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Abstract: Age-related macular degeneration (AMD) is a degenerative aging disorder, which
can lead to irreversible vision loss in older individuals. The emergence of clinical applications
of retinal hyper-spectral imaging provides a unique opportunity to capture important spectral
signatures, with the potential to enhance the molecular diagnosis of retinal diseases. In this
study, we use a machine learning classification approach to explore whether hyper-spectral
images offer an improved outcome compared to standard RGB images. Our results show that
the classifier performs better on hyper-spectral images with improved accuracy and
sensitivity for drusen classification compared to standard imaging. By examining the most
important features in the classification task, our data suggest that drusen are highly
heterogeneous. Our work provides further evidence that hyper-spectral retinal image data are
uniquely suited for computer-aided diagnosis and detection techniques.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Age-related macular degeneration (AMD) is a major health burden that can lead to
irreversible vision loss in the elderly population [1]. Early detection of AMD is extremely
important to identify patients who are at high risk of permanent vision loss and who can
benefit from early preventative interventions. Drusen, the characteristic early AMD lesion,
appears as yellowish deposits under the retina. The molecular composition of drusen has been
studied extensively using biochemical and molecular techniques. Non-invasive approaches
for detecting and distinguishing these lesions in healthy retinal images have become
important in the medical informatics field [2,3].

Clinically, RGB fundus imaging is the gold standard modality for drusen detection and
AMD risk stratification. RGB fundus images visualize drusen based on their color and
overlying pigment variation in the fundus [4]. However, these images have low contrast and
suffer from heterogamous illumination [5]. Fluorescein angiography (FA) can more easily
detect some forms of subtle drusen, e.g. cuticular drusen [4], with the distinct disadvantage of
being invasive and requiring intravenous dye injection. Fundus auto-fluorescence (FAF)
images, though non-invasive, cannot visualize all forms of drusen [4]. Optical coherence
tomography (OCT) is another widely used modality in AMD [6]. The advantage of OCT is
the ability to visualize the retinal structure in high resolution, especially for characterizing
leakage of blood, fluid and disorganization of the retinal structure, making it ideal for non-
invasive diagnosis and monitoring of neovascular AMD and the response to anti-VEGF
therapy [1]. A more comprehensive review of the different imaging modalities in AMD can
also be found in [7].
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In the current study, in addition to standard RGB fundus images, we investigated another
image modality, hyper-spectral retinal imaging. Using a prototype device, we acquired fundus
reflectance images at 16 different wavelengths, as detailed by Li ef al. [8]. The benefit of
hyper-spectral images are their ability to capture, non-invasively, a large spectral data set,
with the potential to identify important biomarkers for diagnosis of AMD [9]. Lee et al.
analyzed the hyper-spectral signatures of drusen in hyper-spectral fundus images using non-
negative matrix factorization (NMF) [10]. Kaluzny ef al. and Fawzi et al. further investigated
hyper-spectral mapping of macular pigment [11,12]. Other researchers focused on detecting
the characteristics of drusen and retinal pigment epithelium using hyper-spectral auto-
fluorescence images [13—15]. In this study, we extracted Haralick texture features [16] for
each individual wavelength of a hyper-spectral data set and adopted a classification approach
to investigate different feature characteristics comparing drusen and non-drusen regions of
interest.

Previous research has mostly focused on exploring different methods to detect drusen.
These methods include image processing and computer vision techniques alone [17-23] or in
combination with machine learning algorithms [24-29]. For example, Mittal and Kumari
implemented a combination of gradient-based segmentation and edge linking-procedure and
achieved 98.55% accuracy for detecting intermediate drusen [23]. Garcia-Floriano et al
adopted a Support Vector Machine (SVM) algorithm to classify images with or without
drusen and achieved an accuracy of 92.16% [28]. The limitations of previous studies include
considering only green channel images, which might suffer from loss of important
information. In addition, the validation data sets were small; for example, Garcia-Floriano et
al. only used 33 drusen images and 37 healthy tissue images [28]. In our study, we address
these limitations by considering all image channels as well as generating larger validation
data sets by cropping all the regions of interest.

