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Abstract: The lens equivalent refractive index (RI) is commonly used in calculations of 
crystalline lens power. However, accurate determination of the equivalent RI in vivo is 
challenging due to the need of multiple measurements with different ocular biometry devices. 
A custom extended-depth Spectral Domain-OCT system was utilized to provide 
measurements of corneal and lens surface curvatures and all intraocular distances required for 
determination of the lens equivalent RI. Ocular biometry and refraction were input into a 
computational model eye from which the equivalent RI was calculated. Results derived from 
human subjects of a wide age range show a decrease in RI with age and demonstrate the 
capability of in vivo measurements of the equivalent RI with extended-depth OCT. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The eye undergoes continuous growth from birth to adulthood yet refraction remains 
relatively stable [1]. Since refraction is governed by the optics and geometry of the cornea, 
lens, and eye length, changes in the cornea and lens must compensate for those resulting from 
a change in the eye length. Considering the cornea stabilizes 2-3 years after birth [2], 
refractive changes due to the axial eye growth should be balanced mainly by changes in the 
lens. Interest in the contribution of the lens to refractive development has led to in vitro [3–5] 
and in vivo [6–11] experiments to measure human crystalline lens power and its age-
dependence. 

One method to estimate crystalline lens power uses thick lens formulae, which require the 
thickness, shape, and the refractive index of a lens. The thickness and shape of the crystalline 
lens may be measured in vivo or in vitro, but an artificial value for the refractive index must 
be used in the calculation since the lens has a gradient refractive index. The power is 
generally calculated using a lens equivalent refractive index, representing the homogeneous 
refractive index of a hypothetical lens with the same shape as the actual crystalline lens and 
power equivalent to the actual lens with its gradient refractive index. The equivalent 
refractive index can be inputted with lens thickness and shape into thick lens formulae to 
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calculate lens power [9,10]. Consequently, accurate equivalent refractive indices are needed 
for accurate determination of lens power. 

However, values for the lens equivalent refractive index vary significantly in the literature 
from 1.406 [12] to 1.444 [11] at age 20 and from 1.406 [12] to 1.426 [4] at age 80. Studies 
also disagree on whether the lens equivalent refractive index changes with age, either 
showing a decrease [3,9,11,13–16] or no change with age [4,12]. This uncertainty on the 
value and age-dependence of the equivalent refractive index causes a large uncertainty in lens 
power and its changes with age. A change of only 0.002 in the lens equivalent refractive 
index can lead to a 0.5 D shift in lens power (assuming the Dubbelman eye model for a 35 
year old relaxed lens [14,17]). 

There are challenges in acquiring accurate measurements of the equivalent index. For 
instance, precise measurements of the lens curvature are needed in both in vitro [3,4,12,15,16] 
and in vivo [9,11,13,14,17–26] experiments. Additionally, in in vitro experiments, extracted 
lenses can also undergo changes from their in vivo state, particularly swelling over time [27], 
which can affect the shape and thickness of the lens as well as its equivalent index. For in 
vivo studies, biometry of ocular surfaces is input into a computational model eye from which 
the equivalent refractive index is solved, so the difficulty lies in obtaining accurate values of 
these biometric parameters. Studies up to date have either estimated ocular distances and 
curvatures [18,24] or have combined data from multiple instruments and imaging techniques, 
including Scheimpflug [11,14,17,19], phakometry [9,13,20,22,23], and ultrasound 
biomicroscopy [9,11,13,22,23]. The inclusion of estimated ocular distances and curvatures in 
the computational eye model reduces the accuracy of the predicted equivalent refractive 
index, while the use of multiple instruments increases measurement uncertainty given 
differences in instrument precision and potential differences in patient alignment and 
centration between instruments. 

In this paper, we demonstrate in vivo determination of the lens equivalent refractive index 
using a single biometry device combined with measurements of ocular refraction.We utilize a 
custom-built extended-depth Optical Coherence Tomography (OCT) system which provides 
in a single acquisition 2-D images extending from the cornea to the retina. From these 
images, intraocular distances and cornea and lens surface curvatures can be obtained. 

2. Methods 

2.1 Study design 

The study was performed in accordance with the tenets of the Declaration of Helsinki at the 
University of Miami Miller School of Medicine after approval by the University Institutional 
Review Board. Consent was obtained for all participants. 55 eyes of 33 subjects (age: 42 ± 16 
y/o, range 21 to 71 y/o) with no history of ocular disease were imaged. Spherical equivalent 
(SEQ) ranged from −9.38 to + 0.75 D with an average of −2.46 ± 2.15 D. 

