rats . Adult rat cardiomyocytes expressing cytosolic and mitochondrial aequorin 

showed a synchronous elevation in [Ca2+]c and [Ca2+]m upon electrical stimulation. 

However, the [Ca2+]m decay was much slower, leading to a progressive Ca2+ accumulation 

within the mitochondria[98]. Other evidence for fast mitochondrial Ca2+ uptake came from a 

study using adult guinea pig cardiomyocytes, which showed that cytosolic Ca2+ transients 

were accompanied by fast [Ca2+]m transients, however detection of these trasients depended 

on elevated Ca2+ cycling (β-adrenergic or increased stimulation frequency). In this study, the 

mitochondrial Ca2+ increase was detected earlier than the [Ca2+]c increase, proving that 

mitochondria have privileged uptake of the Ca2+ released by the RyR2, even faster than the 

global [Ca2+]c increase[48]. This finding supports the previously reported fast local Ca2+ 

communication between SR and mitochondria through the high Ca2+ microdomains[99]. 

Maack et al. developed a computation model where 50 ms pulses of 10 to 20 μm Ca2+ 

(magnitude reported for the Ca2+ microdomains) were applied to adult myocytes. The model 

predicted characteristics of the [Ca2+]m changes mimicking both model I and II. It predicted 

a fast mitochondria Ca2+ uptake, however, mitochondrial Ca2+ extrusion is always slower 

than uptake, so the Ca2+ accumulates in the mitochondria until a new steady-state level is 

reached[48]. This theoretical model was recently confirmed in experimental results from 

Wust et al. in which cultured rat adult cardiomyocytes were infected with the FRET-based 

mitochondrial Ca2+ indicator 4mtD3cpd, MitoCam. As predicted, at 37 °C, mitochondria 

were able to uptake Ca2+ rapidly (~49 ms) while extrusion was much slower (~1.17 s), 

reaching a new steady state level where the beat-to-beat Ca2+ oscillations still happen. These 

results further confirmed that the Ca2+ transients can effectively regulate ATP production 

upon an increase in the heart workload[100]. The magnitude of mitochondrial matrix free 

Ca2+ concentrations during these oscillations remains to be determined quantitatively. 

Furthermore, whether different species have different mitochondrial responses to [Ca2+]c 

oscillations is not yet clear. With the improvements in mitochondria targeted Ca2+ indicators 
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with optimal Ca2+ sensitivity and kinetics plus the genetic manipulations of mitochondrial 

Ca2+ tranport proteins, this controversy will be resolved eventually.

PROCESSES REGULATED BY Ca2+ RELEASED TO THE SR-MITO 

CONTACTS SITES IN ADULT CARDIOMYOCYTES

Bioenergetics and ROS.

As described in the introduction, during ECB, Ca2+ enters the sarcoplasm through L-type 

Ca2+ channels leading to a greater Ca2+ release by the SR. After the contraction is induced, 

the reuptake of Ca2+ by SR SERCA pump and the extrusion of Ca2+ across the cell 

membrane through the NCLX together bring the muscle back to relaxation. A physiological 

increase in heart workload activates the β-adrenergic pathway, increasing the rate and 

amplitude of the cytosolic Ca2+ transients that enhance the force generation at the 

myofilaments and thereby increasing the ATP consumption[15]. Then, the ADP generated as 

a consequence of the ATP hydrolysis during muscle contraction is transported into the 

mitochondria, where it can serve as a signal to enhance ATP regeneration. Increased ATP 

production causes a faster electron flux through the electron transport chain (ETC), 

oxidizing NADH to NAD+. This process was established as the Pull condition, a term used 

by O’Rourke[101]. However, the ADP is not the only regulator of the ATP production. 

Simultaneously, the Ca2+ uptake by the mitochondria activates two Krebs-cycle 

dehydrogenases plus the pyruvate dehydrogenase to accommodate NADH regeneration 

(Push condition). Therefore the Ca2+ signal within cardiomyocytes has a dual role: one 

increasing the energy consumption and another enhancing the energy regeneration. The term 

“parallel activation” is used to describe this process[1, 102].

