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Abstract

The overall structure and architecture of the extracellular matrix undergo dramatic alterations in 

composition, form, and functionality over time. The stochasticity begins during development, 

essential for maintaining organismal homeostasis and is heavily implicated in many 

pathobiological states including fibrosis and cancer. Modeling and remodeling of the matrix is 

driven by the local cellular milieu and secreted and cell-associated components in a framework of 

dynamic reciprocity. This collection of expertly-written reviews aims to relay state-of-the-art 

information concerning the mechanisms of matrix modeling and remodeling in physiological 

development and disease.
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Concept of matrix modeling and remodeling

Proteoglycans are rapidly emerging as key effectors active in modeling and remodeling of 

both vascular and avascular tissues the stroma of most organs. Interacting with cell surface 

receptors [1–4], growth factors such as TGF-β [5,6], matrix remodeling enzymes [7–17], 

and matrix effectors imbue proteoglycans with unique and combinatorial biological 

properties and signaling cues [18–22], In this Special Issue on Matrix Modeling and 
Remodeling, novel roles of proteoglycans in orchestrating diverse biological activities are 

reviewed and summarized by internationally-recognized experts in the field. Possessing an 

array of functions, proteoglycans regulate not only structural aspects of the extracellular 
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matrix (ECM) and tumor angiogenesis [23–28], but also cell signaling networks and 

behaviors governing normal and pathobiological states [29–34].

Reflecting the many biologically diverse systems in which proteoglycans operate [35,36], 

we will introduce the major overarching themes of this Special Issue such as senescence-

driven ECM remodeling, proteolysis-mediated matrix remodeling, emerging roles in 

controlling tumorigenesis, and the mechanics of basement membranes in guiding 

development, tissue remodeling, wound re-epithelization, heart disease and myocardial 

infarction.

Cellular senescence drives ECM remodeling

The ECM is subjected to dynamic remodeling during development, inflammation, wound 

healing and diseases including cancer, atherosclerosis and osteoarthritis. Governed by 

cellular senescence, aging tissues display changes in both ECM function and organization. 

After undergoing a limited number of mitotic divisions, they enter into senescence and are 

unable to proliferate. This is caused by replicative senescence which is a gradual telomeric 

shortening that occurs every mitotic cycle. In addition, cells also experience “stress-induced 

premature senescence” upon exposure to certain stress factors including radiation and 

oxidative agents [37].

The ability of senescent cells to markedly modulate their phenotype and biosynthesis of 

matrix components affects tissue organization and functions as summarized by 

Mavrogonatou et al. found in this Special Issue. A key determinant of cellular senescence is 

the adaptation of senescence-associated secretory phenotype (SASP) by senescent cells that 

drives ECM remodeling and tissue behavior [38,39] (Fig. 1). They secrete numerous pro-

inflammatory mediators including cytokines, growth factors and a plethora of proteolytic 

enzymes such as MMPs, plasminogen activators, and members from a class of intracellular 

cysteine proteases, the cathepsins [38–40], Further, senescent cells exhibit altered secretion 

of matrix molecules thereby establishing a provisional matrix that cooperates with the pro-

inflammatory and catabolic milieu. This generates a favorable microenvironment that 

impairs tissue physiology, eventually leading to age-related disorders [37,39], Similarly, 

augmented expressions of cytokines and growth factors are implicated in wound healing [41] 

and in the progression of various age-related diseases including articular cartilage 

degeneration [42], atherosclerosis [43], and cancer development [39,44], Notably, cancer 

cells secrete various bioactive stimuli that induce stromal cell senescence, creating a 

provisional ECM to facilitate cancer cell growth and metastasis [39], Malignant cells benefit 

by senescent cells residing within the tumor stroma through the aberrant activation of 

multiple pro-growth and pro-survival pathways, driven primarily by SASP [45].