2.2 Extended-depth OCT imaging 

A custom-built extended-depth OCT system previously described [28] with 8 μm axial 
resolution (in air), axial range of 10.5 mm (in air), and central wavelength of 840 nm was 
used in whole-eye imaging. The extended-depth system is combined with an accommodation 
module which can provide fixed or step monocular stimuli through the use of two Badal 
optometers located in separate channels but optically aligned to prevent convergence when 
switching between channels [28]. Stimuli in both channels consisted of a cross with spatial 
frequency 6.25 cycles per degree and size 5 x 5 mm. Luminance was approximately the same 
in the two channels: 4.70 candela/m2 in the channel set to proximity and 5.35 candela/m2 in 
the channel set to distance. 

At the start of the imaging session, subjects were asked to position themselves in front of 
the OCT system on a chin rest while stabilized by a contour head frame. Subjects were 
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instructed to blink freely between measurements. The stimulus was set to subjects’ far point 
by moving the stimulus in the accommodation module towards the subject until the stimulus 
was in focus. To ensure alignment of the OCT system along the optical axis of the eye, the 
angle of the beam delivery system was rotated while visualizing real-time images of subjects’ 
eyes until the iris plane was seen to be horizontal in the images. Subjects were asked to fixate 
on the stimulus and subsequently a sequence of ten 2-D extended-depth images were acquired 
while subjects were in a relaxed state. Images were acquired with 400 A-lines over 8 mm 
along the horizontal meridian at 12,500 A-lines/s, corresponding to 8.7 frames per second. 
Subjects were imaged without any corrective lenses, including glasses or contact lenses. 

2.3 Determination of lens equivalent refractive index 

Subjects’ lens equivalent refractive indices were determined based on the algorithm reported 
in Fig. 1. Input parameters of the algorithm included optical distances measured along the A-
line passing through the apex of the cornea and curvatures of the corneal and lens surfaces 
extracted from the uncorrected OCT images. Curvatures were obtained by performing a conic 
fit over the central 5 mm of the surfaces segmented using an automated segmentation 
algorithm [29] (Fig. 2). In subjects with pupil diameters smaller than 5 mm, lens surfaces 
were fit over the remaining visible central portion of the lens. 

Equivalent refractive index values were tested in steps of 0.001 over the range from 1.350 
to 1.500, which was selected to exceed the range spanned by values reported in literature 
[3,4,9,11–26]. The group refractive index of the lens was calculated from the equivalent index 
using the same approach as in Uhlhorn et al [30], since the group index was required to 
correct for OCT image distortions. We used lens dispersion data from Atchison and Smith 
[31] and scaled for wavelength by assuming a constant ratio between the group refractive and 
equivalent indices. The sodium D-line at 589 nm was used as a reference for the equivalent 
refractive index. The group refractive index was calculated at 840 nm, the center wavelength 
of the OCT light source. 

Intraocular distances between boundaries were corrected for optical path length by 
dividing the optical distances measured along the A-line passing through the apex of the 
cornea with the group refractive indices of the corresponding ocular media at 840 nm 
(nCORNEA = 1.387 [30], nAQUEOUS = 1.341 [31], nLENS = calculated value from first step of the 
algorithm, and nVITREOUS = 1.341 [31]). Radii of curvature for the anterior and posterior lens 
and corneal surfaces were corrected for distortion due to refraction of the OCT beam at the 
ocular surfaces and through the ocular media. 

These calculations generated a model for the subject’s eye from which the spherical 
equivalent refractive state was estimated by performing backwards paraxial ray trace. The 
refractive indices of the ocular media at the sodium D-line (1.376 for the cornea, 1.336 for the 
aqueous and vitreous humor, and the current equivalent refractive index value for the lens) 
were used for this backward ray-trace. Finally, the error between the estimated and measured 
spherical equivalent refraction was calculated. After stepping through all equivalent refractive 
index values, the value producing the minimum error between subjects’ measured and 
estimated refraction was selected. 

