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Abstract

HIV-associated neurocognitive disorders (HAND) represent an important source of neurologic 

complications in individuals with HIV. The dynamic, often subclinical, course of HAND has 

rendered diagnosis, which currently depends on neuropsychometric (NP) evaluation, a challenge 

for clinicians. Here, we present evidence that functional brain connectivity, derived by large-scale 

Granger causality (lsGC) analysis of resting-state functional MRI (rs-fMRI) time-series, represents 

a potential biomarker to address this critical diagnostic need. Brain graph properties were used as 

features in machine learning tasks to 1) classify individuals as HIV+ or HIV− and 2) to predict 

overall cognitive performance, as assessed by NP scores, in a 22-subject (13 HIV−, 9 HIV+) 

cohort. Over nearly all seven brain parcellation templates considered, support vector machine 

(SVM) classifiers based on lsGC-derived brain graph features significantly outperformed those 

based on conventional Pearson correlation (PC)-derived features (p < 0.05, Bonferroni-corrected). 

In a second task for which the objective was to predict the overall NP score of each subject, the 

lsGC-based SVM regressors consistently outperformed the PC-based regressors (p < 0.05, 

Bonferroni-corrected) on nearly all templates. With the widely used Automated Anatomical 

Labeling (AAL90) template, it was determined that the brain regions that figured most strongly in 
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the SVM classifiers included those of the default mode network (posterior cingulate cortex, 

angular gyrus) and basal ganglia (caudate nucleus), dysfunction in both of which have been 

observed in previous structural and functional analyses of HAND.
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1. Introduction

HIV-associated neurocognitive disorders (HAND) are a spectrum of cognitive, motor, and 

behavioral symptoms that occur in over a quarter of individuals infected with HIV [41] and 

are associated with significant decreases in health-related quality of life, even among 

subjects on combined antiretroviral therapy (cART) with well-controlled viral loads [51]. 

Clinically, HAND present a diagnostic challenge due to the often subtle and dynamic course 

of cognitive impairment. The Frascati diagnostic consensus [3], based on neuropsychometric 

(NP) testing, suffers from numerous shortcomings, including lack of sufficient sensitivity 

and specificity for HAND, as well as susceptibility to learning effects, socioeconomic status, 

and other confounding factors [54, 36]). Additionally, NP testing-based approaches 

necessarily cannot detect the disease before the emergence of neuropsychiatric signs. There 

is thus a substantial need for improved biomarkers of HAND.

Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has 

been extensively studied as a potential tool to address such diagnostic needs in a variety of 

neurologic and psychiatric disorders, including HAND [5, 7, 1]. During an attention task, it 

was found that HIV+ subjects exhibited greater BOLD activity in the parietal and frontal 

lobes than HIV− subjects [11]. Hyperactivations in the fronto-striato-parietal network in 

HIV-infected subjects, particularly in the left inferior frontal gyrus and left caudate nucleus, 

were also found in a meta-analysis fMRI studies [38]. Resting-state fMRI (rsfMRI) 

analyses, performed in the absence of a stimulus or task, have gained particular prominence 

in the past decade, as they can be used to uncover the functional connectivity structure of the 

brain. Moreover, rsfMRI may have more clinical utility than task-fMRI, since the former is 

not contingent on a patient’s ability to perform a task, which may be limited due to age or 

disability. Functional connectivity disruptions have been found in HIV+ subjects, most 

prominently in the default mode network, but also in the fronto-parietal network and basal 

ganglia [50, 49, 18, 61]. These group level studies constitute a foundation of evidence on 

which to pursue the aim of predicting clinically meaningful disease-related parameters at the 

individual level. In this study, we train and test a machine learning model, using rsfMRI-

derived brain graph properties as features, to predict HIV-status and cognitive performance 

at the level of individual subjects.

The optimal method for extracting connectivity maps from rsfMRI time-series is still an area 

of active research. We thus compare the predictive ability of machine learning models 

trained on graphs derived from three time-series analysis techniques, based on either 

Pearson correlation or the principle of Granger causality, over several brain parcellation 
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templates, which spatially cluster individual rsfMRI voxels into regions-of-interest (ROI). 

We show that models based on large-scale Granger causality-derived brain graphs are more 

robustly accurate than those based on conventional Pearson correlation-derived networks, 

with regard to the prediction of both HIV-status and NP scores.

2. Materials & Methods

2.1. Subjects

This work was performed as part of an NIH sponsored study (R01-DA-034977), for which 

subjects were recruited from the University of Rochester Medical Center in Rochester, NY, 

USA. Subjects with any of the following conditions were excluded: severe premorbid or 

comorbid psychiatric disorders, chronic seizures, stroke, head trauma resulting in loss of 

consciousness for greater than 30 minutes, non-HIV brain infection, dementia, alcohol or 

drug abuse, any significant systemic condition that can alter brain function, metallic 

implants in skull, cardiac devices, or claustrophobia. All subjects provided written informed 

consent, in accordance with the study protocol reviewed by the institutional review board of 

the University of Rochester. Cognitive status for all subjects was determined by NP testing. 

The cohort was comprised of 13 cognitively normal HIV− subjects (mean age SD: 41± 16y; 

± 6 females) and 9 cognitively impaired HIV+ subjects (mean age ± SD: 52 ± 10y; 2 

females). Of note, one subject in the HIV+ cohort underwent neuroimaging and NP testing 

in two separate sessions. This second session was considered as a separate subject, thus 

bringing the total number of subjects in the HIV+ cohort to 10. Among the subjects in the 

HIV+ cohort, all were diagnosed with asymptomatic neurologic impairment (ANI) with the 

exception of one subject, who was diagnosed with mild neurocognitive disorder (MND), 

using the criteria defined in [3].

