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Abstract: Human retinal pigment epithelium cells under hydrogen peroxide-induced 
oxidative stress and a ligustrazine-based protective effect were investigated using laser 
tweezers Raman spectroscopy. Protein and lipid were significantly affected by oxidative 
damage, along with increased reactive oxygen species (ROS) level within cells. The effects of 
ligustrazine against the reaction of ROS with protein seemed to be able to inhibit such 
damages but were limited during the desamidization of amides, along with additional effect 
on nucleic acid base and DNA phosphoric acid skeleton. This work laid the basis for both 
understanding the molecular mechanisms of oxidative stress-induced injury and highlighting 
possible biomarkers in retinal diseases. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction
Retinal pigment epithelium (RPE) is a monolayer of pigmented cells located between the 
retina and the choroid in the eye. As a critical component of blood retinal barrier, RPE 
transports nutrients and metabolites to the outer retina and photoreceptors through the 
microvascular bed. Lights focused by the lens are absorbed by the retina and the damaging 
part may be filtered to keep retinal homeostasis [1,2]. To achieve a good vision, the RPE also 
plays important roles in nourishing the retina and maintaining fitness and function of 
photoreceptors, since the RPE could supplement the 11-cis-retinal chromophore to 
photoreceptors, and phagocytize damaged (photo-oxidized) outer segments of photoreceptors 
[3]. However, the RPE is not able to renew itself after differentiation. RPE cells are very 
susceptible to oxidative damage during human life. Oxidative stress usually occurs when 
there is an imbalance of biological process between production and scavenging mechanism of 
reactive oxygen species (ROS) in cells [4]. When cells are exposed to oxidative stress, 
abnormal proteins and lipids accumulate and will further weaken the ability of cellular self-
repair, resulting in cell loss [5]. In the retina, the photoreceptor is continuously exposed to 
light and oxygen, therefore it is particularly susceptible to oxidative stress. Meanwhile, the 
RPE cells are essential for phagocytosis via the photoreceptor outer segment membrane 
which is critical for photoreceptor survival, function and renewal. Due to oxidative stress or 
other stresses, the RPE degeneration usually causes secondary photoreceptor cell death [6]. 
Given this, oxidative stress to RPE is considered as one of the major causes of eye diseases, 
such as age-related macular degeneration and diabetic retinopathy [7,8]. As a major factor 
implicated in the free-radical theory of aging, there are evidences that hydrogen peroxide will 
induce oxidative stress apoptosis in RPE cells [9–11]. So far, due to the low accumulation of 
ROS in early oxidative stress, the early detection of oxidative stress in RPE cells remains 
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difficulties, and the underlying mechanism is still unclear. There are also reports about the 
protective effects of ligustrazine [12,13]. Many techniques have been proposed for the 
detection and analysis of in vitro interactions among cells and their environment, such as 
optical, biochemical, immunochemical and molecular techniques. Since RPE cells are 
arranged as single layer in vivo, it is important to explore a method that can detect single 
living cells. However, most of those techniques are invasive and often require preparation 
steps such as fixation, staining or labeling [14]. Despite of specific biomarker expression in 
the cells, such methods are not feasible for the study of single living cells. For this reason, 
there is a need to construct effective strategies from cellular level for monitoring oxidative 
damage and therapeutic evaluation. 

Based on inelastic scattering, Raman spectroscopy (RS) may provide cellular and 
subcellular information of molecular vibration via a noninvasive and nondestructive way that 
does not require special labeling or preparation [15]. Compared to traditional spectral 
methods like infrared spectroscopy, the RS is less influenced by water, which makes it very 
suitable for biological samples in a water-based environment, ranging from bio fluids, tissue 
and cells to subcellular components [16,17]. By combining various statistical methods, 
normal and abnormal cells and tissues can be initially characterized. For instance, 
classifications of normal and cancerous cell lines from human prostatic, breast, thyroid, and 
leukemia cells have been successfully classified [18–20]. Recently, a new method derived 
from RS, called laser tweezers Raman spectroscopy (LTRS), has proven to be a powerful 
spectroscopic technique for the analysis of individual biological cells in suspension, helping 
to take Raman analysis of biological samples beyond whole tissue and bulk cells down to the 
single cell level. The combination of laser tweezers and RS facilitates the whole detection 
procedure. In addition, when associated with the optical trapping technique, which 
immobilizes a floating object within the laser focus, interrogation of individual cells is 
simplified. 