The common belief is that Ca2+ entry through MCUC activates the α-ketoglutarate 

dehydrogenase, the isocitrate dehydrogenase, and the pyruvate dehydrogenase, modulating 

the ECB. Three models of MCU-deficient mice, all introduced in 2013[49, 50, 103], 

provided unique model systems to validate this popularly accepted dogma unequivocally. All 

three models (global constitutive, cardiac-specific, and dominant negative overexpression) 

showed no rapid mitochondrial Ca2+ uptake, but surprisingly completely normal cardiac 

function, and only a mild and transient phenotype was observed upon a significant increase 

in the heart workload (sprint at high speed). Taken together, these results indicate that 

MCUC is dispensable for physiological ECB coupling and only needed temporally for 

increased heart activity under “fight and flight” conditions in the mouse. It is worth 

mentioning that the range of heart workload increases are species-dependent: in humans, the 

normal resting heart rate is approximately 70 per miniute and can increase 2- to 4-fold 

during intense exercise[104] and in mice the normal resting heart rate is approximately 500 

per minute and can increase only 1.5-fold during intense exercise[105]. It is possible that the 

energy supply/demand matching meditaed by mitochondrial matrix Ca2+ under 

physiological sympathetic innervation is not critical on a beat-to-beat basis in mice, but it is 

in humans.

It is still striking that the hearts lacking MCU are able to keep intact the ECB. The reason 

why remains in the darkness[106]. Without ATP regeneration mechanisms, the heart should 
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run out of energy supply completely in one minute, so additional ways besides MCU are 

expected “out there.” Compensation effects are expected, however few of these mechanisms 

have been elucidated or even proposed yet. In this scenario, it is probable that additional 

Ca2+ influx mechanisms exist to compensate for the lack of energy production regulation 

due to Ca2+ uptake through the MCUC. Any alternative mitochondrial Ca2+ entry pathway 

(mRyR1or one of the other reported Ca2+ influx mechanisms, e.g., rapid mode of 

mitochondrial Ca2+ uptake, RaM) might be sufficient to maintain adequate ATP production. 

Seidlmayer et al.[107] reported that the Ca2+ released from the SR through IP3 receptors can 

enter into the mitochondria through the mRyRl. This fast and high-affinity Ca2+ uptake 

increased the mitochondrial ATP content without stimulating the mitochondrial ROS 

production. In the same way that the ADP can modulate the ATP production, several other 

mediators could also be involved, such as various substrates involved in mitochondrial 

metabolism and redox environments[108]. A recent report showed that when the 

mitochondrial fission mediator DRP1 was inhibited, mitochondrial respiration in the heart 

was reduced in half[109]. The high abundance of DRP1 coupled with the very low 

frequency of fission events in cardiomyocytes points to a likelihood that DRP1 may have 

additional functions besides mitochondrial fission.

Reactive oxygen species (ROS) are the by-products of oxidative phosphorylation (Ox-Phos)

[110]. The main sites for ROS formation in mitochondria are the complex I and complex 

III[111]. At both sites, the superoxide radical (O2
−) is produced when the reduced forms of 

flavin mononucleotide or ubiquinone transfer an electron to O2. Under physiological 

conditions, O2
− is converted to H2O2 and then eliminated by glutathione peroxidase and 

peroxiredoxin[110]. Aon et al. developed a model called redox-optimized ROS balance 

where a unified scheme integrates the optimization of maximized energy output with 

minimized ROS overflow by operating in an intermediate redox state of the cell[112]. 

Minimal amounts of NADPH in this model attenuate H2O2 production while maintaining an 

intermediate redox state and consequently lowering oxidative stress.

The discovery of inner mitochondrial anion channel (IMAC) activated by ROS[113] raised 

the possibility of ROS transients, similar to the Ca2+ sparks. In cardiomyocytes, ROS are 

produced in two phases. Initially, there is a slow increase in ROS followed by a fast ROS 

release, a phenomenon named ROS-induced ROS release (RIRR)[114]. The propagation of 

RIRR is mediated by IMAC[115]. As part of the fine tuning of Ca2+ signaling in 

cardiomyocytes, the ROS produced during the Ox-Phos process also regulates the Ca2+ 

transport not only at the mitochondrial level but also in the SR[116]. Ca2+-microdomain-

localized ROS can serve as a feedback regulator to enhance further Ca2+ release by 

oxidizing SR-RyR2 cystine residues[117]. However, this positive feedback loop can lead to 

excess ROS production and mitochondrial dysfunction. Mitochondrial antioxidant defenses 

are responsible for restoring ROS to basal levels, and the [Ca2+]m is lowered through the 

mitochondrial Ca2+ efflux mechanisms, avoiding any future mitochondrial damage[118]. In 

this scenario, the subconductance state of the mPTP is critical. The transient mPTP flicker 

can expel the excess of Ca2+, avoiding Ca2+ overload, and thus Ca2+-dependent cell 

death[81].
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Mitochondrial dynamics.

In multiple tissues, mitochondria have been described as highly dynamic organelles, 

constantly varying their position, size, and shape throughout fusion/fission events[119]. 