Viral loads in the HIV+ group were as follows: five subjects had a viral load of less than 50 

copies/mL (three of these subjects had undetectable loads), three subjects had a viral load of 

between 50 and 1000 copies/mL, and one subject had a viral load of nearly 40,000 

copies/mL. CD4+ T-cells in this cohort ranged from 253 to 1730 cells/μL. With the 

exception of one individual, all HIV+ subjects were on a stable cART regimen.

2.2. Neuropsychometric testing

A standard battery of NP tests were performed on all subjects and raw NP scores were 

obtained for six cognitive domains: executive function (Stroop Interference Task and 

Trailmaking Test Parts A and B), information processing speed (Symbol Digit Modalities 

Test and Stroop Color Naming Task), attention (CalCAP(CRT4) and WAIS-III Letter-

Number Sequencing Task), learning (Rey Auditory Verbal Learning Test (RAVLT) (trials 1–

5) and Rey Complex Figure Immediate Recall Test), memory (RAVLT Delayed Recall Test 

and Rey Complex Figure Delayed Recall Test), and motor (Grooved Pegboard, left and right 

hands). An overall score was also generated by combining those of the six domains. All 

seven scores were then converted to an age- and education-adjusted z-score, as described in 

[3].
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2.3. Neuroimaging data acquisition

Subjects underwent MRI scanning using a 3.0T Siemens Magnetom Trio-Tim system 

(Siemens Medical Solutions, Erlangen, Germany) housed at the Rochester Center for Brain 

Imaging (Rochester, NY, USA). A high-resolution structural T1-weighted scan was acquired 

using a magnetization-prepared rapid gradient echo (MPRAGE) sequence with the following 

scan parameters: echo time = 3.44ms, repetition time 2530ms, isotropic voxel size = 1mm, 

flip angle = 7, acquisition time = 3min. BOLD fMRI data were acquired using echo planar 

imaging with the following scan parameters: echo time = 23ms, repetition time = 1650ms, 

flip angle = 84, 96 × 96 acquisition matrix. 250 brain volumes with 25 slices separated by 

5mm were acquired for each subject.

2.4. fMRI preprocessing

Preprocessing steps were performed using the FMRIB Software Library (FSL, version 5.0, 

http://fsl.fmrib.ox.ac.uk/) [46]. The first 10 brain volumes for each subject were discarded to 

eliminate initial saturation effects of the BOLD signal. Subsequently, head motion 

correction, slice timing correction, brain extraction, and registration to the standard Montreal 

Neurological Institute (MNI152) atlas space [33, 34] was performed. Removal of the whole 

brain time-series, as well as correction for head motion and physiologic processes, was done 

using a nuisance regressor. High-pass filtering was performed to remove signal drifts. 

Individual voxel time-series were normalized to have a standard deviation of 1 unit and a 

mean of 0 units in order to prioritize signal dynamics over amplitude [59].

2.5. fMRI spatial parcellation

The preprocessed fMRI scans were spatially subdivided into regions of interest (ROIs) 

according to seven different parcellation templates: the Automated Anatomical Labeling 

(AAL90) [52], Harvard-Oxford (HO138) [16], Brainnetome (BN246) [21], and Craddock 

spectral clustering templates (Craddock100, Crad-dock200, Craddock563, and 

Craddock831) [14]. These seven templates were chosen because they are widely cited in 

fMRI literature and because they span a wide range of spatial resolutions (the number in the 

abbreviated name for each template specifies the number of ROIs). ROI time-series were 

generated by taking the mean of the time-series from all constituent voxels.

2.6. Time-series analysis and graph generation

For each subject, brain graphs representing the functional connectivity of brain regions were 

constructed using Pearson correlation (PC) and large-scale Granger causality (lsGC). PC is a 

bivariate and symmetric method that summarizes the association between two time-series as 

their covariance normalized by the product of their standard deviations. PC was performed 

both with and without band-pass filtering (.038Hz .076Hz) the ROI time-series. lsGC [17, 

45, 37, 44, 60] is a multivariate and−directional method that is built on the principle of 

Granger causality (GC) [22], in which time-series A is said to Granger-cause time-series B if 

the inclusion of information from time-series A in a predictive autoregressive model of time-

series B decreases the variance of the residuals between the predicted and actual time-series 

B. Unlike conventional GC, however, lsGC can be extended to high-dimensional systems 

due to the embedding of a dimension reduction step using principal components analysis. 
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The two lsGC model parameters, autoregressive order (ρ), i.e., the number of past time-

points that are used to predict a future time-point, and the number of principal components 

used to define the low-dimensional space (c), were optimized using a 10×10 grid search with 

5-fold cross-validation on the AAL90 template.

Analysis of the preprocessed fMRI time-series with PC or lsGC generates n×n affinity 

matrices, where n is the total number of ROIs in the parcellation template. Each entry in the 

affinity matrices represents the association (detected either by PC or lsGC) of a pair of ROI 

time-series. Subsequently, the largest 30% of the entries in each affinity matrix were set to 1 

and the remainder were set to 0 [31, 43]. This thresholding process allows the matrix to be 

considered as a binary graph, in which the nodes represent ROIs and the edges connecting 

the nodes represent functional connectivity between ROIs.

2.7. Graph property computation

The following local properties were calculated for each node of the brain graphs. In-degree: 

The sum of all incoming edges for a particular node. Out-degree: The sum of all outgoing 

edges for a particular node. Total-degree: The sum of all edges incident on a particular node, 

regardless of direction. In-degree and out-degree were calculated for directed lsGC-derived 

graphs, while Total-degree was calculated for symmetric PC-derived graphs. Clustering 
coefficient: The fraction of connected triples centered on a node that are also triangles (a 

connected triple is a set of three nodes for which one node has direct incoming or outgoing 

edges to the other two; a triangle is a set of three nodes that are all directly connected by 

either outgoing or incoming edges). Betweenness centrality: The fraction of all shortest 

paths in a graph that pass through a particular node [35] (the shortest path between nodes i 
and j is the minimum number of edges that must be traversed to travel from i to j; if such a 

path does not exist for a given pair of nodes, as might happen when a graph becomes 

disconnected, then the maximum finite path length for the entire graph is assigned as the 

shortest path length between that pair of nodes).