While many low-level image features such as SIFT and SURF [30], wavelets [31], and
extracted image spatial information based on histogram of orthogonal vectors or triangular
regions [32,33] have been used for general image classification studies, only a few have been
explored for drusen diagnosis. For example, although Haralick texture features have been
widely used in the computer-aided diagnosis field, such as for lung nodules [34], liver
diseases [35], and parotid-gland injury [36], their use in retinal imaging and specifically for
drusen diagnosis has been limited. Prasath and Ramya used drusen texture features to
segment the drusen in RGB retinal images, using only the green channel because of its higher
contrast compared with the other two channels [37]. In our study, instead of setting a
threshold value for drusen segmentation, we employed a classification approach to classify
the drusen and non-drusen images using all 12 Haralick texture features and all 16 hyper-
spectral wavelength channels. To our best knowledge, this is the first study that investigates
the role of texture in drusen diagnosis using machine learning techniques and hyper-spectral
retinal images.

Newer machine learning approaches based on deep learning have been recently proposed
to learn directly from the raw image data rather than from extracted low-level image features.
Lee et al. [38] implemented the deep learning method to distinguish normal OCT images
from images of patients with AMD. Burlina et al. [39] used transfer learning and universal
features derived from deep convolutional neural networks (DCNN) to classify different stages
of AMD images. More recently, Schmidt Erfurth et al. used a deep learning approach to
predict AMD progression [40]. However, training and testing deep learning algorithms
require a large number of images, which makes these algorithms not applicable to settings
with limited image data sets.

In summary, we aim to study the effects of texture as a biomarker for drusen and to
compare the classification performance between hyper-spectral retinal images and RGB
retinal images. Since we focus on lesion classification rather than lesion detection, we
manually cropped drusen and healthy retinal tissue region of interest in hyper-spectral images
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and RGB images, respectively. Using a statistical model based on Haralick features to
quantify texture and random forests to learn and classify drusen from non-drusen, we show
that the classifier performs better on the hyper-spectral images. Furthermore, we found that
inverse difference moment, a feature describing the local homogeneity, is the most important
feature in distinguishing the drusen and non-drusen images. Our work suggests that hyper-
spectral images are more sensitive to the texture feature characteristics of drusen, which may
offer distinct advantages in future studies for automatic drusen detection.

2. Data and methods

Our methodology consists of three steps as illustrated in Fig. 1. First, we divided the entire
imaging data set into training and testing sets. After splitting each image into different
wavelength channels to create the data for learning the effect of texture as a biomarker for
AMD related diseases in hyper-spectral retinal images and RGB retinal images, we manually
cropped the regions of interest (ROIs). Second, we extracted intensity and texture features
from the cropped images and used these features to train and test machine learning
classification models of drusen versus non-drusen. Lastly, as a result of the classification
model, we identified the most important texture features for distinguishing drusen regions.
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Fig. 1. The classification approach for drusen diagnosis. The process consists of cropping of
ROIs, image feature extraction, and classification.

2.1 Hyper-spectral and RGB retinal images

In the study, we used hyper-spectral retinal images (1024 x 2048 pixels) generated by a
compact, snapshot hyper-spectral fundus camera [8]. Each hyper-spectral image super-pixel
contains 16 different wavelength channels represented by 4 x 4 complementary metal-oxide-
semiconductor (CMOS) pixels. Figure 2 illustrates the structure of hyper-spectral images.
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Fig. 2. An illustration of hyper-spectral imaging structure. The image resolution is 1024 x
2048. Each hyper-spectral superpixel is represented by 4 x 4 CMOS pixels.

We divided each hyper-spectral image into 16 individual wavelength channel images,
ranging from 460 nm to 630 nm and each having 256 x 512 spatial resolution. The individual
wavelength channel images are 8-bit grayscale images. Further details about the hyper-
spectral retinal images can be found in [8,11].

We also used a separate data set of RGB retinal images and compared them with the
hyper-spectral image data. The RGB retinal images were obtained using the Topcon fundus
camera (TRC-50IX, Topcon, Japan) with a resolution of 2048 x 2392 x 3 channels. In our
study, we used the individual channel grayscale images from the RGB retinal images with the
intensity values ranging from 0 to 255.

