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Abstract: Endoscopic optical coherence tomography (OCT) devices are capable of generating
high-resolution images of esophageal structures at high speed. To make the obtained data easy to
interpret and reveal the clinical significance, an automatic segmentation algorithm is needed. This
work proposes a fast algorithm combining sparse Bayesian learning and graph search (termed as
SBGS) to automatically identify six layer boundaries on esophageal OCT images. The SBGS
first extracts features, including multi-scale gradients, averages and Gabor wavelet coefficients,
to train the sparse Bayesian classifier, which is used to generate probability maps indicating
boundary positions. Given these probability maps, the graph search method is employed to create
the final continuous smooth boundaries. The segmentation performance of the proposed SBGS
algorithm was verified by esophageal OCT images from healthy guinea pigs and the eosinophilic
esophagitis (EoE) models. Experiments confirmed that the SBGS method is able to implement
robust esophageal segmentation for all the tested cases. In addition, benefiting from the sparse
model of SBGS, the segmentation efficiency is significantly improved compared to other widely
used techniques.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) as a powerful medical imaging technique can generate
high-resolution cross-section images of biological tissues non-invasively [1]. Initial applications
of OCT were mainly in ophthalmology and have achieved numerous success in retinal disease
diagnosis [2–4]. By combining fiber-optic flexible endoscopes, OCT is able to enter the upper
gastrointestinal tract [5, 6]. In that case, it can image the microscopic structure of the esophagus,
which helps to diagnose a variety of esophageal diseases, such as Barrett’s esophagus (BE) [7, 8],
eosinophilic esophagitis (EoE) [9], and dysplasia [10]. Esophageal diseases are identified from
OCT images by observing abnormalities in tissue microstructures, such as changes in layer
thickness or disruption to the layers. For instance, BE has an irregular mucosal surface and may
present an absence of the layered architecture [7]; EoE is often featured with increased basal
zone thickness [9]. Finding these diseased characteristics by observing or manual segmentation
is time-consuming and requires specific domain knowledge. As a result, a computer-aided layer
segmentation method is urgently needed, as employed in ophthalmology [11, 12].
Representative segmentation techniques for OCT images can be grouped into two main

categories. The first group is based on mathematical models. Methods of this kind build
a mathematical model based on apriori assumptions of the input image structure and locate
boundaries by optimizing the model. Typical methods in this class include the A-scan based
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methods [2, 3, 13], the active contour [4, 14–17] and graph based methods [18–22]. The second
category is machine learning based methods. Such methods formulate the segmentation into a
classification problem. Features reflecting layer structure characteristics are extracted for the
training, and boundaries of new images are located by pixel classifying using the trained model.
Following this process, Vermeer et al. used the Haar-like features and the Support Vector Machine
(SVM) to implement retinal segmentation [23]. Lang et al. employed the random forest (RF)
classifier and 27 features that provide spatial, local and context awareness to segment eight retinal
layers [24]. Recently, the newly developed deep learning technique, especially convolutional
neural networks attracts wide attentions in the field of medical image analysis and has achieved
great success in OCT image segmentation [25–28]. Different from traditional machine learning
techniques, deep learning is able to learn optimal features directly from the training data and
achieves higher classification accuracy [29]. However, deep learning based segmentation relies
on a large number of annotated data and suffers from high computational burdens [25].
Most existing reports on esophageal OCT image segmentation employed the model-based

approach. For example, Ughi used an A-scan based method to locate the esophageal wall
position [30]. Zhang et al. used the graph theory dynamic program (GTDP) to implement
five-layer segmentation [31]. On this basis, Gan et al. combined modified Canny edge detection
with GTDP to realize more accurate segmentation [32]. To the best of our knowledge, the GTDP
is the first effective framework to segment five esophageal layers [31]. However, some problems
limit its application. Firstly, GTDP requires tissues to have similar widths in the same layer
across the image, otherwise it will generate a fairly biased output. In other words, GTDP is
difficult to deal with the possible variations in esophageal tissues. Secondly, it takes about 6 to10
seconds to segment a single B-scan [31, 32], which is less efficient.