However, in adult mammal cardiomyocytes, mitochondria rarely show signs of “dynamism”

[7]. This dynamism is important because fusion and fission events ensure proper 

mitochondria function and act as quality control processes. Mitochondrial dynamics have 

been extensively described for many tissues and cell types, but few studies have been 

performed in adult cardiomyocytes. The mitochondrial fusion occurs essentially in three 

steps: first, two mitochondria are tethered together by GTPase MFN1 or 2 (key proteins 

initially described as active in the mitochondrial fusion process[120], and later identified as 

playing a role as SR-mito tethers[39]); second, the mitochondrial OMM are fused thanks to 

the GTPase activity of the MFNs; and third, GTPase-dependent fusion of the inner 

mitochondrial membrane occurs through optic atrophy 1 (OPA1)[121].

Mitochondrial fission is driven by the GTPase DRP1, FIS1, mitochondrial fission factor 

(MFF), and mitochondrial dynamics proteins 49 and 51 (MiD 49, 51)[122]. DRP1 is 

responsible for constricting the mitochondrial membranes, however it does not possess a 

mitochondrial targeting sequence. Multiple receptors are capable of recruiting DRP1 to 

induce the mitochondrial fission however MFF appears be what recruits DRP1 to the 

OMM[123]. In non-cardiac cells, the diameter of the mitochondrial tubules is around 300 

nm, so DRP1 polymeric rings are not sufficiently large to wrap around mitochondria. Pre-

constriction of the mitochondrial tubules is needed to reduce the diameter to ~150 nm, 

allowing DRP1 and the rest of the adaptors to initiate the fission process. ER plays a critical 

role in this pre-constriction step. The Voeltz lab showed that ER wrap around mitochondria 

to facilitate the reduction of the initial tubule diameter, marking the potential sites for 

mitochondrial fission[124]. This ER wrapping occurs upstream and is independent of the 

fission adaptors. When cells are knocked down or out for the DRP1, MFF, Mid 49, or MiD 

51, the ER wrapping effect is still present. Further investigation has shown that the 

combined action of actin and myosin (IIA and IIB) associated with the ER make the 

constriction possible. In addition, it was shown that myosins are involved in recruiting 

DRP1[125]. In adult cardiomyocytes, the SR-mito wrapping effect of marking fission sites 

has not been studied in detail, however, in adult cardiomyocytes the SR permanently wraps 

the mitochondria and all the fission machinery is present[126], making the process feasible.

Mitochondrial dynamics may not be as frequent in in adult hearts as in other tissues, but they 

are present. Their presence is demostrated when ablation of the fusion or fission machinery 

in adult cardiomyocytes leads to more fragmented or elongated mitochondria, 

respectively[47, 127, 128]. While the fusion and fission events in mitochondria are not 

common, high levels of MFN2 and DRP1 have been reported, suggesting non-canonical 

roles for MFN2 , which plays a crucial role as an SR-mito tether, and DRP1, which plays a 

role as an energy supply process modulator. The SR-mito tether implicates that the Ca2+ 

concentrations in microdomains, and the SR plasticity plays a crucial role in the regulation 

of the mitochondrial fission/fusion process. A recent study showed that the mitochondrial 

fission and fusion dynamics are more common than initially expected, but because Ca2+ 
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oscillations and contractile activity are required for proper mitochondrial fusion[129], fewer 

fusion events have been recorded in non-contracting cultured cardiomyocytes.

Whether adult cardiac mitochondria can form extensive networks or only small functional 

clusters is still under debate. O’Rourke’s lab reported that mitochondria could communicate 

among themselves by ROS to synchronize clusters of mitochondria within the whole 

mitochondrial network that are sensitive to events such as substrate availability, antioxidant 

status, and respiratory chain activity[130]. Balaban’s lab reported that both electrical and 

physical communication occurs between mitochondria and establishes a network along the 

cardiomyocyte. Nonetheless, this network is segmented into subnetworks which can be 

disconnected from the rest to avoid whole cell damage in a case of a single mitochondria 

malfunction[131]. Demaurex et al. proposed another mechanism in which mitochondrial 

flashes involve only mitochondrial electrical communications but with no matrix content 

exchange among them[132]. Then an additional new player involved in the cardiac 

mitochondrial communication came onto the scene: mitochondrial nanotunnels. Nanotunnels 

are thin tubular protrusions that connect mitochondria separated by relatively long distances 

(1 to >5 μm)[133]. Mitochondrial matrix content can be exchanged through nanotunnels, 

however it is not suitable for mitochondria DNA transport. In addition, communication 

between mitochondrial nanotunneles is slow compared with the mitochondrial fusion.