2.2 Drusen and healthy tissue regions

For hyper-spectral images, we manually cropped drusen regions using the Matlab
‘imfreechand’ tool on a single wavelength image [41], and retained the drusen intensity values
while converting intensity values everywhere else in the image to zero (Fig. 3). We used the
same locations to automatically crop the drusen on the remaining 15 wavelength images. By
doing this, for a single drusen in the hyper-spectral image, we obtain 16 cropped grayscale
drusen images with 256 x 512 spatial resolution. We repeated the cropping process for all the
drusen in the hyper-spectral images.

256 — 256

Y Y
512

512

Fig. 3. The process of cropping one drusen in the image. (A) Drusen image: one single spectral
image with 256 x 512 pixels of resolution. The irregular outline in red encloses the cropping
area. (B) ROI drusen image: all the pixels values except for the cropping area were converted
to zero. The image resolution remains the same.

For the RGB images, we employed the same cropping method. On a single channel
image, we manually cropped a drusen and used the same cropped location for the other two
channel images. Thus, for a single drusen in the RGB image, we obtain 3 cropped grayscale
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drusen images with 2048 x 2392 spatial resolution. We repeated the cropping process to
extract the drusen in all the RGB images.

In order to generate healthy tissue ROIs, we applied the same method to crop healthy
tissue regions in the images. During the health tissue cropping process, we avoided cropping
retinal blood vessels or the optic disk and used similar sized cropped regions as used in
drusen ROI.

Table 1 summarizes the hyper-spectral and RGB data used in this study. We generated
2032 cropped drusen and 2032 cropped healthy tissue images from all 16 wavelengths hyper-
spectral images. In total, we cropped 1731 drusen and 1785 healthy tissue ROIs from all 3
channels of the RGB images.

Table 1. A summary of hyper-spectral data and RGB data set

Drusen Images Drusen ROIs Healthy Retinal Healthy Retinal
Images ROIs
Hyper-spectral 22 2032 6 2032
RGB 30 1731 7 1785

2.3 Image feature extraction

For each ROI image, we extracted 6 intensity features and 12 Haralick texture features. The 6
intensity features are mean, median, max, min, standard deviation and the range of the
intensity values within the cropped region. The 12 Haralick texture features are calculated
from a gray level co-occurrence matrix (GLCM) [42] that encodes the spatial relationship of
the gray-levels across a certain direction 6 and pixel displacement d .

Suppose we quantized pixel values in the image into L, levels, then the GLCM L, has

number of rows and L, number of columns. Each element in GLCM represents the

probability p(i, j) that the quantized gray level value i can be found adjacent to the
quantized value j at angle € and displacement d :

AGY))

pG,j)= Lo M
ACY))

J=0

2
where f(i, j) is the frequency of quantized value i and value j appearing together in the

search at angle @ and displacement d . Figure 4 shows an example of the GLCM.
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Fig. 4. An example of GLCM calculation. Left: image with quantized gray level L, =8 .
Right: the GLCM matrix for d =1and 6=0°.
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In our study, we calculated 4 GLCM for L, =8, d =1, and 6=0°,45°,90°,180°; for

each GLCM we extracted 12 Haralick texture features that were averaged with respect to the
angle. The texture features are angular-second moment (energy), contrast, correlation,
variance, inverse difference moment, sum average, sum variance, entropy, sum entropy,
difference variance, difference entropy, information measure of correlation and maximal
correlation coefficient. This set of texture features is chosen to quantify second-order gray
level properties such as local uniformity, variance, and homogeneity. The Appendix Table 15
summarizes the definitions of these features [43]. We also provided the link to download the
data sets in this study (Dataset | [44]).

2.4 Drusen vs. non-drusen classification

To determine whether hyper-spectral images offer an improved outcome compared to
standard RGB images based on intensity and texture features, we implemented four binary
classifiers to differentiate between healthy (non-drusen) and non-healthy (drusen) tissues:
decision trees, naive Bayes, AdaBoost with stump trees, and random forests. First, we
examined different split ratios between the training and testing sets (80%-20%, 70%-30%,
60%-40% and 50%-50%). For each classifier with a certain training vs. testing split ratio, we
repeated the process 30 times and calculated the mean accuracy, sensitivity (drusen is the
positive case) and specificity (non-drusen is the negative case) under 95% confidence
interval. Second, we compared the classification results for hyper-spectral and RGB data sets
by testing the mean accuracies and mean sensitivities (calculated across the 30 trials) between
different combinations of training vs. testing split ratio, classifier type, and image modality
using Welch’s t-test [45]. Since we had more hyper-spectral ROIs, we under-sampled the
hyper-spectral ROI image data set to balance it with the number of ROIs present in the RGB
images. In the rest of this section we provide the mathematical details for each one of the four
classifiers.