This procedure was repeated for each of the 10 extended-depth images taken for a single 
subject eye along the horizontal meridian. The lens equivalent refractive indices were 
averaged after automatic removal of extreme outliers among the indices derived from the 10 
images. Outliers primarily occurred when there were large changes in corneal or lens 
curvature between frames due to a drop in image quality, preventing accurate segmentation 
and subsequent quantification of curvature. To remove outliers, images with curvature 
measurements lying outside of ± 0.5, 0.5, 2, and 2 mm from the mean for the anterior corneal, 
posterior corneal, anterior lens, and posterior lens curvature measurements, respectively, were 
first discarded to remove extreme values. The standard deviation and mean of the curvatures 
from the remaining images were calculated, and images with curvature measurements lying 
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Fig. 3. Example of biometry used to define a model eye for calculation of equivalent refractive 
indices in a 22 y/o subject. Calculation of equivalent refractive indices was repeated over ten 
extended-depth images resulting in ten values, which were averaged together to determine a 
final value. Abbreviations- CCT: Central Corneal Thickness, ACD: Anterior Chamber Depth, 
LT: Lens Thickness, VCD: Vitreous Chamber Depth, ACR: Anterior Corneal Radius of 
Curvature, PCR: Posterior Corneal Radius of Curvature, ALR: Anterior Lens Radius of 
Curvature, PLR: Posterior Lens Radius of Curvature 

Table 1. Intra-Session Repeatability of Biometry (33 subjects, 10 frames each) 

Biometry [mean, range] (µm) Radius of Curvature [mean, range] (mm) 

CCT 4, 1-18 ACR 0.104, 0.040-0.257 

ACD 13, 5- 27 PCR 0.110, 0.033-0.240 

LT 19, 8-41 ALR 0.657, 0.233-1.220 

VCD 13, 5-40 PLR 0.399, 0.067-1.173 

Intra-session variability is the standard deviation of measurements over the ten frames averaged over 
all subjects. 

Table 2. Inter-Session Repeatability of Biometry (1 subject, 5 visits) 

Biometry [mean] (µm) Radius of Curvature [mean] (mm) 

CCT 2 ACR 0.167

ACD 12 PCR 0.051

LT 24 ALR 0.473

VCD 5 PLR 0.167

Inter-session variability is the standard deviation of measurements over five visits for a single subject 
eye. 

3.2 Age dependence of biometry of the anterior segment 

Subject biometry, power, and refractive index results are detailed in Data File 1. Data for 7 
eyes from 7 subjects were removed due to low image quality or small pupil size which 
prevented reliable quantification of lens curvature. As expected, lens thickness increased (LT 
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= 0.029 mm/yr * Age + 2.867 mm; p < 0.001) and anterior chamber depth (ACD = −0.014 
mm/yr *Age + 3.467 mm; p = 0.003) decreased significantly with age, whereas vitreous 
chamber depth (p = 0.134) and central corneal thickness (p = 0.065) were constant (Fig. 4). 
As shown in Fig. 5, anterior and posterior corneal radii of curvatures did not change with age 
(p = 0.691, and 0.174, respectively), whereas the radii of curvatures of the anterior and 
posterior lens decreased in magnitude with age (ALR = −0.072 mm/yr * Age + 11.965 mm, p 
= 0.007; PLR = 0.020 mm/yr * Age - 6.615 mm, p = 0.017). 

3.3 Calculation of lens equivalent refractive index 

Example of calculation of the lens equivalent refractive index from a single subject eye are 
shown in Fig. 6. Error between estimated and measured refractions varied in a largely linear 
fashion in the range of refractive indices from 1.350 to 1.500 which were used. Variability of 
the lens equivalent refractive indices calculated across the ten images was minimal with an 
average standard deviation across subjects of 0.009. 

3.4 Age dependence of the lens equivalent refractive index 

As shown in Fig. 7(A), the lens equivalent refractive index decreased significantly with age 
(neq = −0.0007 yr−1 * Age + 1.4483; p < 0.001). The 95% Confidence Interval for the slope 
was −0.0010 to −0.0005 yr−1. Refractive indices were then used to calculate lens power using 
the thick lens formula, revealing a decreasing relationship in lens power with age (Lens 
power = −0.07 D/yr * Age + 25.86 D; p = 0.017). 