As reviewed by Mavrogonatou et al., senescence-induced ECM remodeling is characterized 

by a reduced expression of important structural molecules including collagen, aggrecan, 

versican, decorin, and elastin—all essential matrix components for maintaining the proper 

biomechanical properties of tissues such as cartilage, skin, lungs and the vascular wall. The 

continuous presence of numerous proteolytic enzymes, inflammatory mediators and the 

expression of cross-linking enzymes such as lysyl oxidases (LOXs) increase matrix stiffness 
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and subsequently establishes a vicious feedback cycle of ECM remodeling that gradually 

diminishes the physiological and homeostatic properties of the afflicted tissue (Fig. 1).

Matrix remodeling by proteolysis

Compounding the effects of SASP, various growth factors and cytokines induce epithelial to 

mesenchymal transition (EMT) as an important step towards local invasion and eventual 

systemic metastases. The composition of this “transformative” matrix is significantly 

enriched in adhesive proteins including fibronectin, laminin and matricellular proteins and 

catabolic enzymes such as matrix metalloproteinases (MMPs) that facilitate cancer cell 

migration and invasion. MMPs exhibit a variety of functions promoting EMT, signaling, 

migration and invasion [46], For example, MMP-1 and MMP-2 secreted by senescent 

fibroblasts trigger early EMT in keratinocytes, promoting the development of skin cancer 

[47], In another in vivo pre-clinical model, it was demonstrated that the beneficial effect of 

senescent fibroblasts on tumor development was alleviated by inhibiting the enzymatic 

activity of MMPs [48].

MMPs are key enzymes involved in ECM remodeling due to their ability to degrade various 

matrix components, cell surface receptors, cytokines and growth factors (Fig. 1). MMPs are 

zinc-dependent endopeptidases belonging to the metzincin superfamily of 

metalloproteinases that also includes their related families ADAMs and ADAMTs. MMPs 

are classified as collagenases, gelatinases, stromelysins, matrilysins, membrane type MMPs 

(MT-MMPs) and other MMPs according to their substrate specificity, homology, and 

domain organization [49].

MMPs are associated with disease development and progression including cancer, 

atherosclerosis, osteoarthritis and inflammation by affecting multiple signaling pathways. As 

reviewed by Hannocks et al. in this Special Issue, gelatinases MMP-2 and MMP-9 are key 

regulatory enzymes operative during neuroinflammation. It has been shown by in vivo and 

in vitro studies that both enzymes drive experimental autoimmune encephalopathy and 

subsume complementary functions in a murine model of the disease [50], Gelatinases 

MMP-2 and MMP-9 are secreted by immune and resident cells at the blood-brain barrier 

under the control of pro-inflammatory cytokines produced by recruited T-effector cells. 

Together, MMP-2 and MMP-9 promote the penetration of the outer parenchymal barrier by 

invading leukocytes. The elevated expression of MMP-2 and MMP-9 coordinates with pro-

inflammatory cytokines to evoke the expression and modulate the activity of chemokines, 

thereby establishing a potent chemotactic gradient [51,52], MMPs also degrade ECM 

components and cell surface receptors such as β-dystroglycan from the astrocyte cell 

membrane, thus compromising parenchymal basement membrane attachment and reducing 

both their survival and the integrity of brain-blood barrier [50,51,53], Cleavage of cytokines 

and their receptors on the T-cell surface is postulated as a critical step for the prevalence of 

T-effector over T- ory cells for the inflammatory cascade.

The activity of MMPs is finely regulated by various mechanisms involving transcriptional 

regulation, activation by certain enzymes, inactivation by tissue inhibitors of MMPs (TIMPs) 

and α2-macroglobulin in serum and interactions with allosteric modulators [49], Initially, 

MMPs are synthesized as inactive proenzymes that are activated by proteolytic removal of 
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their N-terminal pro-peptide. The activation of MMPs is mediated by plasmin, other MMPs, 

ADAMs, ADAMTs as well as an autocatalytic activation extracellularly and furin 

intracellularly [49], This process is critical for the function of MMPs and is thereby tightly 

regulated by several matrix constituents.