Decision Tree is a greedy algorithm that constructs a classification tree in a top-down,
recursive, divide-and-conquer manner [46]. A decision tree can be represented as a flow-
chart-like tree structure, where the root node represents all the samples S, each internal node
represents a test on a feature A4, the outcome of the test is represented by a branch, and the
leaf nodes are target class distributions for m distinct classes C,(i=1,...,m) [46]. The

algorithm first starts with the root node; if the samples belong to the same class, then the node
becomes a leaf node and is labeled with the class. Otherwise, the algorithm uses information
gain I(s,,s,,...,5,,) to select a feature A that becomes the test feature at that node and

divides the samples into different groups:
1(5,,855--55,) == p,1og, (p,), )
i=1

i

where p, =% and s, is the number of samples of S inclass C, .
s

If the feature A has v different values, {a,,a,,...,a,}, then the feature 4 can be used to
partition S into v subsets, {S,,S,,...,S,} . The entropy is defined as

ot

VoS . i
E(A)=Z%I(SU,-~,SW') 3

Jj=1
where s, represents the number of samples that have value a; for feature 4 and belong to

class C, and s represents the number of samples at the partition node. The information gain
by branching on feature A4 is


https://figshare.com/articles/paper_data_zip/7550174
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Gain(A) = 1(s,,5,,"**,5,,)—E(4) 4)

The algorithm chooses the attribute with the highest information gain to separate the
samples and uses the same process recursively for the samples at each partition node. The
recursive partition stops when all the samples in a node belong to the same class or there are
no more features or samples to split the node.

In this study, we implemented 10-fold cross validation method [47] on a training set to
find the optimal configuration of the decision tree that leads to the minimum average cross-
validation error.

Naive Bayes is a probabilistic classifier that implements Bayes’ theorem with the
assumption that all the features are independent. However, Pedro ef al. [48] found that even in
the situation where features are dependent, Naive Bayes can have a better classification
performance. Suppose we have a new instance x with n features x =(4,,4,,-:+,4,), the

predicted class C is defined as

C(x)=arg max, g p(C, )H px; |C,) 4)
=1

AdaBoost is an ensemble learning classifier that combines weak learners and assigns
weights to training instances and weak learners #4,, t =1.---T , where T is the total number of

learners. The algorithm assigns higher weights to most likely misclassified cases [49]. In this
study, we choose stump trees as our weak learners. In the first iteration, the algorithm gives
equal weight D to all the training instances (x;,,)---(x,,»,) where y, belongs to class C;:

Dl(i)zé, for i=1,--,8 (©)

The weight for a weak classifier #, is defined as

a, =lh{1‘€fj, ™
2 &

t

where &, is the classification error at iteration ¢ . The updated weight at iteration ¢+1 is
defined as

Dz (l) exp(—a,y,.h[ ()C[ ))

D[+1 (l) = (8)
Zt
where z, is the normalization factor. The output of the final hypothesis is
T
H(x)= sign[z oh, (x)] ©)
t=1

We also implemented 10-fold cross validation on training set to find the optimal number
of iterations that leads to the minimal average cross validation error.

Random Forest is an ensemble of classifiers that creates a group of decision trees from
the original data by bootstrapping and then randomly choosing features to build the trees [50].
Because of its randomness, random forest is robust to outliers and overfitting problems. The
algorithm classifies in instance by a majority vote across all the classification outputs of the
individual decision trees [50,51].

To determine the optimal number of features and trees, we examined the “Out-of-Bag”
(OOB) error as a measurement of classification performance. Figure 5 illustrates the
calculation process. OOB error is the average error of all the instances in the data set while
each instance error is the average error of all the trees that do not select the instance.
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Mathematically, for each tree /,, we denote the portion of the training set that contributes to

OOB as T°% [52] and there are (T —T,°°*), trees that do not use observation x, . The OOB
error is defined as

T A
OO0B(x;) = (1/ (T =T)) Y [h )L (v %) € TO%) = f,(x)], (10)
t=1
where £, (x,) is the prediction of #,(x;) from the 4, tree and (-) is the indicator function.
We select the optimal combination of the number of features selected at each split (n,)

and the number of trees (7') that will determine the minimum OOB error.