To solve these problems, this study proposes a sparse Bayesian graph search (SBGS)method that
combines sparse Bayesian classification [33,34] and the GTDP for esophageal layer segmentation.
Sparse Bayesian classification is a Bayesian extension of SVM [35] that trains classifiers under a
series of probability assumptions. It uses a prediction model similar to SVM, but with much
less "support vectors" resulting from a sparsity assumption, thus ensuring high classification
efficiency. Sparsity assumption is widely adopted in signal and image processing and has been
confirmed to be effective in OCT image analysis as discussed in the literature [36, 37]. Another
advantage of the sparse Bayesian classifier is that the probability output can be further optimized
to generate the final boundary. The proposed SBGS algorithm consists of the following steps.
Firstly, representative features were extracted to delineate esophageal layer structures. In detail,
this study utilizes the multi-scale gradients and averages [38] to describe intensity changes along
A-scan at different scales. Besides, the Gabor wavelet features [39] are also employed as a
supplementary description of boundary information in other directions. Given these features, a
sparse Bayesian classifier is trained to estimate the position of esophageal layer boundaries and
generate a probability map. Finally, a graph is constructed based on the probability map, which
is further optimized by the GTDP to get continuous smooth boundaries that segment different
tissue layers. Benefitting from sparse Bayesian classification and the GTDP, the proposed SBGS
method is able to achieve fast esophageal layer segmentation and will be robust in segmenting
OCT images with irregular tissue layers.
In summary, our main contribution is implementing a fast segmentation of esophageal OCT

images obtained from guinea pigs. More detailedly, this work contributes to extract features that
comprehensively describe esophageal tissue layers based on wavelet-related theories. Besides,
an efficient boundary identification scheme was designed using sparse Bayesian representation.
Finally, segmentation experiments on esophageal OCT images from guinea pigs were performed
to evaluate the generalization ability and clinical potential of proposed SBGS algorithm.
The rest of this study is organized as follows. Section 2 describes the details of the proposed

SBGS algorithm for esophageal layer segmentation. Section 3 presents experimental results on
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esophageal OCT images from guinea pigs. Discussions and conclusions are given in Sections 4
and 5, respectively.

2. Methods

The performance of our method is evaluated by segmenting endoscopic OCT images of guinea
pig esophagus. A typical OCT image is shown in Fig. 1. The tissue layers marked in the images
are the epithelium stratum corneum (SC), epithelium (EP), lamina propria (LP), muscularis
mucosae (MM) and submucosa (SM), which are defined by boundaries B1 to B6. Our SBGS

Fig. 1. A manual segmented esophageal OCT image from the guinea pig.

algorithm intends to locate B1 to B6 fast and robustly, thus accomplishing proper segmentation
of different tissue layers. The entire process is summarized in Fig. 2. Note that the algorithm
is composed of four units. The preprocessing unit regularizes the data to make it appropriate
for boundary identification. The second unit extracts features reflecting tissue structures. Given
these features, a sparse Bayesian classifier is achieved by the classifier training unit, which can
generate a probability map for the B-scan. Finally, the probability map is processed by the
boundary refinement unit to obtain smooth continuous boundaries. Details implementation about
these units are presented as follows.

2.1. Preprocessing

Several preprocessing steps were taken to make the data appropriate for classifier training,
including denoising, plastic sheath removal and flattening. Image denoising is achieved with a
simple median filter of size 7 × 7 considering its high efficiency and easy implementation. The
effectiveness of it in OCT images denoising has been confirmed by several researches [3, 25, 40].
The sheath removal and flattening process is specifically designed for esophageal OCT images
and is described below.

2.1.1. Plastic sheath removal

The plastic sheath is used to protect the probe from biofluid during the imaging process and is
recorded on OCT images as shown in Fig. 1. Its boundary is so prominent that it causes strong
disturbance for the detection of the esophageal lumen boundary. Therefore, it is necessary to
remove such sheath and this study achieved this using the GTDP algorithm [20].
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Fig. 2. Flowchart of the SBGS algorithm.