Proteoglycans (PGs) and glycosaminoglycans (GAGs) are among these regulatory molecules 

that interact with MMPs to modify their activity [54] (Fig. 1). A prime example is the 

interaction of MMP-2 with syndecan-2 on the cell surface that ultimately inhibits activation 

of pro-MMP-2 [55], On the other hand, MMP-2 forms a complex with CSPG-4 and MT3-

MMP on the melanoma cell surface for pro-MMP-2 activation via MT3-MMP to evoke 

tumor cell invasion in collagen l-enriched matrices. This mode of activation requires the CS 

chains on CSPG-4 [56], Similarly, MMP-9 interacts with glypicans on the cell surface 

promoting colon cancer cell motility [57], Intriguingly, MMP-9 further interacts with 

matrix- localized serglycin and versican forming large, multimeric complexes that modulate 

pro-MMP-9 activation and target substrate binding [58], Lumican, a small leucine rich 

proteoglycan (SLRP), binds directly to the catalytic domain of MMP-14 (MT1-MMP) to 

inhibit its enzymatic activity. This binding is mediated by specific fragments of the lumican 

core protein [59,60], Lumican affects endothelial cell migration by regulating the expression 

and activity of MMP-9 and MT1-MMP by integrins [61]. The delicate interplay between 

MT1-MMP and lumican and their ensuing biological effects on tumorigenesis are elegantly 

presented by Pietraszek-Gremplewicz et al. in this Special Issue.

Independent of regulating collagen fibrillogenesis and mediating ECM organization, 

lumican exhibits potent anti-tumor effects by interfering with integrins and MT1-MMP at 

the cell membrane, inhibiting angiogenesis and tumor cell migration [59–62]. MT1-MMP 

localizes at lamellipodia forming complexes with CD44 and promoting tumor cell migration, 

invasion, and metastasis [63]. Co-localization of CD44 and MT1-MMP links both molecules 

to the actin cytoskeleton via the cytoplasmic tail of CD44, directing MT1-MMP to the 

migration front during cell migration [63]. MT1-MMP efficiently degrades a wide range of 

matrix components including collagens, fibronectin, laminins, proteoglycans, elastin and 

various cell surface receptors such as integrins, CD44, syndecan-1 and ICAM-1 [14]. 

Degradation of these targets are essential for pericellular remodeling and modulation of cell-

matrix interactions [14].

MMPs play a central role in processing essential matrix components such as fibrillar 

collagens (Fig. 1). Collagen fibrils are widely distributed in all tissues providing unique 

mechanical properties and tensile strength. Their balanced synthesis and degradation is 

required for tissue homeostasis and imbalanced remodeling is recurrent in fibrosis, arthritis 

and cancer [64,65]. The tightly packed helical structure of collagen fibrils provide resistance 

against proteolytic degradation. The molecular pathways and enzymes involved in fibrillar 

collagen degradation are discussed by Sprangers and Everts in the corresponding review of 

this Special Issue. The ability of MMPs to degrade either intact or denatured collagen fibrils 

such as collagenases MMP-1, MMP-8, MMP-13, MT1-MMP, MT3-MMP and gelatinases 

MMP-2 and MMP-9 is presented. Extracellular degradation of collagen fibrils by MMPs is 

complemented with the action of other proteases including cathepsin K [66]. Apart from 

extracellular degradation, collagen fibrils are internalized by phagocytosis, a process 
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dependent on integrins and MT1-MMP, and stored in phagosomes [67,68]. Soluble collagen 

fragments processed in the ECM are internalized by macropinocytosis and endocytosis that 

mechanistically requires urokinase plasminogen activator receptor associated protein 

(uPARAP/Endo180) and clathrin-coated vesicles [69]. Internalized collagen fibrils and 

fragments within vesicles are directed to the endosomal/lysosomal compartment and 

subsequently degraded by cysteine proteases.