State-of-the-art technologies, such as FIB-SEM and multi-organelle 3D reconstructions, will 

be useful in resolving the enigma of how mitochondria are connected and interact with each 

other in adult cardiac tissue[134, 135]. The new technologies will also shed some light to the 

mitophagy process in adult cardiomyocytes. It is known that fusion/fission process is crucial 

in keeping the mitochondria healthy and in good shape, however just how mitochondria are 

selected to be degraded upon severe damage is still unclear, especially in adult 

cardiomyocytes.

CONSEQUENCES OF LOSING THE PROPER ER/SR-MITOCHONDRIAL 

TETHERING AND Ca2+ SIGNAL.

Since ER/SR and mitochondria are physically and functionally connected, it is not surprising 

that alteration in the ER/SR-mito tether leads to different pathologies, including 

neurodegenerative diseases, metabolism syndrome, cancer, and heart failure. In genetically 

or diet-induced obesity and insulin resistant models, a disrupted ER-mito interaction has 

been observed in liver and neurons[136]. Indeed, available evidence indicates that the 

disruption of ER-mito tethers (MFN2 ablation) can induce insulin resistance in pro-

opiomelanocortin (POMC) neurons. The Ca2+ represents the mechanistic link between ER-

mito, and it has been shown that disruption of Ca2+ homeostasis supresses the hepatic 

insulin signaling[137]. In cancer cells, the enhanced apoptosis resistance is mediated by ER-

mito Ca2+ cross-talk.

The oncogenes Bcl-2 and Bcl-XL decrease the ER Ca2+ content likely increasing the leaking 

through IP3R, avoiding an eventually mitochondrial Ca2+ overload and thus, inhibiting the 

mPTP aperture upon stress conditions[138]. The oncogene AKT is responsible for the 

phosphorylation of IP3Rs and therefore limits ER Ca2+ release, once more avoiding the 
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Ca2+-dependent apoptotic response[139]. In neurons, the endogenous parkin is responsible 

for the proper ER-mito coupling, increasing the mitochondrial Ca2+ uptake and maintaining 

the ATP synthesis[140]. In Parkinson’s disease patients displaying parkin mutations, levels 

of MFN2 are surprisingly higher compare with healthy subjects (MFN2 is a target protein 

ubiquitinated by parkin) leading to higher ER-mito Ca2+ transfer and therefore elevated 

chance of mPTP-mediated cell death[141]. Since many proteins are targets of parkin’s, the 

effect of parkin dysfunction may or may not be MFN2-dependent. In the neurodegenerative 

disease Charcot Marie-Tooth, over 100 MFN2 mutations have been identified, most of them 

located in GTPase domain and in the HR1/HR2 motifs[142]. However, the mechanism 

behind the MFN2 mutations leading to neuropathy is not clear yet. Disrupted ER-mito Ca2+ 

transfer may alter the proper ATP production, causing function impairment in neurons; 

defects in the MFN2-mediated mitochondrial fusion process may also be involved in 

neuronal damage[143].

In adult cardiomyocytes, MFN2 ablation leads to a deficiency in the ATP production upon a 

high energy demand[144]. By removing the tether, Ca2+ that would normally be transferred 

into mitochondria is not[145]. Therefore, there is less NADH regeneration and less ATP 

production. In the whole heart, the consequences of the MFN2 removal range from defects 

in cardiac development to cardiac hypertrophy in adult mice. However, the role of MFN2 

during the ischemia-reperfusion process is still unclear. Papanicolaou et al. reported that 

MFN2 deficiency may protect against ischemia-reperfusion injury based on the fact that 

when less Ca2+ enters the mitochondria, the chance of mPTP opening is lower and so is 

mPTP-mediated cell death[146]. On the contrary, Zhao et al. showed that MFN2 deficiency 

increases susceptibility to ischemia-reperfusion injury[147]. Ultimately, the timing of MFN2 

ablation and the ages of the mice may affect the outcome. The mPTP opening depends lastly 

on the Ca2+ overload and elevated mitochondrial ROS. In a disrupted SR-mito 

communication situation, less mitochondrial Ca2+ uptake is expected, however an increase 

in ROS production is also expected. Since both factors are required for an eventual mPTP 

opening, ROS production should adequately compensate the decrease in the mitochondrial 

Ca2+ uptake in order for the mPTP opening process to be initiated. This is the reason why it 

is still not clear whether the rupture of the SR-mito communication leads to higher chance of 

mPTP opening. Figure 2 shows a comparison between the normal versus SR-mito disrupted 

connection in adult cardiomyocytes.