Tree 1 Tree 2 Tree 3 Tree T
- G @ () - G
e () (0 G - (o
s @ ) (] . @ DZE Em
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Fig. 5. An illustration of the OOB error calculation. OOB error is the average of all the
instance errors. Each instance error is the average error of trees that do not select the instance.

To determine the most relevant feature when choosing a split for the random forest, we
used the Gini index defined as:

Gini(node) =" p,(1- p,), (11)
i=1
where p, =2 and s, is the number of samples in class C; at that corresponding node that
s
has s samples in total.
3. Results

We present and compare the classification results using different split ratios in Section 3.1,
compare the classification results using different classifiers within the same image modality
in Section 3.2 and across modalities in Section 3.3, and analyze the importance of the image
features in Section 3.4.

3.1 Classification results using different split ratios

For each combination of training-testing split ratio and type of classifiers, we repeated the
process of shuffling and splitting the data 30 times. Tables 2, 3 and 4 show the mean
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accuracy, sensitivity and specificity under the 95% confidence interval in the hyper-spectral
image testing set, respectively.

Table 2. Mean accuracy of different split ratios in the hyper-spectral image test data

80% - 20%

70%-30%

60%-40%

50%-50%

Random Forest 95.05% £ 0.34% 94.73% + 0.21% 94.58% + 0.23% 94.26% + 0.21%
Decision Tree 88.59% + 0.49% 88.06% = 0.47% 88.72% £+ 0.37% 88.03% =+ 0.55%
Naive Bayes 79.69% + 0.61% 79.77% £ 0.4% 79.70% = 0.34% 79.77% £ 0.3%

AdaBoost 92.79% =+ 0.46% 92.3% £ 0.41% 92.53% +0.32 92.43% + 0.35%

Table 3. Mean sensitivity of different split ratios in the hyper-spectral image test Data

80% - 20%

70%-30%

60%-40%

50%-50%

Random Forest 94.87% =+ 0.35% 93.96 + 0.36 93.88 +£0.40 93.42+0.41
Decision Tree 87.19% + 0.81% 85.98 +£1.08 86.78 £ 0.94 85.37£1.28
Naive Bayes 78.53% + 0.96% 78.35+0.62 78.36 +0.75 78.21+£0.45
AdaBoost 91.31% £ 0.77% 90.44 + 0.61 90.77 £ 0.45 90.91 +£0.53

Table 4. Mean specificity of different split ratios in the hyper-spectral image test Data

80% - 20%

70%-30%

60%-40%

50%-50%

Random Forest 95.24% + 0.54% 95.48% £ 0.3% 95.26% = 0.33% 95.08% = 0.22%
Decision Tree 89.95% + 0.73% 90.09% =+ 0.85% 90.60% = 0.57% 90.62% =+ 0.86%
Naive Bayes 80.82% =+ 0.95% 81.14% + 0.64% 80.99% =+ 0.55% 81.30% £ 0.42%
AdaBoost 94.23% £ 0.58% 94.10% + 0.5% 94.24% + 0.42% 93.91% + 0.41%

We notice that all four classifiers achieved the highest mean sensitivity (Table 3) for
classifying drusen regions under the split ratio 80%-20%. Random forest and AdaBoost also
have the highest mean accuracy with the split ratio 80%-20% (Table 2). We further
implemented Welch’s #-test to statistically determine whether the difference of the mean
sensitivity between 80%-20% with other split ratios is significant (Table 5).