As shown in Fig. 3(a), the plastic sheath boundary P1 often possesses the highest intensity
contrast, which indicates P1 owns the highest gradient that can be easily located by GTDP. On
the basis of P1, P2 can be detected by limiting the GTDP region to ten pixels below P1, which
is an approximate sheath thickness. In that case, the plastic sheath can be removed by shifting
the pixels from P1 to P2 and the empty pixels are filled with a mirror image. A typical result
is shown in Fig. 3(b). Although there are some white regions between the plastic sheath and
lumen boundary, these regions are not so prominent as the plastic sheath. As a result, the lumen
boundary owns the highest gradient in this case, thus making it easily detected by the GTDP.

(a) (b)

Fig. 3. Plastic sheath removal: (a) position of P1 and P2; (b) image with the plastic sheath
removed.

                                                                      Vol. 10, No. 2 | 1 Feb 2019 | BIOMEDICAL OPTICS EXPRESS 981 



2.1.2. Lumen boundary detection and flattening

Subsequent preprocessing is to detect the esophageal lumen boundary (B1 in Fig. 1) and flatten
the image based on it. This serves to provide spatial alignment of OCT images, which can help
constrain the search area as well as reducing the algorithm sensitivity to tissue curvature.
Lumen boundary detection is convenient using the GTDP because it is the most prominent

layer boundary on an image without the plastic sheath (3(b)). As a result, it can be detected by
the same process as P1 identification. The lumen boundary is then flattened by translating the
A-scans up and down. In that case, OCT images are regularized for the following segmentation
as shown in Fig. 4. To reduce the memory size and improve the algorithm efficiency, the layer

(a) (b)

Fig. 4. Demonstration of (a) position of B1 and (b) the flattened OCT image with marked
selected region.

search area is constrained to the tissue-related regions. The total thickness of the five tissue layers
for the guinea pig is 110 µm (125 pixels) in healthy condition and 150 µm (170 pixels) for the
EoE model [31, 32]. Considering irregularities, limiting the search region from 5 pixels to 195
pixels below the lumen boundary (Fig. 4(b)) is sufficient for analyzing all those tissue layers.

2.2. Feature extraction

An interface occurs as the OCT signal increases or decreases, resulting in intensity changes of
pixels above and below the boundary. On this basis, two kinds of features were used in this
study. Features of the first type are the multi-scale gradients and averages [38], which can reflect
boundary information at different resolutions. Features of the second type are the Gabor wavelet
coefficients, which provides boundary information in different orientations.

2.2.1. Multi-scale gradients and averages

Since the esophageal images have been flattened, gradients and averages along A-scan are more
useful for layer boundary deteciton. Let I(y) denote the intensity alone A-scan, the averages hd

at scale d are defined by

hd(z) = 1
2d

1+2d−1∑
∆y=1−2d−1

I(y + ∆y) (1)

Accordingly, the gradients gd at scale d can be calculated by

gd(y) = hd(y + 2d−1) − hd(y − 2d−1) (2)

Specifically, h0(y) = I(y), g0(y) = I(y + 1) − I(y). Multi-scale gradient and average features for
pixel y can be summaried as

fga = [h0(y), g0(y), h1(y), g1(y), · · · , hd(y), gd(y)] (3)
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In this study, d is set at 4, indicating 8 features will be achieved. Typical gradient and average
maps in different scales are shown in Fig. 5. It can be found that a lower scale feature map
provides more precise description of local edges, whereas a higher scale feature map is more
robust to noise and local distortion.

Fig. 5. Demonstration of intensity averages and gradients at different scales.

2.2.2. Gabor wavelet features

Multiscale gradients only describe intensity changes along the A-scan. To provide information
for layer boundaries in different directions, the Gabor wavelet features with directional selectivity
were employed in this study.

The 2-D wavelet transform of an image I is defined as:

W I(a, θ, x0, y0) = ‖a‖−1
∫ ∫

I(x, y)ψθ
( x − x0

a
,
y − y0

a

)
dxdy (4)

where ψθ is the 2-D mother wavelet, a denotes the scaling parameters, x0 and y0 represents the
spatial shifting, and θ is the orientation parameter. The Gabor function can be used as the mother
wavelet, which is defined by Eq. (5) [39],

G(x, y) = f 2

πγη
exp

(
− x2

r + γ
2y2

r

2σ2

)
exp( j2π f xr + φ)

xr = x cos θ + y sin θ
yr = −x sin θ + y cos θ

(5)

where f is the frequency of the sinusoid, θ is the orientation of the major axis of the Gaussian, φ
is the phase offset, σ is the standard deviation of the Gaussian and γ is a ratio parameter. The
detailed implementation of the Gabor wavelets can be found in [39].
In this study, a family of U × V Gabor wavelets is required to perform the multi-resolution

analysis, which is defined as

{G fu,θv (x, y)}

fu =
fmax√
2
u , u = 0, 1, · · ·U − 1

θv =
v

V
π, v = 0, · · · ,V − 1

(6)
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where fu and θv defines the orientation and scale of the Gabor wavelets, fmax is the maximum
central frequency.