The following global properties were also calculated for each brain graph. Degree variance: 

the variance in the number of incoming, outgoing, or total edges of all nodes in a graph. In-
degree variance and out-degree variance were calculated for directed lsGC-derived graphs, 

while total-degree variance was calculated for symmetric PC-derived graphs, as in-degree 
and out-degree are identical for symmetric graphs. Modularity: The extent to which a graph 

can be partitioned into Louvain community detection algorithm-defined modules [10], 

which have high intramodular connectivity and low intermodular connectivity. Assortativity: 

The correlation coefficient between the total degree of nodes on opposite ends of all edges in 

a graph [35]. Small-worldness: The ratio of the random graph-normalized global clustering 

coefficient and the random graph-normalized shortest path length [56]. Degree distribution-

matched random graphs were produced for each empirical brain graph by iteratively 

rewiring each edge approximately 10 times. Generation of the random graphs and 

calculation of the graph parameters were performed using the Brain Connectivity Toolbox 

(brain-connectivity-toolbox.net) [40] in MATLAB (2017b, The MathWorks, Natick, MA).
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2.8. Machine learning and feature analysis

Each brain graph property and each NP domain score was normalized across all subjects to 

have a mean of 0 and a standard deviation of 1. All graph properties for each subject were 

then concatenated into a single feature vector and used as the input features for a linear 

support vector machine (SVM) model [13] with ridge regularization [25]. To train and test 

the model, a 10-fold iterative cross-validation scheme was employed, in which the full data 

set of brain graphs from all 23 subjects was randomly split into 10 folds. In each iteration, 9 

of these folds were used to train the model and the remaining fold was used to test the 

performance of the learned model. This procedure was then repeated 100 times with 

redefined data folds.

The outputs of the SVMs for each subject were either the predicted HIV status or NP scores. 

For the HIV+/− classification task, performance on the testing set was assessed using the area 

under the receiver operating characteristic curve (AUC). An AUC of 1 indicates perfect 

classification while an AUC of 0.5 indicates a classification performance that is no better 

than random chance. For the NP score regression, performance was assessed the coefficient 

of determination R2. This scheme was iterated 100 times and distributions of the 

corresponding performance metrics were obtained.

To analyze the relative importance of each brain graph property in the classification task, the 

mean magnitude of the weights the |βi| in all of the cross-validated models using brain graph 

features extracted from the AAL 90 template was computed. Subsequently, the weights were 

ranked and the features i corresponding to the 10 largest |βi| were considered the top 

features.

To generate surrogate null distributions for the regression SVMs, the NP scores from each 

cognitive domain were permuted, such that each subject was randomly assigned a set of NP 

scores drawn from the pool of same-domain NP scores of all subjects. The 10-fold cross 

validation scheme described above was applied to the permuted samples.

3. Results

3.1. Classification of HIV+ and HIV− subjects

As can be seen in Figure 1, the performance of the lsGC-based SVM classifiers significantly 

outperform those of both the unfiltered correlation-based and band-pass filtered correlation-

based methods across all templates considered, with the exception of the Craddock 100 

template, in which the performances of the band-pass filtered correlation model and the 

lsGC model are similar (p > 0.05). Moreover, while the performances of both correlation-

based models vary substantially across templates, that of the lsGC-based model is relatively 

stable over different templates. The relative SVM model weights |βi| of the top 10 features in 

the three classification runs on the AAL 90 template-derived brain networks are shown in 

Figure 2. Note that the top features for the lsGC-based model include features extracted 

from brain regions in the default mode network (DMN) and basal ganglia. In particular, the 

right and left posterior cingulate cortex and the left angular gyrus of the DMN are strongly 

weighted in multiple models. The only basal ganglia region among the top 10 features in any 
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of the three models is the caudate nucleus, which is the fourth most strongly weighted 

feature in the lsGC model.

3.2. Prediction of cognitive performance

The neuropsychometric (NP) z-scores from each of the seven cognitive domains were 

compared across the two cohorts. It was found that the mean executive function, attention, 

learning, memory, motor, and overall z-scores were significantly lower in the HIV+ group 

than the HIV− group (FDR controlled p < 0.05, one-sided Wilcoxon rank-sum test [8]). Of 

these, the most commonly affected cognitive domain, assessed by the number of HIV+ 

subjects who had domain-specific z-scores less than −1.0, was motor function; 5 HIV+ 

individuals had motor z-scores less than −1.0 and an additional 2 HIV+ individuals had 

motor z-scores less than 0.

Figure 3 shows that the lsGC-based SVM models perform significantly better in predicting 

overall cognitive performance, as indicated by larger R2 values, than either of the 

correlation-based models across nearly all the templates used. The only exception is the 

AAL 90 template, in which the performance of the lsGC-based model and that of the 

unfiltered correlation-based model do not exhibit a statistically significant difference. 

Moreover, over all the templates, the distribution of lsGC performances was substantially 

different from the corresponding null distribution, generated by randomly permuting the NP 

score assignments of the subjects.