Cysteine cathepsins are the fundamental proteases of the endolysosomal system and are 

increasingly implicated as extracellular matrix remodeling enzymes involved in numerous 

diseases [70] (Fig. 1). For instance, there are 11 papain-like cysteine cathepsins in humans 

that show specific and differential tissue expressions to accomplish their requisite biological 

functions. They act as acid proteases and possess biological activity within the slightly 

acidic microenvironment prevalent in diseases such as cancer, osteoarthritis, and 

osteoporosis [71]. In addition, the interaction of cathepsins with GAGs evokes stabilization 

and autoactivation at a neutral pH [70,72], Cathepsin-mediated ECM remodeling is reviewed 

by Vizovisek et al. in this Special Issue. The authors describe the structural and functional 

roles of cathepsins with emphasis on ECM remodeling and its relevance to disease 

progression. Indeed, dysregulated cathepsin expression and extracellular activity has been 

implicated in several cancer types, inflammatory diseases, arthritis, cardiovascular, and 

skeletal disorders.

The implication of other non-classical matrix proteases such as granzyme B in pathologic 

matrix remodeling with a focus on skin inflammation and related diseases is discussed by 

Turner and colleagues. Granzyme B belongs to a family of five serine proteases called 

granzymes (granule-secreted enzymes) in humans. It is synthesized by immune cells and 

non-immune cells alike (chondrocytes and keratinocytes) and secreted in the presence or 

absence of perforin. It can be internalized by target cells for apoptotic initiation following 

the cleavage of various substrates. A portion of granzyme B that is not internalized, is 

biologically active in the extracellular milieu [73].

Together, MMPs, cathepsins, and granzyme B are capable of degrading a wide variety of 

ECM components, junctional proteins, and cell surface receptors culminating in 

authoritarian control of cell-cell, cell-matrix interactions and downstream signaling 

[46,49,73–75] (Fig. 1). The degradation of ECM components upon remodeling also results 

in the release of bioactive fragments [76], These matrikines [9] exert their activity by 

interacting with specific cell surface receptors in multiple cell types to guide matrix re-

organization, tissue architecture, and function. The concept of producing bioactive fragments 

via certain proteases, their functional roles, and their potential applications as drugs and 

biomarkers is elegantly highlighted by Ricard-Blum and Vallet. For example, bioactive 

fragments such as endorepellin and endostatin produced by cleavage of perlecan and 

collagen XVIII, respectively, bind to integrins and VEGFR1, thereby inhibiting angiogenesis 

and evoking autophagy [77,78], In contrast, lumikine, a proteolytically-liberated peptide 

derived from lumican, binds to ALK5/TGFβR1 to activate signaling and promote wound 

healing [79].
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Remodeling on the fly: the rise of exosomes in ECM modeling

Recently, extracellular vesicles (EVs) have emerged as integral components of ECM that 

play central roles in matrix remodeling. This concept is thoroughly reviewed by Rilla et al. 
and Sanderson et al. in this Special Issue. EVs are released by all cell types and found 

ubiquitously in body fluids. They are classified into three different categories according their 

size and mode of biogenesis. The smaller in diameter, named exosomes (30–150 nm), arise 

from the endocytic pathway with the subsequent formation of multivesicular bodies [80], 

They are transported to plasma membrane and fused to release exosomes to the ECM. Other 

larger extracellular vesicles such as microvesicles (100–1000 nm) and apoptotic bodies (1–5 

μm) are derived from the direct budding of plasma membrane [80], EVs, especially 

exosomes, play fundamental roles in cell-cell communication as they transfer a plethora of 

chemical signals to neighboring cells that directly modulate their behavior [80], For 

example, nucleic acids (mRNAs, miRNAs, and non-coding RNAs), matrix proteins, growth 

factors, cytokines, enzymes and lipids are components of exosomes that affect cell 

differentiation, proliferation, migration, and matrix synthesis. The surface of exosomes 

contains numerous cell surface receptors including cell surface proteoglycans, integrins, and 

the specific enzymes that mediate their interaction with ECM molecules and cellular uptake 

[81], Exosomes are involved in ECM organization/re-organization that occurs under normal 

and pathological circumstances. A plethora of miRNAs influences the expression of matrix 

components involved in wound healing and matrix remodeling in various diseases [82], 

Exosomes derived from different cellular sources also regulate wound healing by promoting 

fibroblasts proliferation, migration, matrix biogenesis, and the release of inflammatory 

mediators. EVs transfer several matrix-degrading enzymes including MMPs and cathepsins 

that remodel the ECM [83,84], In addition, they induce the expression and release of 

proteolytic enzymes in target cells to induce matrix degradation. For instance, microvesicles 

enriched in EMMPRIN/CD147 are released by tumor cells to stimulate the expression of 