An example of Gabor wavelet coefficients at 4 scales and 8 orientations can be found in Fig. 6
with fmax = π/2, σ = π/3, γ = 1. Considering the fact that the data were previously flattened,
the wavelets with v = {0, 1, 7} are sufficient for describing the layer boundaries as marked in
Fig. 6. As a result, 12 Gabor features for each pixel will be obtained. Demonstration of Gabor
wavelet features at different scales and orientations can be found in Fig. 7.

Fig. 6. Demonstration of the Gabor wavelet coefficients.

Fig. 7. Demonstration of Gabor wavelet features for esophageal OCT images.

Following the process above, we achieved 8 multi-scale gradient and average features and 12
Gabor wavelet features, totally 20 features for the subsequent boundary classification.

2.3. Sparse Bayesian classification

Suppose the data is denoted by {xn, tn}Nn=1, where xn is the feature vector, tn ∈ {0, 1} is the
label for binary classification. Sparse Bayesian learning models the data based on the Bernoulli
distribution, which indicates the likelihood can be expressed as

P(t|w) =
N∏
n=1

σ{y(xn; w)}tn [1 − σ{y(xn; w)}]1−tn (7)

where σ(x) = 1/(1 + e−x) is the sigmoid function, y(x; w) can be calculated by

y(x; w) =
N∑
i=1

wiK(x, xi) + w0 (8)
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K(·, ·) is the kernel function, and the Gaussian Kernel is employed in this study as shown in Eq.
(9).

K(x1, x2) = exp
{
−γ‖x1 − x2‖22

}
(9)

To make the weight vector sparse, a zero-mean Gaussian prior distribution is set over w:

p(w|α) =
N∏
i=0
N(wi |0, α−1

i ) (10)

Following the assumptions described by Eqs. (7) to (10), an optimal ŵ can be obtained using the
Laplace’s method [41]. For a new sample x̃, the probability for t̃ = 1 can be calculated by

p(t̃ = 1|w) = σ{y(x̃; w)} = σ[
Nr∑
i=1

wiK(x, xi) + w0] (11)

where xi indicates the relevance vector, which has nonzero wi , Nr is the relevance vector number.
Since w is sparse, only a few xi are needed for a new sample identification, thus making the
sparse Bayesian classification quite efficient.
The sparse Bayesian classifier using the Bernoulli model is a binary classifier, which can be

generalized to deal with multi-class problems by the "one-versus-all" strategy [42] or "one-versus-
one" strategy [42]. The main purpose of this study is to decide if a pixel belongs to any of the
five boundaries. In this case, the "one-versus-all" strategy is more appropriate, separating the
pixels on one boundary from the rest. Using this strategy, we trained five binary sparse Bayesian
classifiers to detect pixels on boundaries B2 to B6, respectively as shown in Fig. 2. To achieve the
classifier for Bi , points on the i-th boundary are treated as the positive samples (labeled "1"), and
the remainders in the training set are regared as the negative samples (labeled "0"). In this way,
we can model the data by Eq. (7) and achieve a binary sparse Bayesian classifier for boundary Bi .

It is worth mentioning that the sparse Bayesian classifier can achieve multi-classification by
modeling the data with multinomial distribution [33], but it suffers from a highly disadvantageous
consequence from a computational perspective [33].

2.4. Boundary identification based on the classification result

We marked the pixel with the highest probability in each A-scan to get the most likely boundary
position. The boundary identification process can be depicted by Fig. 8. Note that each pixel
was represented by a feature vector, which is then individually classified to achieve the final
probability map. A typical result was shown in Fig. 9. Although the boundaries can be visually

Fig. 8. Flowchart of the boundary identification process.