4. Discussion

The motivation for applying lsGC to obtain brain graphs in addition to traditional 

correlation-based methods arises from the limitations of bivariate and non-directional 

methods for the analysis of such a complex and high-dimensional system as the brain. For 

instance, though Pearson correlation is the most widely used method for performing 

functional connectivity analyses of the brain, it cannot distinguish indirect from direct 

connections, as multivariate methods can [47]. Limited multivariate Granger causality 

formulations have been implemented for functional brain connectivity analysis [29], but the 

mathematical constraints imposed by the fact that the number of variables, i.e., ROIs, 

exceeds the number of temporal samples collected prevent the application of such methods 

to high ROI parcellations or voxel-wise analyses. The dimension reduction step of lsGC 

allows for this problem to be circumvented. Additionally, though many of the connections in 

the brain have feedback projections in the opposite direction, asymmetric connectivity in the 

mammalian brain has also been anatomically verified [27, 26]. The fact that lsGC allows for 

the inference of directional connectivity may explain the improved performance of lsGC 

over correlation-based methods in HIV disease state and cognitive score prediction. Indeed, 

asymmetric functional connectivity has been observed in ROIs of the DMN, including the 

posterior cingulate cortex and the ventromedial prefrontal cortex [53], which are known to 

be affected by HAND [49, 61]. Moreover, it was recently shown that global properties of 

brain graphs generated by another directional connectivity analysis method, mutual 

connectivity analysis with a generalized radial basis function neural network, were linearly 
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associated with NP scores in two cognitive domains, whereas those generated using PC on 

the same cohort were not associated with NP scores in any domain [1].

The optimal parcellation template for functional connectivity analyses is not known, as 

every template has advantages and disadvantages. For instance, although structural 

parcellations, such as the AAL90 and HO138, are grounded in the anatomical boundaries of 

brain tissue, there is evidence to suggest that the resultant ROIs do not reflect the functional 

organization of the underlying tissue [32, 14]. Functional parcellations, such as the 

Craddock templates, address this issue by generating ROIs on the basis of spatiotemporal 

clusters in the rsfMRI data. One potential limitation of such data-driven parcellations, 

however, is their sensitivity to fMRI preprocessing steps, such as spatial smoothing and 

registration [14]. Other types of parcellations have also been used in the literature, such as 

randomly defined ROIs and the BN246 atlas, which was generated by subdividing the ROIs 

of an existing anatomical atlas by incorporating probabilistic tractography data derived from 

diffusion tensor imaging (DTI) [21]. While most published rs-fMRI network studies use the 

AAL90 template, it is not clear if the conclusions on brain connectivity and disease 

prediction made on the basis of one template are intrinsic characteristics of the brain or 

simply artifacts of that template. Reproduction of the results across other parcellation 

templates, however, suggests that the findings are truly a feature of the data, rather than of 

the processing pipeline. In Figures 1 and 3, it can be seen that across all seven templates, 

lsGC performs as well as or better than, correlation (both band pass-filtered and unfiltered 

variants) in terms of overall NP score prediction and HIV-status classification.

The plots in Figure 2 show the brain graph features that contributed most strongly to the 

HIV disease state prediction for each model. It is noteworthy that, for all three models, 

features extracted from ROIs in the default mode network (DMN) were strongly weighted. 

The DMN is primarily comprised of nodes in the bilateral posterior cingulate cortex, angular 

gyrus, precuneus, and medial prefrontal cortex [39] and is believed to play a role in self-

referential behavior, including mind-wandering and daydreaming [2]. In the context of HIV, 

the DMN is an area of interest, as several previous rs-fMRI studies have noted a link 

between HIV and DMN dysfunction, in terms of both altered intra-network connectivity 

strength [50, 61] and node centrality [49]. In all three models, features derived from DMN 

nodes comprise either the top or the second place feature.

Altered functional connectivity in the DMN may also partially underlie the specific memory 

and attention deficits, as well as the overall cognitive performance deficit, seen in the HIV+ 

cohort. The DMN is often described as a task-negative network, due to the fact that its 

activity decreases when subjects are engaged in a goal-directed task [39]. Several studies 

have found links between the DMN and cognitive performance. For instance, decreased 

task-induced DMN deactivation was associated with attentional lapses and worsened 

performance in a selective-attention task [57]. Associations have also been found between 

the DMN and working memory; in two separate studies, the strength of the functional 

connectivity between DMN regions was positively correlated with performance in working 

memory tasks [24, 42]. Additionally, a positive correlation between the strength of DMN 

functional connectivity at rest and general cognitive performance (as assessed by NP-testing 

and overall z-scores, as in the present study) was recently found among HIV+ subjects [61]. 
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The disrupted DMN functional connectivity observed here is therefore consistent with the 

literature that links DMN dysfunction with degraded cognitive performance in multiple 

domains.

It should be noted, however, that not all fMRI studies of HIV-infected individuals have 

found alterations in the DMN. For instance, [55] compared functional connectivity between 

recently-infected HIV+ subjects and HIV− controls and failed to find DMN connectivity 

differences between the two groups. However, in that study, correlation was used to detect 

functional connectivity, while in the present study, functional connectivity was determined 

using lsGC, which has several advantages over correlation, as discussed above. Moreover, 

given that only subjects who had been infected with HIV in the past year were recruited to 

the [55] study, DMN pathology may have not yet manifested in those subjects to an extent 

that could be detected by fMRI. Such results highlight the need for more longitudinal 

neuroimaging studies of HIV-infected individuals. One such study examining fMRI 

activations while subjects performed a visual attention task found that several brain regions, 

including the prefrontal and posterior parietal cortices, exhibited increased activity in HIV+ 

subjects at the 1-year testing session, relative to baseline [20]. These regions did not include 

those associated with the DMN. However, it is important to note that [20] examined the 

altered activation of individual brain regions, rather than connectivity between different 

regions. Therefore, while activity in the DMN itself may have been unchanged, activity in 

regions that are connected to the DMN may have been altered in a way that affected the 

functional connectivity of the DMN. Indeed, changes in connectivity between the DMN and 

other brain regions has been observed in HIV+ individuals [50].