MMP-2 in stromal fibroblasts [85], Enzymes which are involved in matrix remodeling are 

also located on EV surfaces and are able to act directly on their matrix substrates. Lysyl 

oxidase-like 2 is enzymatically active on the vesicular surface and catalyzes the crosslink of 

collagen fibrils in the ECM [86], Increased tissue stiffness occurs in remodeled tissues in 

various diseases including cancer and is associated with disease progression [64], Also on 

vesicular surfaces, MT1-MMP degrades fibrillar collagens among other matrix components 

and is a potent regulator of cell migration and cancer cell invasion and metastasis [87,88], 

Glycosidases such as sialidase and heparanase are components of the exosomal surface and 

are involved in the removal of sialic acid from cell surface components and degradation of 

HS chains from HSPGs [89,90], Heparanase acts on various matrix and cell surface HSPGs 

to promote cell migration either via liberation of HS-sequestered growth factors and 

cytokines within the matrix or by modulating cell-matrix interactions [91], Notably, 

heparanase trimming of HS chains on syndecan stimulates exosome biogenesis by 

modulating the function of the syndecan-syntenin-ALIX complex [92], Heparanase up-

regulation induced by chemotherapy treatment in multiple myeloma patients evokes 

exosome secretion, further supporting the role of the heparanase-syndecan axis on exosome 

biogenesis [89].
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Proteoglycans as interior designers for the matrix

Basement membranes are chiefly composed of four requisite components: laminin [93], 

collagen IV [94], nidogen, and the heparan sulfate proteoglycan (HSPG) perlecan [95,96], 

The biology and contributions of collagen XVIII, a related basement HSPG implicated in 

tissue homeostasis and dysfunction, has been recently reviewed [97], Unbiased quantitative 

proteomic definitions of basement membrane compositions [98] and extracellular matrices 

[99,100] are leading an “-omics” revolution in understanding the functional contributions of 

basement membrane in associated diseases [101–103], development [104,105] and 

potentially as viable cell-based therapeutic modalities [106], Perlecan and related 

components [107] are critical for maintaining the structural integrity of cartilage and 

assembly of basement membrane [108], while maintaining sufficient plasticity for 

remodeling as the organism grows and develops over time. Indeed, embryo implantation 

triggers dynamic expression of the basement membrane toolkit [109].

The core regulatory mechanism is found in generating biomechanical forces that is sensed 

by and ultimately influences cell function, and vice-versa as discussed by Mrkonjic and 

colleagues in this Special Issue. The aggregate effect of basement membrane protein 

deposition (modeling) and degradation (remodeling) controls cellular and tissue stiffness as 

determined by atomic force microscopy, tissue plasticity [110], organ shape, and ligand 

retention by Ramos-Lewis et al. in this Special Issue. Reciprocal signaling, such as that 

mediated by DDR1 for collagen IV synthesis, is also necessary to maintain properties of the 

basement membranes [111,112], This functional paradigm for basement membrane 

synthesis, deposition, and remodeling is aptly and thoroughly demonstrated in the model 

organism Drosophila melanogaster and its step-wise assembly process is elegantly presented 

in the review of Ramos-Lewis and colleagues (Fig. 2). The subsequent examination of the 

wing disc basement membrane provides a microcosm for discerning the roles of cellular 

compression [113] processes and ligand retention for developing biological systems, which 

is especially applicable for stem and progenitor cell biology. The mechanisms gleaned from 

this invertebrate model organism is significantly advancing our knowledge regarding the 

subtle nuances of basement membrane intricacies and architecture and the roles that 

proteoglycans subsume.

The next major portion of articles deals with cutaneous wound healing which comprises 

three distinct phases of inflammation, re-epithelization, and tissue remodeling. The recurring 

theme of matrix remodeling is prevalent within all four continuous processes: hemostasis, 

inflammation, proliferation, and maturation [114], This thene is highlighted, largely in 

sequence, by recent advances in the role of CD44 in modulating inflammation, re-

epithelialization, and thrombospondin-4 activity in tissue remodeling, all found within 

reviews by Govindaraju et al., Rousselle et al., and Stenina-Adognravi et al., respectively 

(Fig. 2).