Table 5. P-values of Welch’s #-test when comparing the mean sensitivity between the
80%-20% split ratio with other split ratios (hyper-spectral image)

80%-20%

70%-30% 60%-40% 50%-50%

Random Forest 0.0005299 0.0003899 1.25e-06
Decision Tree 0.07282 0.5029 0.01769
Naive Bayes 0.7568 0.7868 0.5437
AdaBoost 0.07719 0.2243 0.3894

From Table 5, we can conclude that when we use random forest algorithm in hyper-
spectral image data, there is a significant difference of the mean sensitivity between the 80%-
20% split ratio with other split ratios. Random forest algorithm can achieve the highest mean
sensitivity with 80%-20% ratio. When we use decision tree algorithm, there is a different of
mean sensitivity between 80%-20% and 50%-50%. However, there is no difference of mean
sensitivity between different split ratios for other combinations.

We repeated the same classification process for RGB image data. Tables 6, 7 and 8 show
the mean accuracy, sensitivity and specificity respectively under the 95% confidence interval
when using the RGB image.

Table 6. Mean accuracy of different split ratios in the RGB image test data

80% - 20% 70%-30% 60%-40% 50%-50%
Random Forest 87.91% = 0.44% 87.50% £ 0.33% 87.04% + 0.23% 87.14% £ 0.26%
Decision Tree 84.05% £ 0.47% 83.79% £ 0.37% 83.40% = 0.29% 83.47% + 0.42%
Naive Bayes 67.12% = 0.76% 67.24% £ 0.52% 67.16% = 0.60% 68.23% +0.71%
AdaBoost 88.25% =+ 0.49% 87.78% £ 0.36% 87.32% + 0.23% 87.26% =+ 0.26%
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Table 7. Mean sensitivity of different split ratios in the RGB image test data

80% - 20%

70%-30%

60%-40%

50%-50%

Random Forest

87.20% =+ 0.54%

86.63% = 0.58%

86.33% = 0.57%

86.12% =+ 0.64%

Decision Tree

82.82% + 0.96%

82.97% =+ 0.80%

82.64% + 1.15%

81.16% =+ 1.20%

Naive Bayes

50.57% = 1.41%

50.21% + 1.02%

50.49% + 1.03%

51.86% £ 1.10%

AdaBoost

87.63% =+ 0.58%

86.85% =+ 0.56%

86.63% + 0.46%

86.56% =+ 0.62%

Table 8. Mean specificity o

f different split ratios in the RGB image test

data

80% - 20%

70%-30%

60%-40%

50%-50%

Random Forest

88.61% £ 0.64%

88.34% £ 0.52%

87.73% + 0.49%

88.14% £ 0.57%

Decision Tree

85.24% £ 1.04%

84.57% £ 0.62%

84.15% £ 1.23%

85.71% + 1.08%

Naive Bayes

83.17% £ 0.78%

83.75% £ 0.65%

83.31% £ 0.61%

84.09% £ 0.72%

AdaBoost

88.84% £ 0.70%

88.69% + 0.57%

87.99% + 0.48%

87.94% + 0.52%

From Table 6, we can see that random forest, decision tree and AdaBoost achieved the
highest mean accuracy with the split ratio 80%-20%. When considering mean sensitivity and
mean specificity, random forest and AdaBoost also performed the best with the split ratio
80%-20% (Tables 7 and 8). Similarly, we implemented Welch’s t-test to statistically
determine whether the difference of the mean accuracy between 80%-20% with other split
ratios is significant (Table 9).

Table 9. P-values of Welch’s 7-test when comparing the mean accuracy between the 80%-
20% split ratio with other split ratios (RGB image)

70%-30% 60%-40% 50%-50%
Random Forest 0.1306 0.0008286 0.003449
Decision Tree 0.3723 0.02169 0.06518
0/ ()0
80%-20% Naive Bayes 0.8015 0.9444 0.03347
AdaBoost 0.1232 0.001051 0.0007104

From Table 9, we can see that in RGB image, there is no significant difference of mean
accuracy between 80%-20% and 70%-30% for both classifiers under the 95% confidence
interval. However, for random forest and AdaBoost classifiers, the difference of mean
accuracy between the split ratio 80%-20% and 60%-40% and the difference between 80%-
20% and 50%-50% are significant. This result indicates that we can choose either 80%-20%
or 70%-30% as the spit ratio for RGB image data.

3.2 Classification results using different classifiers

Based on the split ratio results, we analyzed the classification performance across the four
classifiers using the 80%-20% as the split ratio. Table 10 summarizes the results across
classifiers using a 80%-20% ratio and shows that the random forest classifier achieved the
highest accuracy, sensitivity and specificity for the hyper-spectral image data set based on the
Welch’s t-test at significance level of 0.05.