Unlike the correlation-based models, the lsGC model uniquely included a basal ganglia 

region (the left caudate nucleus) as a top feature. Histologic abnormalities [4], volumetric 

atrophy [6], and metabolic dysfunction [58] in the basal ganglia have been previously 

observed in HIV-infected individuals. Moreover, the caudate is an essential component of 

the fronto-striato-thalamo-cortical circuit, dysfunction of which is believed to underly many 

of the cognitive deficits seen in HAND, including in executive function, learning, and 

memory [19]. Thus, the fact that the lsGC model strongly weighs a basal ganglia region may 

partially explain its improved performance relative to correlation-based models. Altered 

basal ganglia functional connectivity may also be the basis of the high prevalence of motor 

deficits among the HIV+ subjects, as the basal ganglia are known to play a key role in the 

selection of desired movements and the suppression of unwanted movements [23, 28] and 

are thus essential for the smooth execution of voluntary movements.

Frequency-specific filtering of rsfMRI time-series prior to correlation-based rsfMRI 

connectivity analyses is a widespread, but controversial, practice. The rationale behind its 

use lies in the high signal-to-noise ratio (SNR) of BOLD fMRI and the fact that physiologic 

noise (e.g., from cardiac and respiratory function) and instrumental noise (e.g., from scanner 

drift) components are respectively enriched at frequencies above 0.1Hz [12, 30, 48] and 

below 0.01Hz [9]. There is also evidence, however, that such temporal filtering introduces 

artificial correlations between pairs of fMRI time-series [15]. Given that the tradeoff 

between improving SNR and introducing spurious correlations is still a matter of debate, we 

generated brain graphs based on correlation using both filtered and unfiltered time-series. 
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Results from Figures 1 and 3 show that, in certain contexts, e.g., HIV+/− classification with 

the Craddock100 and HO138 templates, BPF time-series yield higher predictive ability than 

unfiltered time-series, while, in other contexts, e.g., overall NP score prediction with the 

Craddock100 template, the opposite is true, while in still other cases, e.g., most other 

templates in the HIV+/− classification task, the two models yield comparative predictive 

abilities.

A few limitations must be kept in mind when interpreting the results of this study. First, 

because the ground truth connectivity structure of the brain is not known, it cannot be said 

whether differences in graph properties exploited by the machine learning models to predict 

disease state and cognitive performance truly represent differences in information transfer 

between brain regions or some other more amorphous, though still clinically meaningful, 

aspect of the BOLD signal. Second, the homogeneous and relatively small sample size in 

this study precluded the rigorous analysis of important disease-related variables such as 

duration and mode of infection, CD4 levels, and cART status, as well as HIV-related 

comorbidities, including drug abuse, vascular disease, and depression. Third, because the 

HIV+ and HIV− subjects were not matched by sex, age, or education level, a direct one-to-

one comparison between the two groups could not be performed.

Each of these factors represents a potentially fruitful avenue for future inquiry in the context 

of functional brain connectivity.

5. Conclusion

It was demonstrated here that machine learning analysis of resting-state functional MRI data 

with large-scale Granger causality enables the superior prediction of important clinical 

parameters, including HIV status and cognitive performance, relative to traditional 

correlation-based methods. Moreover, it was shown that the features of the brain graphs 

deemed most relevant by the classifiers in distinguishing HIV+ and HIV− subjects were 

strongly enriched in regions corresponding to the default mode network and basal ganglia 

regions. The results of these analyses position lsGC as a potential tool for developing 

biomarkers for diagnosis and staging of HIV-associated neurocognitive disorders.

Acknowledgments

This work was supported by the National Institutes of Health (R01-DA-034977, R01-MH-099921, T32-
GM-007356). The content is solely the responsibility of the authors and does not necessarily represent the official 
views of the National Institute of Health. This work was conducted as a Practice Quality Improvement (PQI) project 
related to American Board of Radiology (ABR) Maintenance of Certificate (MOC) for Prof. Dr. Axel Wismüller. 
The study sponsors were not involved in study design, collection and interpretation of data, or in the writing and 
submission of this manuscript.

References

[1]. Abidin AZ, DSouza AM, Nagarajan MB, Wang L, Qiu X, Schifitto G, and A. Wismüller2018. 
Alteration of brain network topology in HIV-associated neurocognitive disorder: A novel 
functional connectivity perspective. NeuroImage: Clinical, 17:768–777. [PubMed: 29527484] 

[2]. Andrews-Hanna JR, Reidler JS, Huang C, and Buckner RL 2010 Evidence for the Default 
Network’s Role in Spontaneous Cognition. Journal of Neurophysiology, 104(1):322–335. 
[PubMed: 20463201] 

Chockanathan et al. Page 10

Comput Biol Med. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[3]. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein 
LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, 
Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, and Wojna VE 2007 
Updated research nosology for HIV-associated neurocognitive disorders. Neurology, 69(18):
1789–1799. [PubMed: 17914061] 

[4]. Archibald S, Masliah E, Fennema-Notestine C, and Al E 2004 Correlation of in vivo neuroimaging 
abnormalities with postmortem human immunodeficiency virus encephalitis and dendritic loss. 
Archives of Neurology, 61(3):369–376. [PubMed: 15023814] 

[5]. Atluri G, Padmanabhan K, Fang G, Steinbach M, Petrella JR, Lim K, MacDonald A, Samatova 
NF, Doraiswamy PM, and Kumar V 2013 Complex biomarker discovery in neuroimaging data: 
Finding a needle in a haystack. NeuroImage: Clinical, 3:123–131. [PubMed: 24179856] 

[6]. Aylward EH, Henderer JD, McArthur JC, Brettschneider PD, Harris GJ, Barta PE, and Pearlson 
GD 1993 Reduced basal ganglia volume in HIV1associated dementia Results from quantitative 
neuroimaging. Neurology, 43(10):2099. [PubMed: 8413973] 

[7]. Balsters JH, Mantini D, Apps MAJ, Eickho SB, and Wenderoth N 2016 Connectivity-based 
parcellation increases network detection sensitivity in resting state fMRI: An investigation into 
the cingulate cortex in autism. NeuroImage: Clinical, 11:494–507. [PubMed: 27114898] 

[8]. Benjamini Y and Hochberg Y 1995 Controlling the false discovery rate: a practical and powerful 
approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), 
Pp. 289–300.