In the context of heart failure (HF), it has also been reported that the SR-mito tethering is 

disrupted in guinea pig HF models. The data showed reduced MFN1 and MFN2 protein 

expression levels compared with controls. The results were confirmed by confocal 

microscopy colocalization assays, where a population of MFN1 was not associated with 

RyR2. In this HF model, the decrease in MFN led to more fragmented mitochondria and a 

less organized mitochondrial network and thus loss the efficiency in conveying signaling 

molecules/ions and for synchronized energy production in mitochondria in response to 

changes in workload[148].
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SUMMARY

The close connection between SR and mitochondria seems to be critical for controlling 

several functions in adult cardiomyocytes. Their close connection persists mainly through 

the mitochondrial fusion mediator MFN2, and several groups have reported its role as an 

SR-mito tether, enhancing the SR to mitochondria Ca2+ transfer efficiency. When Ca2+ is 

released at the RyR2 receptors, the high [Ca2+] microdomain that is created is needed to 

activate the MCUC. Also, MCUC is preferentially located in the SR-mito interface, 

optimizing maximal Ca2+ signaling. Although it is still not clear how mitochondria decode 

the beat-to-beat cytosolic Ca2+ transients, the latest reports have shown that mitochondria 

can rapidly take up Ca2+, making a fast increase in ATP production possible upon a sudden 

increase in the heart workload. In addition to the MCUC being located where it is most 

needed, the key Ca2+ extrusion system, the NCLX, is also excluded from the areas where the 

Ca2+ uptake occurs to minimize the mitochondrial membrane potential consumption during 

rapid Ca2+ transport in and out of mitochondria. Furthermore, this “Ca2+ zoning” property 

within one single mitochondrion may differentially regulate local mitochondrial form and 

function, such as localized cristae remodeling, protein turnover, biogenesis, and selective 

sites for mitochondrial fission and mitophagy. The lack of severe cardiac phenotype of the 

MCU KO mice models, albeit quite unexpected, raises opportunities for addressing 

important questions about whether alternative mitochondrial Ca2+ uptake pathways exist or 

perhaps some other extra-mitochondrial Ca2+-dependent pathways control ECB coupling in 

beating hearts[149]. Future advances may come from measuring [Ca2+]m quantitatively and 

specifically in electrically stimulated intact single cardiomyocytes from species besides 

rodents (e.g., humans); 3-dimensional imaging of the SR-mito structure, and genetic 

manipulations of SR-mito tethering distances through artificial linkers. It is hoped that such 

advances will help to resolve the current controversies in the field and that elucidating the 

Ca2+ signaling mechanisms between SR and mitochondria will translate the fundamental 

principles into an improved understanding of the cardiac physiology and pathology.
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Fig. 1. Scheme of the components involved in the SR to mitochondria Ca2+ transfer.
The scheme shows a representation of the T-tubules, sarcoplasmic reticulum (junctional and 

network), and mitochondria, as well as all of the channels/transporters involved in the Ca2+ 

signaling: Ryanodine Receptor type 2 (RyR2), Mitochondrial Calcium Uniporter Complex 

(MCUC) preferentially located in the Junctional SR-mitochondria interface, mitochondrial 

Ryanodine Receptor type 1 (mRyR1), Rapid Mode of mitochondrial Ca2+ uptake (RaM), 

mitochondrial Permeability Transition Pore (mPTP), mitochondrial Na+/Ca2+ exchanger 

(NCLX) excluded from the junctional SR-mitochondria interface, mitochondrial H+/Ca2+ 
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exchanger (mHCX, Letm1), and the SR-mitochondrial tethers MFN1/2. Other alternative 

SR-mito tethers are also represented. The solid red arrows represent the direction of the Ca+ 

fluxes.
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Fig. 2. Scheme of the ECB in normal SR-mito connections versus SR-mito disrupted connections.
The scheme shows a representation of the Ca2+ transfer from SR to mitochondria and 

mitochondrial processes that are regulated by variances in the [Ca2+]m. In normal 

conditions, the Ca2+ is appropriately transferred, enhancing NADH regeneration as well as 

the ATP production. In this situation ROS production is balanced, keeping ROS levels in a 

reasonable state and minimizing the chances of mPTP opening. In the absence of MFN2 (or 

other tethers), SR-mito communication is disrupted. The MCUC (and other Ca2+ influx 

mechanisms) cannot uptake Ca2+ properly from the Ca2+ microdomains, so the [Ca2+]m 

reached is low. NADH regeneration and ATP production cannot be adequately adjusted in 

the absence of Ca2+. ROS production is increased, however, it may not be enough to activate 

the opening of mPTP because of the low concentration of [Ca2+]m reached.
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