Table 10. Classification performance for hyper-spectral image data set; the numbers

between parentheses represent P-values of Welch’s #-test when comparing random forest
with the other classifiers

Accuracy Sensitivity Specificity

Random Forest 95.05% =+ 0.34% 94.87% £ 0.35% 95.24% =+ 0.54%

Decision Tree 88.59% + 0.49% 87.19% + 0.81% 89.95% £ 0.73%
(<2.2e-16) (<2.2e-16) (<2.2e-16)

Naive Bayes 79.69% + 0.61% 78.53% + 0.96% 80.82% = 0.95%
(<2.2e-16) (<2.2e-16) (<2.2e-16)

AdaBoost 92.79% + 0.46% 91.31% £+ 0.77% 94.23% + 0.58%
(9.35e-11) (1.173e-10) (0.01189)
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Table 11 summarizes the results across classifiers using an 80%-20% ratio and although it
shows that the AdaBoost classifier achieved the highest accuracy, sensitivity and specificity
for the RGB image data set, the Welch’s ¢-test showed no statistically significant difference
between AdaBoost and random forest at significance level of 0.05. This result indicates that
for RGB image data, we can also choose random forest as the classifier. Figure 6 shows the
optimal random forests parameter values for both the RGB and hyperspectral image data.

Table 11. Classification performance on the RGB image data set; the numbers between
parentheses represent P-values of Welch’s 7-test when comparing AdaBoost with the
other classifiers

Accuracy Sensitivity Specificity
Random Forest 87.91% 7.91m % 87.20% 7.20m % 88.61% 8.611%
(0.304) (0.2671) (0.6167)
Decision Tree 84.05% £ 0.47% 82.82% = 0.96% 85.24% + 1.04%
(<2.2e-16) (1.573e-11) (3.2e-07)
Naive Bayes 67.12% + 0.76% 50.57% + 1.41% 83.17% + 0.78%
(<2.2e-16) (<2.2e-16) (8.039¢-16)
AdaBoost 88.25% = 0.49% 87.63 % + 0.58% 88.84% =+ 0.70%
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Fig. 6. The optimal parameters of random forest algorithm. (A and B) The number of features
selected at each split is 7 when the number of trees is 212 on hyper-spectral image data; (C and
D) The number of features selected at each split is 15 when the number of trees is 427 on RGB
image data

3.3 Classification results comparing the hyper-spectral and RGB images

Furthermore, to determine whether there are significant statistical differences between the
RGB and hyperspectral random forest classification results in Tables 10 and 11, we
performed Welch’s #-test (Table 12). The results indicate that the differences across all three
performance metrics (accuracy, sensitivity, specificity) are significant and therefore, we can
conclude that hyper-spectral images perform significantly better than RGB images for drusen
ROIs identification.

Table 12. P-values of Welch’s ¢-test for random forest classification performance
comparison between hyper-spectral and RGB image

RGB Data
p-values Accuracy Sensitivity Specificity
Hyper-spectral Data <2.2e-16 <2.2e-16 <2.2e-16
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3.4 Low-level image feature importance analysis

We further investigated the random forest classification performance by the type of features.
We focus the analysis of the results on the hyper-spectral image data given the higher
performance for drusen classification. Table 13 compares the classification results when using
intensity-based features, texture-based features, and a combination of intensity and texture
features. The results show that the highest performance is obtained using a combination of
texture and intensity features, followed in performance by the texture features. The mean
differences for all accuracy, sensitivity, and specificity values are all significant based on the
Welch’s t-test (Tables 13 and 14).