[9]. Bianciardi M, Fukunaga M, van Gelderen P, Horovitz SG, de Zwart JA, Shmueli K, and Duyn JH 
2009 Sources of functional magnetic resonance imaging signal fluctuations in the human brain at 
rest: a 7 T study. Magnetic resonance imaging, 27(8):1019–1029. [PubMed: 19375260] 

[10]. Blondel VD, Jean-Loup G, Lambiotte R, and Lefebvre E 2008 Fast unfolding of communities in 
large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008.

[11]. Chang L, Speck O, Miller EN, Braun J, Jovicich J, Koch C, Itti L, and Ernst T 2001 Neural 
correlates of attention and working memory deficits in HIV patients. Neurology, 57(6):1001–
1007. [PubMed: 11571324] 

[12]. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, and 
Meyerand ME 2001 Frequencies contributing to functional connectivity in the cerebral cortex in 
“resting-state” data. AJNR. American journal of neuroradiology, 22(7):1326–1333. [PubMed: 
11498421] 

[13]. Cortes C and Vapnik V 1995 Support-vector networks. Machine learning, 20(3):273–297.

[14]. Craddock RC, James GA, Holtzheimer PE, Hu XP, and Mayberg HS 2012 A whole brain fMRI 
atlas generated via spatially constrained spectral clustering. Human Brain Mapping, 33(8):1914–
1928. [PubMed: 21769991] 

[15]. Davey CE, Grayden DB, Egan GF, and Johnston LA 2013 Filtering induces correlation in fMRI 
resting state data. NeuroImage, 64(1):728–740. [PubMed: 22939874] 

[16]. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, 
Maguire RP, and Hyman BT 2006 An automated labeling system for subdividing the human 
cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3):968–980. 
[PubMed: 16530430] 

[17]. DSouza AM, Abidin AZ, Leistritz L, and Wismüller A 2017 Exploring Connectivity with Large-
Scale Granger Causality on Resting-State Functional MRI. Journal of Neuroscience Methods, 
287:68–79. [PubMed: 28629720] 

[18]. du Plessis L, Paul RH, Hoare J, Stein DJ, Taylor PA, Meintjes EM, and Joska JA 2017 Resting-
state functional magnetic resonance imaging in clade C HIV: within-group association with 
neurocognitive function. Journal of NeuroVirology.

[19]. Ellis R, Langford D, and Masliah E 2007 HIV and antiretroviral therapy in the brain: neuronal 
injury and repair. Nature Reviews Neuroscience, 8(1):33–44. [PubMed: 17180161] 

[20]. Ernst T, Yakupov R, Nakama H, Crocket G, Cole M, Watters M, RicardoDukelow ML, and 
Chang L 2009 Declined neural e ciency in cognitively stable human immunodeficiency virus 
patients. Annals of Neurology: Official Journal of the American Neurological Association and 
the Child Neurology Society, 65(3):316–325.

Chockanathan et al. Page 11

Comput Biol Med. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[21]. Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, Yang Z, Chu C, Xie S, and Laird AR 2016 The 
human brainnetome atlas: a new brain atlas based on connectional architecture. Cerebral Cortex, 
26(8):3508–3526. [PubMed: 27230218] 

[22]. Granger CWJ 1969 Investigating Causal Relations by Econometric Models and Cross-spectral 
Methods. Econometrica, 37(3):424–438.

[23]. Graybiel AM, Aosaki T, Flaherty AW, and Kimura M 1994 The basal ganglia and adaptive motor 
control. Science (New York, N.Y.), 265(5180):1826–1831.

[24]. Hampson M, Driesen NR, Skudlarski P, Gore JC, and Constable RT 2006 Brain Connectivity 
Related to Working Memory Performance. The Journal of Neuroscience, 26(51):13338 LP–
13343. [PubMed: 17182784] 

[25]. Hoerl AE and Kennard RW 1970 Ridge regression: Biased estimation for nonorthogonal 
problems. Technometrics, 12(1):55–67.

[26]. Honey CJ, Kötter R, Breakspear M, and Sporns O 2007 Network structure of cerebral cortex 
shapes functional connectivity on multiple time scales. Proceedings of the National Academy of 
Sciences, 104(24):10240–10245.

[27]. Kötter R 2004 Online retrieval, processing, and visualization of primate connectivity data from 
the CoCoMac database. Neuroinformatics, 2(2):127–144. [PubMed: 15319511] 

[28]. Lanciego JL, Luquin N, and Obeso JA 2012 Functional neuroanatomy of the basal ganglia. Cold 
Spring Harbor perspectives in medicine, P. a009621. [PubMed: 23071379] 

[29]. Liao W, Ding J, Marinazzo D, Xu Q, Wang Z, Yuan C, Zhang Z, Lu G, and Chen H 2011 Small-
world directed networks in the human brain: Multivariate Granger causality analysis of resting-
state fMRI. NeuroImage, 54:2683–2694. [PubMed: 21073960] 

[30]. Lowe MJ, Mock BJ, and Sorenson JA 1998 Functional Connectivity in Single and Multislice 
Echoplanar Imaging Using Resting-State Fluctuations. NeuroImage, 7(2):119–132. [PubMed: 
9558644] 

[31]. Lynall M-E, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, and Bullmore E 2010 
Functional Connectivity and Brain Networks in Schizophrenia. The Journal of Neuroscience, 
30(28):9477–9487. [PubMed: 20631176] 