Recent studies have shown that LTRS is a promising technique for single cell detection 
[21]. The nondestructive and noninvasive nature of LTRS allowed performing analysis on 
live cells, and it minimized prior sample preparation procedures. Ahlawat and colleagues 
have utilized LTRS for label-free analysis of human colon adenocarcinoma cell cycle 
synchronized in G0/G1 and G2/M phases via DNA band as an indicator of content in nucleus 
[22]. Also, the LTRS was successfully used for single cancer cell detection, and the cancer 
groups could be accurately discriminated from the normal cells based on characteristic Raman 
signals generated from DNA/RNA and proteins or attributed to effects of cell preparation 
[21,23,24]. Thus, it may have the potential to use LTRS to examine the effects of oxidative 
stress and the corresponding oxidation resistant reagent. 

In this work, the effects of oxidative stress and relative resistant reagent for human RPE 
cell were performed by LTRS method. We aimed to preliminarily understand the molecular 
mechanisms and determine characteristic differences for cellular oxidative stress. This is the 
first time to investigate the spectral characterization of human RPE cells and the underlying 
oxidative mechanism by combining LTRS and multivariate methods. 

2. Material and methods
2.1. Cell line and culture condition 

Human RPE cell line (Jennio Biotech, Guangzhou, China) was cultured in Dulbecco’s 
modified eagle medium (DMEM) supplemented with 1% streptomycin, 1% penicillin, and 
10% fetal bovine serum (FBS) (Hyclone, GE Lifescience, USA). Cells were grown in an 
incubator humidified 5% CO2 atmosphere at 37°C. Fresh stock of cells was seeded in 9 
identical flasks. In this experiment, hydrogen peroxide and ligustrazine were added to the 
medium of RPE cells to construct models of oxidative stress and asses the protective effect. 
Cells were divided into three groups and the concentrations of those reagents were 
determined by referring to previous reports and the concentration gradient experiment 
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[25,26]. As a result, hydrogen peroxide and ligustrazine with concentrations of 0 μmol/mL 
and 0 μmol/mL, 200 μmol/mL and 0 μmol/mL, and 200 μmol/mL and 200 μmol/mL were 
considered as groups of control, oxidative stress, and protective effect, respectively. Cells in 
logarithmic growth phase were washed twice with phosphate buffer saline (PBS), and then 
digested by trypsin solution for following steps. 

2.2 Cell viability and ROS measurement 

Before cell viability measurement, five concentration gradients of cell suspension were set to 
screen optimum concentration. As a result, 100 μL of cell suspension with number of 
approximately 5000/μL from each flask was selected and seeded in a 96-well plate, 3 
replicates per flask beside 3 blank controls. After 24-hour culture, sample in each well was 
washed twice with PBS, and the mixture of fresh medium and CCK-8 reagent (Beyotime 
Biotech, Shanghai, China) under volume ratio of 10:1 was added to each well. After two 
hours of incubation, cell viability measurement was performed on a MultiskanGO (Thermo, 
USA) microplate reader. The absorbance and optical density (OD) value were measured 
under a wavelength of 450 nm that indirectly reflected the number of viable cells. The cell 
number of each well was calculated according to relative absorbance and the OD value. The 
2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) is a vital fluorescent probe that enters 
in cells and can be oxidized by ROS, particularly by hydrogen peroxide (H2O2) and hydroxyl 
radicals, yielding the fluorescent product (DCF). This probe is not an equilibrium sensor that 
can continuously monitor the level of ROS, but it traps or otherwise reacts with ROS. 
Increasing intracellular ROS to a sufficiently high level would trigger cell death, and thus it 
was suggested that ROS could be biochemical mediators of apoptosis [27]. Intracellular ROS 
generation was monitored by fluorescence microscopy, using fluorescence produced from 
2',7'-dichlorofluorescein (DCF) after being oxidized from DCFH-DA (Molecular Probes). In 
brief, RPE cells were incubated with 5 µM DCFH-DA 30 min at 37°C in the dark. Then the 
cells were washed twice with PBS and cultured in DMEM containing 5% FBS [28]. 
Fluorescence intensity was determined using a fluorescence microscopy (IX71, Olympus, 
Japan). 

2.3. Sample preparation and the LTRS system 

Cells in logarithmic growth phase were made into suspension in PBS prior to Raman 
measurement. Then the Raman spectra of single living cells were recorded using a home-
made LTRS system. Figure 1 briefly illustrated the working mechanisms of the LTRS system 
used in this study. Diode laser beam with 785 nm (LE-LS-785-XXRaman, StarBright Laser 
AB, Sweden) was firstly collimated with a spatial filter to achieve a beam diameter of 
approximately 6 mm. Then, the laser beam was spectrally filtered using a band pass filter and 
finally delivered into an inverted microscope (IX71, Olympus, Japan) equipped with a 100 × 
oil immersion objective with a numerical aperture of 1.3 through a dichroic mirror. 
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among these spectra, because these spectra exhibit similar spectral profiles, indicating the 
same components in cells. Several prominent Raman bands can be consistently observed in 
cells and then assigned in Table 1 according to previous work [32–36]. Various signals were 
assigned to nucleic acids, proteins or lipids and provided adequate information to assess 
variations in spectral characteristics. 