During wound healing, deposition of abundant of fibrillar cartilage maintains tissue and 

tendon biomechanics [23,25,26,115,116] while forming scar tissue, impairing normal tissue 

function and elastoplasticity. Dissecting the molecular and cellular processes governing this 

form of ECM deposition and remodeling are critical towards efforts to prevent fibrotic 

scarring. It has recently been demonstrated that CD44, the hyaluronan receptor, functions in 
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a heretofore unknown pathway for wound healing. As reviewed by Govindaraju et al., mice 

lacking CD44 have increased levels of inflammatory markers with ablated fibrogenic 

responses during the initial injury response stage of wound healing. At later stages, as the 

wound is closing, proteolytic degradation of the deposited collagen is significantly 

diminished, resulting in increased retention times of the fibrillar collagen post closure, 

ultimately manifesting in a more severe scarring phenotype.

One of the most critical processes of mammalian wound healing is re-epithelization, which 

is considered the second step under proliferation, with defects resulting in chronic wounds 

and pressure ulcers [65]. Several ECM-derived factors are deposited, and the precise 

composition of this milieu is influenced by the local wound microenvironment, involving 

cytokines, growth factors, and MMPs [117]. Following wound injury, provisional matrix is 

deposited for proficient tissue repair at approximately 3 days to 1 week by granular 

fibroblasts and is characterized by the temporal synthesis of key effectors including 

fibronectin isoforms that incorporate the EDA and EDB domains, fibronectin species lacking 

these domains, and fibrillar and non-fibrillar collagens (I, V, VI, VII, XVIII) [118,119]. 

Recent studies, as discussed by Rousselle et al., have determined precise functions for each 

of the EDA and EDB domains as critical for the recruitment of collagen I and an assortment 

of matricellular proteins, such thrombospondin (TSP), within the wound ECM (see below). 

As described above, a major constituent of basement membranes is the HSPG perlecan 

[120]. Structurally, perlecan augments cellular adhesion and co-localizes with laminins, 

specifically laminin 322, to further stabilize keratinocyte attachment. Primarily, perlecan 

functions as a repository for HS-binding growth factors whereupon degradation of the its HS 

chains or perlecan itself releases the pleiotropic growth factor progranulin [121,122] as well 

as other mitogens and trophic factors necessary for the reparative process. Supporting this 

concept, transgenic mice lacking these HS chains have delayed wound healing and 

decreased vascular density, despite maintaining wound closure rates [123].

Intriguingly, both collagen XVIII and perlecan harbor proteolytically sensitive C-termini, 

[124] in the form of endostatin [125] and endorepellin [126–133], respectively, that acts to 

fine-tune angiogenesis [77]. Recently, both anti-angiogenic fragments have been implicated 

in coordinating the evolutionarily-conversed catabolic process of autophagy [78,134,135]. 

Intriguingly, there appears to be a fundamental antithetical correlation between autophagic 

activation and angiogenesis insofar as pro-autophagic molecules possess anti-angiogenic 

properties [95,136,137] and vice versa. This concept is further underscored by transgenic 

mice expressing HS-less perlecan; perlecan no longer exhibits angiogenic bivalency (pro- 

and anti-angiogenic cues embedded within the same molecule) and only contains anti- 

angiogenic signals via C-terminal endorepellin. The form of perlecan sans the HS chains 

results in a less favorable angiogenic wound healing environment characterized by decreased 

granularity and vascularization. Therefore, proteoglycans, such as collagen XVIII and 

perlecan, may exert their roles in wound healing by controlling autophagy as an under-

appreciated contributor to wound healing.