[32]. Margulies DS, Kelly AMC, Uddin LQ, Biswal BB, Castellanos FX, and Milham MP 2007 
Mapping the functional connectivity of anterior cingulate cortex. NeuroImage, 37(2):579–588. 
[PubMed: 17604651] 

[33]. Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike 
B, Holmes C, Collins L, Thompson P, Mac-Donald D, Iacoboni M, Schormann T, Amunts K, 
Palomero-Gallagher N, Geyer S, Parsons L, Narr K, Kabani N, Goualher GL, Boomsma D, 
Cannon T, Kawashima R, and Mazoyer B 2001a A probabilistic atlas and reference system for 
the human brain: International Consortium for Brain Mapping (ICBM). Philosophical 
Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1412):1293–
1322. [PubMed: 11545704] 

[34]. Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike 
B, Holmes C, Collins L, Thompson P, Mac-Donald D, Iacoboni M, Schormann T, Amunts K, 
Palomero-Gallagher N, Geyer S, Parsons L, Narr K, Kabani N, Le Goualher G, Feidler J, Smith 
K, Boomsma D, Pol HH, Cannon T, Kawashima R, and Mazoyer B 2001b A Four-Dimensional 
Probabilistic Atlas of the Human Brain. Journal of the American Medical Informatics 
Association, 8(5):401–430. [PubMed: 11522763] 

[35]. Newman MEJ 2003 The structure and function of complex networks. Society for industrial and 
applied mathematics review.

[36]. Overton ET, Kauwe JSK, Paul R, Tashima K, Tate DF, Patel P, Carpenter CCJ, Patty D, Brooks 
JT, and Clifford DB 2011 Performances on the CogState and standard neuropsychological 
batteries among HIV patients without dementia. AIDS and Behavior, 15(8):1902. [PubMed: 
21877204] 

[37]. Pester B, Lutz L, Herbert W, and Axel W 2013 Exploring Effective Connectivity by a Granger 
Causality Approach with Embedded Dimension Reduction. Biomedical Engineering, 58:4172.

Chockanathan et al. Page 12

Comput Biol Med. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[38]. Plessis SD, Vink M, Joska JA, Koutsilieri E, Stein DJ, and Emsley R 2014 HIV infection and the 
frontostriatal system: a systematic review and meta-analysis of fMRI studies. AIDS, 28(6):803–
811. [PubMed: 24300546] 

[39]. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, and Shulman GL 2001 A 
default mode of brain function. Proceedings of the National Academy of Sciences, 98(2):676–
682.

[40]. Rubinov M and Sporns O 2010 Complex network measures of brain connectivity: Uses and 
interpretations. NeuroImage, 52(3):1059–1069. [PubMed: 19819337] 

[41]. Sacktor N, Skolasky RL, Seaberg E, Munro C, Becker JT, Martin E, Ragin A, Levine A, and 
Miller E 2016 Prevalence of HIV-associated neurocognitive disorders in the Multicenter AIDS 
Cohort Study. Neurology, 86(4):334–340. [PubMed: 26718568] 

[42]. Sambataro F, Murty VP, Callicott JH, Tan H-Y, Das S, Weinberger DR, and Mattay VS 2010 
Age-related alterations in default mode network: Impact on working memory performance. 
Neurobiology of Aging, 31(5):839–852. [PubMed: 18674847] 

[43]. Sanz-Arigita EJ, Schoonheim MM, Damoiseaux JS, Rombouts SARB, Maris E, Barkhof F, 
Scheltens P, and Stam CJ 2010 Loss of Small-World Networks in Alzheimer’s Disease: Graph 
Analysis of fMRI Resting-State Functional Connectivity. PLOS ONE, 5(11):e13788. [PubMed: 
21072180] 

[44]. Schmidt C, Pester B, Nagarajan M, Witte H, Leistritz L, and Wismueller A 2014 Impact of 
multivariate granger causality analyses with embedded dimension reduction on network modules. 
In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology 
Society, Pp. 2797–2800.

[45]. Schmidt C, Pester B, Schmid-Hertel N, Witte H, Wismüller A, and Leistritz L 2016 A 
Multivariate Granger Causality Concept towards Full Brain Functional Connectivity. PLOS ONE, 
11(4):e0153105. [PubMed: 27064897] 

[46]. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, 
Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, 
De Stefano N, Brady JM, and Matthews PM 2004 Advances in functional and structural MR 
image analysis and implementation as FSL. NeuroImage, 23:S208–S219. [PubMed: 15501092] 

[47]. Stephan KE and Friston KJ 2010 Analyzing effective connectivity with functional magnetic 
resonance imaging. Wiley Interdisciplinary Reviews: Cognitive Science, 1(3):446–459. 
[PubMed: 21209846] 

[48]. Thomas CG, Harshman RA, and Menon RS 2002 Noise reduction in BOLD-based fMRI using 
component analysis. NeuroImage, 17(3):1521–1537. [PubMed: 12414291] 

[49]. Thomas JB, Brier MR, Ortega M, Benzinger TL, and Ances BM 2015 Weighted brain networks 
in disease: Centrality and entropy in human immunodeficiency virus and aging. Neurobiology of 
Aging, 36(1):401–412. [PubMed: 25034343] 

[50]. Thomas JB, Brier MR, Snyder AZ, Vaida FF, and Ances BM 2013 Pathways to 
neurodegeneration: effects of HIV and aging on resting-state functional connectivity. Neurology, 
80(13):1186–1193. [PubMed: 23446675] 

[51]. Tozzi V, Balestra P, Murri R, Galgani S, Bellagamba R, Narciso P, Antinori A, Giulianelli M, 
Tosi G, Fantoni M, Sampaolesi A, Noto P, Ippolito G, and Wu AW 2004 Neurocognitive 
impairment influences quality of life in HIV-infected patients receiving HAART. International 
journal of STD & AIDS, 15(4):254–259. [PubMed: 15075020] 