 

Fig. 3. Pair-comparison of normalized mean Raman spectra from (A) the control group and the 
oxidative stress challenge group, (B) the control and ligustrazine group, (C) the oxidative 
stress challenge group and the ligustrazine group. The shaded areas (grey and green) represent 
the standard deviations of the means. Also shown at the bottom is the difference spectrum. 

Table 1. Band positions and assignments of RPE cells from control and oxidative groups 

Band (cm−1) Raman Assignment 

518 S-S stretching 

622 phenylalanine 

640 protein: C-C twist, tyrosine 

667 G, T 

682 G 

716 A 

744 T 

759 T 

780 C/U ring breathing 

812 DNA: ribosomal protein, tyrosine 

832 out of plane ring breathing (tyrosine), DNA: O-P-O stretch 

852 tyrosine, protein: C-C skeletal 

869 tryptophan, PE, C-C stretching, PC, lipid: CH2 deformation 

891 DNA: phosphodiester and sugar-phosphate backbone, protein: C-C skeletal 

932 C-C stretching (proline, valine and protein backbone (α-helix), glycogen) 

953 carotenoid, cholesterol 

970 lipid: chain C-C 

1003 phenylalanine 

1062 lipid: skeletal C-C stretch 
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1078 DNA: O-P-O- 

1121 GlcNac 

1154 protein: C-C and C-N stretching, carotenoids 

1185 T, G 

1207 tyrosine, phenylalanine 

1254 A, T, amide III 

1298 lipid: CH2 deformation 

1333 A, G, protein: C-H deformation 

1388 nucleic acid 

1436 CH2 and CH3 deformation, peptide side chains, phospholipids 

1547 A, G 

1560 acetyl coenzyme 

1574 C = C stretching symmetric (phenylalanine) 

1600 C = C in-plane bending (phenylalanine, tyrosine) 

1650 amide I 

1740 lipid: C = O stretch 

 
Although it is not feasible to quantify the specific value of single band intensity, inverse 

trends were found at different spectra region. For example, after oxidative stress challenge 
(Fig. 3(a)), bands located at 716, 759, 1003, and 1650 cm−1 tented to have increased 
intensities, while 891, 1298, and 1436 cm−1 showed a decreasing trend, as well as such in 
Figs. 3(b) and 3(c). 

3.3 Multivariate analysis of Raman spectra from RPE cells 

We performed PCA to verify significant differences between all three groups. To explore any 
intimation and reliable markers to discriminate the histological type and oxidative status of 
the RPE cells, two types of data source were fed into the software package for factor analysis, 
including whole Raman data and the band data. Since the first two principal components 
(PCs) contain primary effects and explain the most variance in the PCA process, while the 
variance explained by PCs>3 gradually decline, using scores and projections of the first two 
PCs keeps the near original spectral information. In both cases, each group exhibited division 
with partially overlap with others (Figs. 4(a) and 4(b)). However, a trend in the distribution of 
these groups can still be identified as shown in the figure. This trend is similar to an arc, 
starting with the control group, going through the groups with high oxidative stress and last 
the ligustrazine group, respectively. Moreover, inspection of the loading plots shows that 
most bands exhibit similar concentrations between whole Raman data and the band data 
(Figs. 4(c) and 4(d)). These two phenomena suggest the oxidation of hydrogen peroxide-
induced stress to cells, but the degree of stress between cells is not the same. Meanwhile, with 
the additional combination of ligustrazine, the ability of intercellular inhibition is quite 
different. This results in PC score distribution on the aliasing and trend. 
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Fig. 4. Score plots of the first two principal components by analysis of (A) whole Raman data 
and (B) bands data, along with the loading plots for (C) PC1 and (D) PC2. 