Fig. 4. CCT (A), ACD (B), LT (C), and VCD (D) were plotted versus age for all subjects. LT 
(LT = 0.029 mm/yr * Age + 2.867 mm; p < 0.001) and ACD (ACD = −0.014 mm/yr *Age + 
3.4667 mm ; p = 0.003) showed a significant increase and decrease, respectively, with age, 
whereas VCD (p = 0.134) and CCT (p = 0.065) did not show a relation with age. 
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It should be noted that this approach to determine the equivalent refractive index of the 
lens has several limitations. The estimation of subjects' refractive errors relies on paraxial 
formulas, which assume the absence of higher order aberrations. Also, the approach performs 
distortion correction of the posterior lens surface assuming a homogenous lens with an 
equivalent refractive index. Distortion correction proceeds by back-solving from the path of 
rays in the image plane as given by Snell's Law. Since the lens in actuality has a gradient 
refractive index, distortion correction based on a homogenous media may not recover the true 
path of rays through the media. Although differences in ray path may lead to inaccuracies in 
correction, error analyses on ex vivo lenses have shown no significant difference in the radius 
of curvature in the central paraxial optical zone whether the uniform refractive index or a 
gradient refractive index is used for correction [32]. Similarly, the approach assumes lens 
dispersion remains constant with age. The lens dispersion curve is used when converting the 
lens group refractive index to equivalent refractive index and scaling the equivalent refractive 
index from 840 to 580 nm. Since the dispersion of most ocular media is dominated by the 
dispersion of water [33], structural changes in the lens could potentially result in changes to 
lens dispersion. However, significant changes are not likely given that the water content of 
the lens changes less than 5% over adulthood [34]. Any age-related difference in lens 
dispersion would further be mitigated by the small thickness of the lens (typically ~3-4 mm in 
adults) in comparison to the distances of other ocular media. Finally, the approach assumes 
constant refractive indices for the cornea, aqueous humor, and vitreous humor across age and 
individuals. While age-related and inter-individual differences in the refractive indices of 
ocular media besides the lens are not well understood, these changes are likely small. Even if 
refractive indices for the cornea, aqueous humor, or vitreous humor were to differ by 0.010, 
errors in calculated equivalent indices would only come out to 0.001, 0.006, and 0.009, 
respectively. 

Interestingly, the approach also demonstrated that estimated refraction changes linearly 
with different lens equivalent refractive index values when probing values close to 
physiological relevance (Fig. 5). Such an observation is not readily apparent given the 
nonlinearity of operations associated with paraxial raytracing in model eyes, including 
performing distortion correction of ocular surfaces. Indeed, over a broader range of refractive 
index values, the relationship between refractive index and estimated refraction is nonlinear, 
but for practical purposes, where determination of the human lens equivalent refractive index 
is concerned, calculating the optimal refractive index only requires interpolation after 
estimating refraction for a pair of proposed refractive index values. In this paper, considering 
the low computational cost of repeated calculations and lack of a priori knowledge of the 
relationship between lens equivalent refractive index values and estimated refraction, we 
continued using an approach where the optimal lens equivalent refractive index was 
determined after trying all values within 1.350 and 1.500 in 0.001 increments. 

Other limitations in the present study include the use of 2-D cross-sectional images for 
biometry. The image plane was carefully aligned to ensure acquisition at the horizontal plane 
bisecting the corneal apex for accurate representation of the dimensions of the eye. Slight 
deviations from the plane containing the apex would result in minimal changes in 
measurements as previous error analyses have shown [35]. Indeed, measurements derived 
from the 2-D images demonstrated good reliability as evidenced by the low intra- and inter-
session variabilities shown in Tables 1 and 2. The use of 2-D images from a horizontal plane 
may also result in curvature measurements determined from a different axis than that at which 
objective refraction was acquired. Refraction of subjects may differ on the horizontal plane, 
or likewise, curvature may differ along the axis at which refraction was obtained. These 
differences would be especially pronounced in astigmatic subjects, which would introduce 
errors in the backwards ray trace and subsequently errors in equivalent index calculation. 
However, differences due to measurements along different axes are not expected to be 
significant on a subject population with low astigmatism and no history of ocular disease. 
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Finally, subjects were imaged without cycloplegia and were assumed to be in an 
unaccommodated state during imaging. In cases of residual accommodation, higher measured 
values in the magnitude of lens surface curvatures would be obtained, leading to lower values 
of the lens equivalent refractive index. Residual accommodation may explain the somewhat 
low equivalent refractive indices found in a few of the younger subjects, particularly the 26 
year old with an index of 1.395 (and coincidentally a low anterior lens radius of 6.144 mm 
not unlike in an accommodated lens). Such a bias would cause a smaller decrease in the lens 
equivalent refractive index with age assuming residual accommodation would be more 
prevalent in younger rather than older subjects closer to presbyopia. Ideally, refraction should 
be acquired during OCT imaging to confirm the refractive state of subjects. 

In this study, the lens equivalent refractive index was successfully determined from 
extended-depth images obtained through in vivo imaging with a custom extended-depth OCT 
system. A decrease in lens equivalent refractive index with age was found confirming past 
literature. In comparison with other in vivo techniques, use of extended-depth OCT 
significantly facilitates measurement of the lens properties by providing all biometric 
measurements required to calculate lens shape and its equivalent refractive index from one 
image with a single device. 
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