In contrast to the anti-angiogenic modalities inherent to the basement membrane HSPGs, 

collagen XVIII and perlecan, as well as to other thrombospondin family members, TSP-4 

promotes angiogenesis. Expressed throughout embryonic development and within the adult 
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organism in the osteogenic mesenchyme, tendons, skeletal and nervous tissues as well as the 

eye and cardiovascular tissue, TSP-4 performs several other key roles in opposition to TSP-1 

and TSP-2. Specifically, TSP-4 reduces fibrosis and collagen production. As an 

evolutionarily conserved multi-modular molecule, TSP4 subsumes a critical role as an 

organizational factor for the ECM and provides structural support. Being a proangiogenic 

factor, TSP-4 has been implicated in cancer due to high levels of expression and its 

subsequent association to cancer progression, particularly facilitating progression and 

invasion as described by Stenina-Adognravi et al. However, the precise role of TSP-4 is 

uncertain as studies have demonstrated both tumor-promoting and tumor-inhibiting 

properties, depending on the tissue of origin.

The role of proteoglycans in remodeling the cardiovascular system has long been 

underappreciated; however, this emerging field is spotlighted within this Special Issue in two 

elegantly written reviews by Nielson et al. and Christensen et al. in this Special Issue. 

Cardiovascular diseases are primarily characterized by extensive (and aberrant) ECM 

remodeling over decades of life, leading to fibrotic scarring and inevitable heart failure. 

Importantly, SLRPs, including decorin, biglycan, and lumican, have surfaced as vital 

regulators of this process as well as membrane-localized proteoglycans including glypican 

and syndecans. In this context, they function as receptors to regulate cardiac fibroblast 

signaling and may represent therapeutic targets or biomarkers. In the same vein, ECM 

components are considered as biomarkers for myocardial infarction of the left ventricle to 

predict patient outcome (Fig. 2).

Proteoglycans also exert major roles as key molecular determinants throughout 

tumorigenesis and angiogenesis as comprehensively reviewed by Theocharis and Karamanos 

in this Special Issue. Proteoglycans are able to remodel the tumor stroma in a cell- and 

context-specific manner that can generate a provisional matrix for tumorigenic growth and 

drug resistance. Recently, it was discovered that decorin, the prototypical member of the 

SLRP family, evokes endothelial autophagy and tumor cell mitophagy, as reviewed by 

Buraschi et al. in this Special Issue (Fig. 2). We found that decorin evokes excessive flux 

through this conserved catabolic process under nutrient-rich conditions downstream of 

receptor tyrosine kinase activity, chiefly VEGFR2 and Met for endothelial cells and breast 

carcinoma, respectively. Under these specific circumstances, autophagic regulation is 

considered “non-canonical”. Engagement of the autophagic or mitophagic machinery relied 

on two novel effectors, Peg3 or mitostatin, respectively. These proteins represent a novel, 

matrix-regulated nexus for augmenting cellular catabolism and organelle clearance. The 

resultant effects of pro-autophagic/pro-mitophagic process underlies the molecular 

versatility of decorin as an anti-tumorigenic and angiostatic factor.
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Abbreviations

ECM extracellular matrix

EMT epithelial to mesenchymal transition

EV extracellular vesicle

HSPG heparan sulfate proteoglycan

LOX lysyl oxidase

MMP matrix metalloprotease

MT-MMP membrane type MMP

SASP senescence-associated secretory phenotype

SLRP small leucine rich proteoglycan

TGF-β transforming growth factor β

TSP thrombospondin
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Highlights

• During development and organ pathology, the extracellular matrix undergoes 

a dramatic restructuring in composition, form and functionality.

• Modeling and remodeling of the matrix are driven by the local cellular milieu 

and secreted components via a framework of dynamic reciprocity.

• We will critically address key concepts related to the role of extracellular 

matrix modeling and remodeling in various disease processes.

Karamanos et al. Page 18

Matrix Biol. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Schematic depiction of matrix modeling and remodeling driven by SASP and various 

proteolytic effectors including MMPs and cathepsins. Please consult the text for additional 

information.
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Fig. 2. 
Schematic representation of various roles discovered for proteoglycans in regulating 

development, as biomarkers in adverse cardiac events, and in controlling tumorigenesis and 

catabolism. Please refer to the text for additional information.
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