Furthermore, we implement DT model based on CRT algorithm that is a commonly 
employed statistical classifier using the concept of information entropy. Briefly, at each node 
of the tree, the CRT algorithm selects one data attribute based on normalized information 
gain. The normalized information gain is obtained by most effectively splitting its set of 
samples into subsets. These subsets are enriched in one class or the other. Selection of child-
node property is based on the parameter called Gini index and then the property with the 
lowest Gini index during splitting is selected [37]. Here, we apply Gini index to build the DT 
model, and a ten-fold cross-validation procedure is used to evaluate the predictive error of the 
model. As mentioned above, whole Raman data and the band data of cell samples were used 
to construct relative models by CRT algorithm. The obtained diagnostic sensitivity and 
specificity were put together in Table 2 for comparison. The classification accuracy of each 
model was more than 90%, indicating that only a few samples have been misclassified. 
Moreover, the outcome of each model was not significantly affected by the input data source 
and the performance of whole spectra and bands as data input were basically the same. 
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Table 2. Classification by growing method of CRT algorithm based on whole cell Raman 
data and bands data 

Model 
Data 

source 

Predicted 

Accuracy Sensitivity Specificity 

All three groups 
Whole 92.8% 94.6% 100% 

Bands 92.8% 94.6% 100% 

Control vs. H2O2 
Whole 94.5% 89.3% 100% 

Bands 92.7% 85.7% 100% 

Control vs. H2O2 + ligustrazine 
Whole 94.5% 96.4% 92.6% 

Bands 96.4% 96.4% 96.3% 

H2O2 vs. H2O2 + ligustrazine 
Whole 94.6% - - 

Bands 96.4% - - 

 
The band data-based tree illustrates the band importance during the cross-validation 

procedure. The band importance means a contribution of each band to the establishment of 
the model as a variable. During cross-validation, the tree quantified the band importance in 
correct classification. It is important to discover those bands with key roles in classification. 
Top ten bands with the most importance in each model can be found in Fig. 5. Considering 
that RPE cells are basically composed of three types of macromolecules (i.e. protein, nucleic 
acid and lipid), in order to explore characteristic changes of hydrogen peroxide-induced 
oxidative stress in RPE cells, those important bands were classified based on their assigned 
biological identities. Subsequently, pairs of the bands were determined according to their 
assignment results that mainly based on the assignments of same components, chemical 
bonds (with the same or different vibrational modes), or biological functions. The qualitative 
and quantitative comparison between these paired bands will continue to be discussed 
according to the attribution and biological characteristics of these bands. 
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Fig. 5. Importance of independent Raman bands in the CRT models executed for (A) all three 
groups, (B) control vs. high oxidative stress, (C) control vs. ligustrazine, (D) high oxidative 
stress vs. ligustrazine. The band importance means a contribution of each band to the 
establishment of the model as a variable. 

A simple and effective diagnostic algorithm proposed on the basis of empirical analyses 
of Raman spectra in terms of peak-intensity-ratio measurements has been applied to a series 
of biological samples [35,38]. After determining the classification and comparison methods, 
we summed up all possible changes according to existing knowledge, and the significance of 
changes are tested by Students’ t-test analysis, as shown in Fig. 6. It shows very clearly the 
significant differences (*, p<0.05; **, p<0.01) between the control group, the oxidation group 
and the protective group (ligustrazine addition). We found that the difference between the 
oxidation group and the control group was concentrated in the protein, suggesting that the 
oxidative stress site was located in some amino acids molecules or vibrational mode. In 
contrast, the protective group showed four significant changes compared with the control 
group, less than the oxidation group, but it involved all three macromolecules. Compared with 
the oxidation group, the relative contents of several protein bands in the control and 
protective groups showed the same variation trend (i.e. 869/891, 869/932, and 1436/1650). 
With the addition of ligustrazine, a significant change was only found on one pair of protein 
band (1254/1650), and the relative content of other protein bands was similar to the control 
group. Two relative contents from nucleic acid and one of such from lipid also altered 
significantly (Figs. 6(b) and 6(c)). The data indicated that the effect of ligustrazine on cells 
was omni-directional, and it was largely different from that of oxidative stress to some extent. 
The protective effect of ligustrazine can only be achieved by the interaction of a variety of 
biological molecules. 
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Fig. 6. Relative quantitation of three cellular macromolecules that comes from (A) protein, (B) 
nucleic acid, and (C) lipid, respectively. X-axis: ratio of Raman bands; *: p<0.05: **: p<0.01. 

4. Discussion 
Oxidative stress of RPE is an important risk factor in ocular diseases. However, neither the 
underlying mechanism that is characteristic of oxidative stress for RPE cell has not been 
deeply investigated nor the oxidation resistant reagent has not been fully clarified. 
Noninvasive detection of oxidation-induced damages that can clarify early molecular 
mechanism has been concerned by researchers. Immobilization of cells on a substrate by 
physical or chemical approaches would perturb cellular biology, and make it difficult to 
acquire Raman signals of cells above the background generated from the surface [39]. 
Therefore, in this work, the effects of hydrogen peroxide-induced oxidative stress and the 
protective effects of ligustrazine on human RPE cells were firstly characterized by using 
label-free LTRS technique. According to our results, after hydrogen peroxide challenge, the 
level of ROS in the RPE cells was obviously increased, indicating cell injury. In comparison, 
the level of ROS of those cells with additional ligustrazine was lower than that of hydrogen 
peroxide alone. Test of cell viability also confirmed that the applying of ligustrazine increased 
the cell viability. As shown in single-cell Raman spectroscopy and statistical analysis, the 
spectral characteristics of three macromolecules from protein, nucleic acid and lipid were 
further demonstrated at the molecular level. 

The results of this work further confirmed that ROS is involved in the cellular signaling 
pathway and post-translational modification in RPE cells, thus affecting cell growth function 
[40,41]. Due to hydrogen peroxide, the ability to resist ROS oxidation was impaired, together 
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with the production of oxidative stress reflected in relative changes of amino acids or 
vibration modes in protein. For example, the band ratio of 812/832 was significantly 
increased in the oxidation group, indicating that tyrosine and its internal ‘out of plane ring 
breathing mode’ was affected by oxidation. Such interaction also suggested that the molecular 
vibration of tyrosine was sensitive to oxidation, resulting in structural changes. Interestingly, 
both bands of 869 and 932 cm−1 came from C-C stretching, except that with different protein 
species. The C-C stretching of 932 cm−1 of protein molecules were from proline, valine and 
protein backbone (α-helix conformation), while 891 cm−1 reflected the mode of C-C skeletal. 
As a result, the ratios of both 869/891 and 869/932 were significantly decreased in the 
oxidation group. However, after adding ligustrazine, the relative intensity was not different to 
the control group (Fig. 6), which indicated that hydrogen peroxide changed the content and 
structure of some amino acids by reaction of ROS with protein, resulting in functional 
damage of protein [42,43]. It also demonstrated some protective mechanism against these 
protein damages by ligustrazine. It may involve a variety of metabolic behaviors of cells, 
including energy metabolism, lipid metabolism, amino acid metabolism, and protein 
synthesis, etc. 

We also noticed about relative contents of amides (1254/1650, amide I vs. amide III) and 
lipid (869/1062, CH2 deformation vs. skeletal C-C stretch, Figs. 6(a) and 6(c) were also 
different from control, and that the addition of ligustrazine did not reverse this trend. The 
change of band ratio of amides may suggest a desamidization was triggered and resulted in 
modification of the spatial structure of proteins, and eventually it leaded to loss of protein 
activity or modification of biological function [44]. Moreover, the lipid is the main 
component of the cell membrane, which is susceptible to peroxidation induced by ROS, and 
the product from ROS reaction can cause damage to either the cell membrane or the organelle 
membrane [45,46]. The failure of ligustrazine to play a protective role in this situation 
suggested its protection was limited. We also noticed the ligustrazine may affect nucleic acids 
(716/1254, A vs. A (T); 832/1077, O-P-O stretch vs. O-P-O-, Fig. 6(b)). Its effects may 
involve two aspects, nucleic acid bases (also paired bases) and DNA phosphoric acid 
skeleton. 

In summary, by using the LTRS technique, this work preliminarily discussed the 
hydrogen peroxide-induced oxidative stress of RPE cells and the anti-oxidation and collateral 
effects of ligustrazine. The finding helps to better understand the mechanisms of abnormal 
oxidative stress affecting the RPE, and it also gives insights to develop anti-oxidation drugs 
for the treatment of eye diseases. This study has its limits that all the experimental results are 
only achieved from in vitro tissue and current results lack spatial information for RPE cells, 
and further studies such as in vivo testing and Raman hyperspectral imaging are required. 

5. Conclusion
In the present work, we performed label-free detection of hydrogen peroxide-induced 
oxidative stress and protective effect in human RPE cells using LTRS method. The results 
demonstrated characteristic alterations of RPE cells after oxidative injury. The ROS level of 
cells was significantly increased after hydrogen peroxide application, and protein and lipid 
were significantly affected by the oxidative damage. Cell transduction pathway and protein 
modification after translation and relative physiological processes were possibly involved 
according to relative changes of tyrosine and vibration modes in protein. This work has 
obtained preliminary results on oxidative stress damage and anti-oxidation mechanism of 
RPE cells in the field of retinopathy. Those findings lay the basis and experimental reference 
for both understanding the molecular mechanisms underlying oxidative stress and exploiting 
non-invasive biomarkers for the detection and treatment of retinopathy. Also, imminence 
requirement to systematically pursue metabolic characteristics should be noted more precisely 
in the future. 
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