                                                                      Vol. 10, No. 2 | 1 Feb 2019 | BIOMEDICAL OPTICS EXPRESS 985 



Fig. 9. Presentation of the boundary position indicated by sparse Bayesian classification.
The probability map has a border painted with the same color as the corresponding boundary
shown by the image on top left.

identified, there are still some missing parts or dropouts. As a result, the probability map needs
to be further refined.
An intuitive way is to smooth the boundaries shown in Fig. 9 and inpaint the missing points.

This method is simple and fast, but requires the classifier to be accurate and is susceptible to noise
or other disturbance. A more robust approach is using the GTDP as in the references [24, 25].
This approach constructs a graph based on the probability map rather than the gradients and finds
the optimal path by Dijkstra’s shortest path algorithm [20]. To refine the probability map for
boundary Bi , i = 2, · · · , 6, the weight for edge connecting adjacent pixels a and b is defined as

W i
ab = 2 − (Pi

a + Pi
b) + wmin (12)

where Pi
a and Pi

b
are probability map intensities of Bi for points a and b. wmin is the minimum

possible weight in the graph. More details about GTDP can be found in Chiu’s work [20]. It is
worth mentioning that the search region for each boundary is ±6 pixels around the most probable
boundary position, which will make the optimization more efficient. The region width is set
based on the fact that the smallest tissue layer has a thickness of around 10 µm (11 pixels) [31,32].
In that case, searching a certain boundary in ±6 pixels around the most probable position utilizes
as much information as possible without inducing inference from boundaries of other tissue
layers.

3. Experiments

3.1. Data and experimental environment

Esophageal OCT images from guinea pigs were obtained using an 800-nm ultrahigh resolution
endoscopic OCT system [6, 43, 44]. Data from 4 subjects, including two healthy guinea pigs and
two EoE models [45] were used to evaluate the proposed SBGS algorithm. For each subject,
two datasets were obtained by the OCT system from different (deep and shallow) positions of
the esophagus. Each dataset has 30 continuous imaged B-scans of size 2048 × 2048. More
details about the data are listed in Table 1. The data was manually annotated by an experienced
grader using ITK-SNAP [46]. Manual segmentation results were used for classifier training and
algorithm evaluation. In the following experiments, the B-scans were resized by 0.5, which
indicates the new size of B-scans is 1024 × 1024. Our images were analyzed by MATLAB on a
personal computer with an Intel Core i7 2.20 GHz CPU and 16 GB RAM.
In the first part of the experiment, we performed the segmentation on each case separately,

and took Case 1 as a representative example to numerically evaluated the SBGS algorithm in
accuracy and efficiency. Since OCT images are collected continuously and consecutive frames
have similar structure, we selected two well-imaged B-scans that roughly trisect Case 1 for
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Table 1. Information of the dataset used in this study.

Datasets Subject 1 Subject 2 Subject 3 Subject 4

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Condition Healthy Healthy Healthy Healthy EoE EoE EoE EoE

Position Deep Shallow Deep Shallow Deep Shallow Deep Shallow

Frames 30 30 30 30 30 30 30 30

training to ensure that our system does not become biased. The remaining 28 B-scans were
used for testing. To show the generation and clinical potential of the proposed method, another
experiment is performed using different training and testing sets. The training sets are composed
of the four cases obtained from Subjects 1 and 3, each with 2 selected B-scans. The testing sets
are composed of all the frames in Subjects 2 and 4. In this case, there was no overlap between
subjects used for training and testing.

3.2. Accuracy analysis of the SBGS algorithm using Case 1

As is discussed above, the training and testing sets contain two B-scans and 28 B-scans respectively
in this case. For a given B-scan of size 1024 × 1024, we used all the pixels on the boundaries (5
boundaries × 1024 points per boundary) for training. Since the number of non-boundary pixels is
much larger than the boundary pixels, we randomly select 2048 non-boundary pixels to balance
the training data.
Using the trained sparse Bayesian classifier, the segmentation performance of SBGS can

be evaluated by the test data. We first made an intuitive comparison between SBGS and the
widely used GTDP algorithm as shown in Fig. 10. Figures 10(a) and 10(c) illustrate the SBGS
segmentation results for OCT image with regular and irregular tissues, respectively. It can be
found that the SBGS accomplished satisfactory segmentation in both cases. Specifically, we

(a) (b)

(c) (d)

Fig. 10. Demonstration of (a) SBGS segmentation result for OCT image with regular tissues;
(b) comparisons of SBGS (red line) and GTDP (blue line) results; (c) SBGS segmentation
result for OCT images with tissue irregularities and (d) comparisons of SBGS (red line) and
GTDP (blue line) results.
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plotted the boundaries obtained by GTDP and SBGS in blue and red, respectively. In Fig. 10(b)
with regular tissues, it can be vissually identified that the red lines generated by SBGS match the
layer structures better. In Fig. 10(d) with larger thickness variations, the blue lines identified by
GTDP show a great bias from the correct tissue structure while the SBGS can still identify the
correct boundaries.

To further evaluate the segmentation accuracy of the SBGS, we replaced the sparse Bayesian
classifier with other classifiers widely used in OCT segmentation, including the SVM [23] and
RF [24], thus achieving the SVM-GS and RF-GS methods. Parameters for different classifiers
were set as follows. The sparse Bayesian learning and SVM utilized the Gaussian kernel described
by Eq. (9) with γ = 0.3. For SVM, the C-Support Vector Classification was employed [47]
and the regularization parameter C is set at 4000 to achieve fewer support vectors. The main
parameter for RF is the number of trees, which is set at 500 in this study.
The quantative evaluation was carried out by comparing the segmentation result of SBGS

with SVM-GS, RF-GS and GTDP [20] using the manual segmentation as a reference. The
unsigned border position differences between the automatic and manual segmentation for the 28
testing images from Case 1 are listed in Table 2. Results are presented in the form of mean ±
standard deviation in micrometer, with bold data indicating the result with the smallest average
difference. B1 as the baseline for flattening was identified by the GTDP in all algorithms, hence

Table 2. Unsigned border position differences of different esophageal OCT image segmenta-
tion algorithms.

Boundaries SBGS SVM-GS RF-GS GTDP

B1 (µm) 2.46 ± 0.88 2.48 ± 0.91 2.44 ± 0.73 2.47 ± 0.93

B2 (µm) 2.07 ± 1.66 3.72 ± 2.02 1.91 ± 1.53 4.58 ± 2.32

B3 (µm) 0.22 ± 0.80 1.21 ± 1.33 0.31 ± 1.09 1.92 ± 1.89

B4 (µm) 0.66 ± 0.97 1.87 ± 1.67 1.10 ± 1.12 2.11 ± 2.08

B5 (µm) 3.44 ± 2.23 4.11 ± 3.28 3.22 ± 2.34 5.03 ± 4.06

B6 (µm) 1.31 ± 1.08 2.20 ± 1.84 2.05 ± 1.69 2.51 ± 2.10

the error values are almost identical. Except for B1, classifier-based methods (SBGS, SVM-GS,
RF-GS) achieved more accurate boundary identification than the GTDP since they synthesized
more comprehensive features to delineate the tissue structure. Besides, SBGS shows higher
accuracy than SVM-GS because it uses fewer vectors to prevent overfitting and does not require
optimization of the additional parameter C [47]. The segmentation result of RF-GS is comparable
to SBGS in accuracy. In detail, SBGS achieved the most accurate segmentation in B3, B4 and
B6, while the RF-GS has higher accuracy in segmenting B2 and B5.

3.3. Efficiency analysis of the SBGS algorithm using Case 1

To evaluate the efficiency of the proposed algorithm, we listed the average segmentation time of
SBGS, SVM-GS, RF-GS and GTDP in Table 3 for the testing data from Case 1. It is noted that
the SBGS method is significantly faster than the other classifier-based methods. The main reason
is that the sparse Bayesian classifier has a linear prediction model [Eq. (8)] that depends on much
fewer relevance vectors as shown in Table 4. As a result, the classification can be implemented
by a few linear operations, which is quite efficient. Moreover, the graph search is performed
within a small region as illustrated in Section 2, thus making SBGS is also faster than GTDP.

For an intuitive explanation of why a sparse model is beneficial for efficient segmentation,
we analyzed the detailed classification process of the sparse Bayesian classifier and the SVM.
The classification of a new input for SVM depends on the support vectors (SVs), and the sparse
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Table 3. Computation time for OCT image segmentation.

Methods SBGS SVM-GS RF-GS GS

Time (s) 1.71 ± 0.13 12.24 ± 2.08 7.82 ± 1.11 10.01 ± 1.84

Bayesian classifier has similar vectors, which are called relevance vectors (RVs) as shown in
Eq. (11). Accordingly, the prediction efficiency is determined by the vector numbers for these
two classifiers. In our segmentation framework, a B-scan generates 1024 × 5 + 2048 = 7168
pixels for training, each with 20 features. The classifier is trained using 2 representative B-scans,
resulting in a training set of size 14336 × 20. The detailed analysis about the SVM and sparse
Bayesian classifiers can be found in Table 4, where Nr represents the number of SVs and RVs
used for classification. The sparse Bayesian classification achieved much smaller Nr than SVM,
which indicates the boundary identification can be accomplished based on only a few tens of
samples. As a result, the computation time can be remarkably reduced from around 1.5 to 0.15
seconds for recognizing a single boundary.

Table 4. Comparisons of Nr and the classification time for SVM and sparse Bayesian
classifier (denoted by SBC).

Boundaries Nr Times (s)

SVM SBC SVM SBC

B2 834 30 1.77 ± 0.07 0.12 ± 0.01

B3 612 32 1.22 ± 0.06 0.13 ± 0.01

B4 677 38 1.47 ± 0.05 0.14 ± 0.02

B5 1043 39 2.08 ± 0.08 0.16 ± 0.02

B6 895 31 2.12 ± 0.07 0.13 ± 0.01

3.4. Generalization ability and clinical potential

To show the generalization ability and clinical potential of the SBGS algorithm, the training
process is performed using images from a healthy guinea pig (Subject 1) and an EoE model
(Subject 3), while the testing set is composed of Subjects 2 and 4. Detailedly, we selected two
B-scans from each case in Subjects 1 and 3 using the same method as described in Section 3.1 to
create the training set with eight B-scans. All of the frames obtained from Subjects 2 and 4 are
used for testing, making the testing set of size 30 frames/case × 4 cases = 120 frames.
Representative segmentation results for the four testing cases can be found in Fig. 11. The

tissue layers are well delineated for all the cases, which confirm that the SBGS algorithm is
effective even if the layer structure changes due to such pathology. In addition, in this case, the
training and testing sets are composed of images from different subjects, which indicates there is
no overlap between training and testing, thus verifying the generalization ability of our method.
Since EoE is often featured with increased basal zone thickness [9], we calculated the layer
thicknesses based on the segmentation results. The corresponding statistic plot for layer thickness
is presented in Fig. 12. Obviously, the SC layer thickness for EoE model is significantly larger
than the normal one, thereby proving that the SBGS algorithm would potentially aid clinical
diagnosis.
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(a) (b)

(c) (d)

Fig. 11. Representative segmentation result by SBGS of (a) Case 3 and (b) Case 4 from the
testing healthy guinea pig (Subject 2); (c) Case 7 and (d) Case 8 from the testing EoE model
(Subject 4).

Fig. 12. Statistical results of layer thicknesses from different guinea pigs.
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4. Discussions

This study used the sparse Bayesian classification for rapid esophageal layer segmentation in
OCT images. The sparse Bayesian classifier offers some quite compelling and beneficial features.
Firstly, the trained model is highly sparse, indicating that the prediction can be made based on a
small number of samples, thus guaranteeing high classification efficiency. Besides, the noise
variance can be automatically estimated. As a result, regularization parameters are no longer
needed, such as C in SVM. Moreover, sparse Bayesian classification can provide a posterior
probability of the sample, which is important for the following analysis, as discussed in Section 2.

The primary disadvantage of the sparse Bayesian method is the computational complexity of
the training process [33]. The update rules required memory and computation scale respectively
with the square and cube of the number of basis functions. In that case, sparse Bayesian learning
may be less practical if the training sample number is large. Fortunately, since we only need the
boundary pixels and a few background pixels for training, the model can be successfully learned.
Sparse Bayesian classification needs longer training time compared to SVM and RF. In this study,
sparse Bayesian classification takes about 10 minutes for model training with two B-scans, while
SVM and RF only need 2 minutes and 1 minute, respectively.

Using the proposed algorithm, segmenting a single B-scan takes about 1.7 seconds with Matlab.
The algorithm can be sped up by further optimizations. For example, a faster programming
language, such as C can be employed. Besides, the classification of each pixel can be parallelly
processed by multiple computer cores or the graphics processing unit (GPU). In that case, a
more efficient segmentation system can be built, which can meet the requirements of online
segmentation.
Experiments have proved that the SBGS algorithm is able to delineate EoE OCT data,

suggesting that it has the potential to be extended for other esophageal diseases. Taking BE as an
example, the OCT image of BE may present an absence of layered architecture. In that case,
the SBGS is expected to implement tissue layer segmentation by extracting different features
or adding a new criterion to locate regions with missing layers. Benefiting from the learning
ability of sparse Bayesian classification, the SBGS will detect the pathological changes of the
OCT image based on the annotated data, thus achieving automatical disease diagnosis.

It is worth mentioning that the deep learning based methods are very popular in image analysis,
and has been introduced to retinal OCT image processing [25–28] recently. However, for
esophageal OCT images discussed in this study, the deep network is hard to train due to the
limited annotated samples. To verify this, we performed an additional experiment based on a
representative deep learning based segmentation method proposed by Fang et al. [25] using the
same training and testing sets as Section 3.2. The main idea is using a convolutional neural
network (CNN) to extract features of specific layer boundaries and classifying the six layer
boundaries on esophageal OCT image. According to Fang’s work [25], we extracted patches of
size 33 × 33 pixels centered on each pixel of six annotated boundaries from OCT B-scans and
marked them with labels 1-6. Besides, one randomly selected patch centered at the background
for each A-scan is labeled with 0. In this case, the two B-scans in training set generated 14336
patches. The CNN architecture used in this experiment was summarized in Table 5. It can
be calculated that the number of parameters for this network is 1,625,479, which is difficult to
optimize using the 14,336 patches. In this case, after 12 epochs optimization with batch size
128, the training accuracy is 0.7726 that cannot generate useful probability maps for boundary
identification. When we add the training B-scans from 2 (14,336 patches) to 12 (86,016 patches),
the training accuracy reached 0.9446 with the same configuration. It can be found that the CNN
needs more annotated samples to optimize the huge number of parameters, which is in coincident
with the discussion in [25]. In contrast, the SBGS algorithm showed effectiveness even if the
train image is limited as discussed in Section 3.2.
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Table 5. The CNN architecture used in this experiment.

Layers Type Filter Size Neuron Numbers Output Shape

Layer 1 Convolution 3 × 3 32 31 × 31 × 32

Layer 2 Convolution 3 × 3 64 29 × 29 × 64

Layer 3 Max pool – – 14 × 14 × 64

Layer 4 Dropout – – 14 × 14 × 64

Layer 5 Flatten – – 12544 × 1

Layer 6 Dense – 128 128 × 1

Layer 7 Dropout – – 128 × 1

Layer 8 Dense – 7 7 × 1

5. Conclusions

In this study, we presented an SBGS method that combines sparse Bayesian learning and graph
search for fast segmentation of layer boundaries on esophageal OCT images. The SBGS algorithm
utilizes sparse Bayesian learning to build a classifier based on multi-scale gradients, averages and
Gabor wavelet coefficients and generates a probability map of boundary positions. A graph is
then constructed using the probability map, which is subsequently used to generate a continuous
and smooth boundary by the graph search technique. In that case, esophageal layers are clearly
segmented, making the OCT image easy to interpret. Experiments on segmenting OCT images
from guinea pig esophagus demonstrated that the proposed SBGS method is robust and much
faster than SVM-GS, RF-GS and the GTDP. In addition, segmentation experiments on esophageal
OCT images from normal guinea pigs and EoE models confirmed that the SBGS algorithm has
the potential to diagnose esophageal diseases. It is also appealing to apply the SBGS to other
layered structure endoscopic OCT images (like airway) and non-endoscopic OCT images (like
retina) in future work.
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