Table 13. Random forest classification result in hyper-spectral testing data using
different feature sets

Accuracy Sensitivity Specificity

Intensity Features 90.53% + 0.21% 89.92% + 0.40% 91.12% + 0.31%
(<2.2e-16) (<2.2e-16) (<2.2e-16)

Texture Features 92.39% + 0.19% 90.83% + 0.47% 93.92% + 0.28%
(<2.2e-16) (<2.2e-16) 6.063e-05

Combined Features 95.05% + 0.34% 94.87% + 0.35% 95.24% + 0.54%

Table 14. P-values of Welch’s ¢-test when comparing classification performance using
intensity features vs texture features

Texture Features
Sensitivity
0.003531

p-values
Intensity Features

Accuracy
<2.2e-16

Specificity
0.003531

To understand the relevance of the individual low-level image features that distinguished
drusen ROI from non-drusen ROI, we used the Gini index criterion (Eq. (11) to rank the
feature importance when building the random forest on all features (both texture and
intensity). Figure 7 shows the most important low-level image features with the ‘inverse
difference moment”, a feature describing the local homogeneity in a region, being the most
important (it has the largest value for the mean decrease in the Gini index).

As a result, we analyzed the differences in the inverse difference moment features for the
drusen versus non-drusen ROIs. Based on the definition of the feature, a low inverse
difference moment value indicates the image is heterogeneous while a higher value indicates
the region is more homogeneous. Figure 8 shows that, on average, drusen images are more
heterogeneous confirmed by the statistically significant Welch #-test at a p-value smaller than
2.2e-16.
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Fig. 7. Mean decrease in Gini Index of each feature. Inverse difference moment is the most
important feature since it has the highest mean decrease in Gini Index.
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Fig. 8. The distribution of inverse difference moment. Drusen images have relatively low
inverse difference moment, which indicate that drusen images are more heterogeneous.

4. Discussion

Our results demonstrate that hyper-spectral images can be superior to RGB images when used
in the diagnosis of AMD-related disease process. Among four different classifiers, two base
classifiers and two ensembles of classifiers, the random forest achieved the best classification
performance for the hyper-spectral image data set and had a similar classification
performance to the AdaBoost for the RGB data. When comparing the hyper-spectral data with
the RGB data, we learned that the hyper-spectral data is characterized by certain texture
properties that quantify better the differences between drusen and non-drusen. In particular,
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we determined mathematically that the texture heterogeneity is an important local image
characteristic that has higher values for the drusen images.

Furthermore, when comparing the random forest classifiers for the hyper-spectral images
and the RGB images (Fig. 6), we found that the classification model for the RGB data needed
a higher number of features (15) per split and more trees (427) to achieve the optimal
combination of parameters than hyper-spectral images that required only 7 features and 212
trees. These findings indicate that classification models for the hyper-spectral data are not
only superior in performance but also have a lower complexity with only few image
characteristics needed to distinguish between drusen and non-drusen.

In the context of previous studies, our work validates and extends the work by Prasath and
Ramya [37] that showed that thresholding certain texture features can help segment drusen
regions in RGB images. By using a robust Haralick set of features (averaged across different
displacements and angles) and a machine learning algorithm, we determined the most
important texture features and their combinations with intensity features for drusen diagnosis.
Finally, instead of using only the green channel as in [37] and [53] where local binary
patterns (LBP) features computed in green channel where reported to be the most important
features in distinguishing drusen from non-drusen images, we showed that hyper-spectral
imaging has the potential to provide the optimal combination of texture and intensity features
for drusen ROIs characterization.

5. Conclusions

Using hyper-spectral retinal images containing 16 different wavelength channels generated by
a compact, snapshot hyper-spectral fundus camera [8], we showed the potential advantages of
hyper-spectral imaging for retinal disease diagnosis. We discovered that drusen ROIs are
more heterogeneous than the surrounding retinal tissue, a property that can be quantified
mathematically through one of the Haralick texture feature, the inverse difference moment.

As future work, we plan to investigate the effect of the location and size of drusen on the
classification. For example, can we answer questions like ‘Is there any difference between
drusen centrally located and those near the arcades using texture descriptors’? Augmenting
the approach presented in this paper with a patch-based segmentation approach as proposed in
[54] will allow the extension of this work to automatic segmentation of ROIs and eliminate
the need for manual cropping. This would then allow us to perform automatic drusen
classification as well as detection.

Furthermore, newer techniques such as deep learning have been recently explored in
retinal imaging [38,39] and resulted in promising results. Since these deep learning
approaches require large image training sets, we plan to acquire a larger hyper-spectral image
data set and compare the performance of the feature-based random forest classifier with the
deep learning classification approaches.
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Appendix
Table 15. Haralick's Texture Features Employed in the Study
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