[52]. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, 
and Joliot M 2002 Automated anatomical labeling of activations in SPM using a macroscopic 
anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1):273–289. 
[PubMed: 11771995] 

[53]. Uddin LQ, Clare Kelly AM, Biswal BB, Xavier Castellanos F, and Milham MP 2009 Functional 
connectivity of default mode network components: Correlation, anticorrelation, and causality. 
Human Brain Mapping, 30(2):625–637. [PubMed: 18219617] 

[54]. Valcour VG 2011 Evaluating cognitive impairment in the clinical setting: practical screening and 
assessment tools. Topics in antiviral medicine, 19(5):175–180. [PubMed: 22298886] 

Chockanathan et al. Page 13

Comput Biol Med. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[55]. Wang X, Foryt P, Ochs R, Chung J-H, Wu Y, Parrish T, and Ragin AB 2011 Abnormalities in 
Resting-State Functional Connectivity in Early Human Immunodeficiency Virus Infection. Brain 
Connectivity, 1(3):207–217. [PubMed: 22433049] 

[56]. Watts DJ and Strogatz SH 1998 Collective dynamics of’small-world’ networks. Nature, 
393(6684):440–442. [PubMed: 9623998] 

[57]. Weissman DH, Roberts KC, Visscher KM, and Woldor MG 2006 The neural bases of momentary 
lapses in attention. Nature Neuro-science, 9:971.

[58]. Wenserski F, von Giesen H-J, Wittsack H-J, Aulich A, and Arendt G 2003 Human 
Immmunodeficiency Virus 1associated Minor Motor Disorders: Perfusion-weighted MR Imaging 
and 1H MR Spectroscopy. Radiology, 228(1):185–192. [PubMed: 12759468] 

[59]. Wismüller A, Lange O, Dersch DR, Leinsinger GL, Hahn K, Pütz B, and Auer D 2002 Cluster 
Analysis of Biomedical Image Time-Series. International Journal of Computer Vision, 46(2):
103–128.

[60]. Wismüller A, Nagarajan MB, Witte H, Pester B, and Leistritz L 2014 Pair-wise clustering of 
large scale Granger causality index matrices for revealing communities. In Proceedings of SPIE, 
volume 9038, Pp. 90381R–90381R–8.

[61]. Zhuang Y, Qiu X, Wang L, Ma Q, Mapstone M, Luque A, Weber M, Tivarus M, Miller E, 
Arduino R, Zhong J, and Schifitto G 2017 Combination antiretroviral therapy improves cognitive 
performance and functional connectivity in treatment-naïve HIV-infected individuals. Journal of 
NeuroVirology, Pp. 704–712. [PubMed: 28791662] 

Chockanathan et al. Page 14

Comput Biol Med. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Large-scale Granger causality (lsGC) was used to derive functional brain networks

Machine learning performed on networks accurately classified subjects as HIV+ or 

HIV−

Machine learning performed on networks accurately predicted neuropsychometric 

scores

IsGC-derived networks were more informative than correlation-based networks

Results were robust across several parcellation schemes
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Figure 1: 
Comparison of time-series analysis methods with regard to HIV+/− classification ability. The 

vertical axis shows the area under the receiver operating characteristic curve (AUC) while 

the horizontal axis shows the different parcellation templates. Error bars represent standard 

deviations. Light blue and dark blue asterisks indicate that the performances of band-pass 

filtered correlation- and unfiltered correlation-based models, respectively, are significantly 

different from that of the lsGC-based model (two-sided Wilcoxon rank sum test, p < 0.05, 

Bonferroni-corrected). Note that over all seven atlases, the classifier based on lsGC-derived 

features outperforms that based on unfiltered correlation-derived features. The same is true 

for band-pass filtered correlation, with the exception of the Craddock 100 atlas, in which 

case the performances of the two models are statistically identical.
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Figure 2: 
Left: Bar plots depicting the top 10 most strongly weighted features and corresponding 

weights |βi| for SVM models based on the three methods using the AAL 90 template: 

correlation with BPF (top), correlation without BPF (middle), and lsGC (bottom). Right: 
Color-matched brain map of the regions depicted in the corresponding bar plots. Note the 

prevalence of ROIs previously implicated in HAND, such as the basal ganglia (caudate 

nucleus) and default mode network (posterior cingulate cortex, angular gyrus) regions. 

Abbreviations - Tot Deg: Total-Degree; In Deg: In-Degree; Out Deg: Out-Degree; Clust 

Coeff: Clustering Coefficient; Betweenness Cent: Betweenness Centrality.
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Figure 3: 
The performance of the three SVM models with respect to prediction of cognitive 

performance, as assessed by overall neuropsychometric (NP) score. The vertical axis shows 

the coefficient of determination (R2) between the predicted and true NP scores for each 

model. The horizontal axis shows the seven different parcellation templates used to generate 

brain graphs, the properties of which served as features in the SVM model. The light blue, 

dark blue, and red bars represent the R2 value for the band-pass filtered correlation-, 

unfiltered correlation-, and lsGC-based models, respectively. Light blue asterisks designate 

significantly different performance between the band-pass filtered correlation model and the 

lsGC model (Bonferroni-corrected p < 0.05, two-sided Wilcoxon rank-sum test) and the dark 

blue asterisks designate significantly different performance between the unfiltered 

correlation model and the lsGC model. Error bars represent two standard deviations.

Chockanathan et al. Page 18

Comput Biol Med. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Materials & Methods
	Subjects
	Neuropsychometric testing
	Neuroimaging data acquisition
	fMRI preprocessing
	fMRI spatial parcellation
	Time-series analysis and graph generation
	Graph property computation
	Machine learning and feature analysis

	Results
	Classification of HIV+ and HIV− subjects
	Prediction of cognitive performance

	Discussion
	Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:

