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Abstract: Glaucoma detection in color fundus images is a challenging task that requires 
expertise and years of practice. In this study we exploited the application of different 
Convolutional Neural Networks (CNN) schemes to show the influence in the performance of 
relevant factors like the data set size, the architecture and the use of transfer learning vs newly 
defined architectures. We also compared the performance of the CNN based system with 
respect to human evaluators and explored the influence of the integration of images and data 
collected from the clinical history of the patients. We accomplished the best performance 
using a transfer learning scheme with VGG19 achieving an AUC of 0.94 with sensitivity and 
specificity ratios similar to the expert evaluators of the study. The experimental results using 
three different data sets with 2313 images indicate that this solution can be a valuable option 
for the design of a computer aid system for the detection of glaucoma in large-scale screening 
programs. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Glaucoma is an optic neuropathy characterized by progressive degeneration of retinal 
ganglion cells [1]. There are many different types of glaucoma, with a variety of etiologies 
and pathogenic factors, but all have in common typical changes in the structure and la 
function of the optic nerve. Glaucoma is the leading cause of global irreversible vision loss 
with a prevalence for population aged 40-80 estimated in 3-4% [2]. The number of people 
with glaucoma worldwide was estimated in 64.3 million in 2013, increasing to 76.0 million in 
2020 and 111.8 million in 2040 [2]. Because glaucoma is an asymptomatic condition until a 
relatively late stage the diagnosis is frequently delayed. Population-level surveys suggest that 
only 10-50% of people with glaucoma are aware they suffer the disease [1]. As early 
diagnosis and treatment of the condition can prevent vision loss, glaucoma screening has been 
tested in numerous studies worldwide [3–6]. Current studies show that glaucoma screening 
can be cost-effective in risk population (family history, black ethnicity, age) and can be 
improved using a test with initial automated classification followed by the expert assessment 
of a specialist [7]. 

The standard of care for glaucoma screening consists of routine optometrist visits every 2-
3 years, suspicious cases are then referred to an ophthalmologist who performs additional 
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to create local configuration patterns that feed a k-nearest neighbor (kNN) classifier [24]. The 
previous methods apply the approach of identifying features in the image in order to train a 
classifier with all the findings extracted directly from the image or from a transformed version 
of it (using wavelets, FT, high order spectra analysis…). At the end, the different algorithms 
explore different aspects and transformations of the ONH to determine patterns that are 
representative and may identify glaucoma. In this work we applied a different approach to the 
glaucoma detection problem through the use of Convolutional Neural Networks (CNNs). 

Convolutional networks, commonly known as one of the most popular deep learning 
algorithms for image analysis, have become very rapidly a successful alternative for 
analyzing medical images. These methods could be considered as the evolution of the 
supervised techniques started at the end of the 1990s, where training data sets of previously 
classified images are used to develop the system. This strategy supersedes the previous 
approach based on feature extraction and posterior classification mentioned in previous 
paragraphs. The new deep learning paradigm implies that computers can perform the feature 
learning and classification simultaneously. We can usually find in a deep learning algorithm a 
network (model) formed by many layers that transform an input data (images normally) to 
outputs (e.g. pathology present/absent). The most successful type of models for medical 
image analysis is a sub-class of neural networks called convolutional neural networks (CNN) 
that was introduced in the 1980s [25]. 

In [26] Litjens et al., provided a thorough review of the current use of these techniques in 
medical analysis. The study mentions state-of-the art applications of deep learning technology 
in the main topics of biomedical image processing: classification, object detection, 
segmentation or registration among others. Shin et al. [27] mentioned three mayor strategies 
that used CNNs to medical image classification problems: training from scratch, using off-the 
shell pre-trained CNN features, and conducting unsupervised CNN pre-training with 
supervised fine-tuning. Training a deep CNN from scratch (or full training) presents relevant 
limitations. It requires a large amount of labeled data, which in fields like medical imaging 
could be extremely expensive to collect both in time and budget, especially for images that 
present pathological findings relevant for diagnosis. Besides, the training of a deep CNN 
usually requires extensive memory and computational resources and it could be a very time 
consuming task. Finally, the design of a CNN and the adjustment of the hyper-parameters of 
the network could be a challenging process that requires dealing with overfitting and other 
issues that can limit the success of the application of this technology. One alternative to 
overcome these problems is the use of transfer learning with fine tuning. Transfer learning is 
a method successfully used in machine learning and data mining for classification, regression 
and clustering problems. It is generally defined as the capability of the system to utilize the 
knowledge learned in one domain of interest, to another that shares some common 
characteristics [28]. The use of state-of-the art performance CNNs on the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) [29,30] (with millions of labeled images from 
1000 different classes) has been successfully tested in several medical image analysis studies 
[27,31–33]. This last method is the one we have used in this work: the transfer learning of 
CNN models pre-trained with different image data sets and fine-tuned to solve a specific 
medical imaging task, the automatic classification of glaucoma in fundus photographs. 

CNNs have been successfully applied to color fundus images in the context of Computer-
Aided-Detection (CAD) systems and screening programs for eye diseases, achieving state-of-
the art performance or outperforming previous implementations. We can find since 2015 
several studies applying CNN in retinal vessel segmentation [34], image quality assessment 
[35], segmentation of the optic disc and the optic disc cup [36,37], diabetic retinopathy 
detection [38], age-macular degeneration detection [13] or hemorrhage detection [39] among 
others. The CNN architectures successfully exploit both local and global features present in 
the images, being a proper tool for the detection of glaucoma. Several studies have already 
tackled this problem in color fundus images using CNN. In [40] the authors applied a six 
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layers architecture to optic disc patches previously segmented. In [41] the authors used CNN 
to extract features and train a SVM classifier to detect glaucoma. Recently Fu et. al. [42] 
presented a novel ensemble network based on the application of different CNNs to the global 
fundus image and to different versions of optic disc region. The assessment of deep learning 
algorithms with transfer learning has also been addressed in [43–45] implementing studies 
with greater number of images than previous works and achieving expert level accuracy and 
high sensitivity and specificity. Finally, in OCT there are also recent studies applying CNNs 
for glaucoma detection [46] or segmentation of layers [47,48]. In Table 1 we present a 
summary of the methods used for glaucoma detection, describing the data sets used and the 
results reported. 

Table 1. Summary of methods for the detection of glaucoma in color fundus images. In 
the data sets column we indicate the number of normal cases (-) and glaucoma cases ( + ). 
For the performance we used the reported metric used in the study: AUC, accuracy (Acc) 

and specificity (Sp) and sensitivity (Sn). 

Authors Method Data sets Performance 
Bock et al. (2010) 
[19] 

Pixel values FFT coefficients, 
B-spline and probabilistic SVM 

Private (336 -/239 + ) 
AUC – 87% 
Acc – 80% 

Krishnan et al. 
(2013) [21] 

HOS, TT, DWT with SVM Private (30-/30 + ) Acc – 91.67% 

Maheshwari et al. 
(2017) [23] 

2D EWT and LS-SVM 
Private (30-/30 + ) 
RIM-ONE (255-/250 + ) 

Acc – 98.33% 
(Private) Acc – 
81.32% (RIM-ONE) 

Acharaya et al. 
(2017) [24] 

Texton, LCP features and KNN Private (143-/559 + ) Acc – 95,7% 

Chen etal. (2015) 
[40] 

CNN (6 layers) 
ORIGA (168 + 482-) 
SCES (46+/1676-) 

AUC (83.1%-88.7%) 

Al-Bander et al. 
(2017) [41] 

CNN 23 layers and SVM RIM-ONE (200+/255-) 
Acc – 88.2%, Sn – 
85%, Sp – 89.8% 

Fu et al. (2018) 
[42] 

Ensemble of 4 CNNs 
ORIGA (168+/482-) 
SCES (1636-/46 + ) 

AUC-91.83%, Sn – 
84.78%, Sp – 83.80% 

Li et al. (2018) 
[44] 

Transfer Learning with 
Inception Network 

Private (48116) 
AUC – 98.6%, Sn – 
95.6%, Sp – 92.0% 

Christopher et.al. 
(2018) [43] 

Transfer Learning with ResNet, 
VGG16 and Inception v3 

Private (5633+/9189-) 
AUC-91%, Sn – 88%, 
Sp – 95% 

Shibata et.al. 
(2018) [45] 

Transfer Learning with ResNet Private (1364+/1768-) AUC – 96.5% 

 
Our work is aimed at developing tools for prescreening in computer aided diagnosis 

system for the detection of glaucoma in large-scale screening programs. In this paper we 
assessed the application of different CNN architectures for the classification of glaucoma with 
fundus color images. We studied the performance of different architectures as well as some 
transfer learning schemes from pre-trained CNN models. We have ensured that all the 
architectures that are the basis of the current state-of-the-art methods are represented in our 
comparisons including an Inception based network such as GogleLeNet, a RestNet based 
architecture, concretely ResNet50 and a recently proposed network such as DENet. Finally, 
we will consider the potential benefit of integrating basic clinical data collected in the 
screening studies of the patients in the final classification. 

The rest of the paper is structured in several sections. In section 2 we describe the data 
sets, the network architectures, the training process and the performance metrics used in the 
study. In section 3 we report the results of the different experiments. Finally, section 4 
contains the summary of the study with the main conclusions and suggestions for further 
works. 
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2. Materials and methods 

2.1 Study data sets 

We used 2313 retinal fundus images in this work coming from three different data sets: two 
publicly available (RIM-ONE [49] and DRISHTI-GS [50]) and one private from a screening 
campaign performed at Hospital de la Esperanza (Parc de Salut Mar) in Barcelona (Spain). 
We considered two categories, glaucoma and normal. Glaucoma includes the images 
classified by specialists as suspect of glaucoma or with glaucoma. 

The Open Retinal Image Database for Optic Nerve Evaluation (RIM-ONE) is an 
ophthalmic image group of databases designed in order to be a reference for the design of 
optic nerve head segmentation algorithms and in development of computer-aided glaucoma 
diagnosis. The database was created by the collaboration of three Spanish hospitals: Hospital 
Universitario de Canarias, Hospital Clínico San Carlos and Hospital Universitario Miguel 
Servet. Our study used the three releases included by the authors until now. The image set 
was designed in collaboration of 4 glaucoma experts. The camera used to capture the images 
was a Nidek AFC-210 background camera with a 21.1-megapixel Canon EOS 5D Mark II 
body. All the images are centered at the optic disc. 

The data set DRISHTI-GS consist of 101 retinal fundus images for optic disc 
segmentation. All images were collected at Aravind Eye Hospital in Madurai (India). 
Glaucoma patient selection was done by clinical experts based on findings during 
examination. The retinal images come from Indian patients of 40-80 years old. The images 
were taken with the eyes dilated, centered on the optic disk, with a field of view of 30-degrees 
and of dimension 2996x1944 pixels and PNG uncompressed image format. 

Finally the ESPERANZA data set consisted of 1446 color fundus images with a field of 
view 45 degrees, centered on the macula and including the optic disc from patients with age 
ranging from 55 to 86 years. The retinal images were provided from the glaucoma detection 
campaign performed to 1006 different patients. During the examination of the patients, a 
short clinical history was collected (like age, family history of glaucoma, personal record of 
glaucoma and glaucoma therapy, among others) and besides the color fundus images, other 
tests (like the measurement of the intraocular pressure (IOP) in both eyes, the visual acuity 
and Optical Coherence Tomography images) were performed. Special care was taken in order 
to create a reference gold standard data set. All the images had a double complete glaucoma 
evaluation performed by six expert (senior) ophthalmologists and nine non-expert (younger) 
ophthalmologists using a tele-screening tool. The ophthalmologists with more than five years 
of experience were considered as experts in this work. In case of disagreement between the 
two evaluations performed, two glaucoma experts decided the final classification of the image 
by consensus. Each ophthalmologist evaluated a proportional part of all the images inside its 
category. The assessment of the images included the evaluation of image quality in four 
categories (good, enough, bad or not evaluable) and the clinical classification in three 
categories (normal, glaucoma suspect or glaucoma). The selection of images from the 
campaign to be included in the final data set used in this work corresponds to the images that 
were labeled by the evaluators with good or enough quality and in the case of glaucoma 
positive images we included the ones classified as glaucoma suspect or glaucoma. 

Table 2 contains information of the retinal images considered in the study from each data 
set. We considered two classes for the classifications tasks studied in this work because the 
majority of the data sets used (RIM-ONE r2, r3 and DRISHTI-GS) were defined with only 
two classes (glaucoma and normal). RIM-ONE r1 is the only one that accounted four classes 
(normal, early, moderate and deep glaucoma) while ESPERANZA data set defined three 
classes (normal, glaucoma-suspect and glaucoma). The initial size of the images of the RIM-
ONE data sets is very different. In the case of r1 the image sizes vary from 316x342 to 
831x869. In the version r2 the sizes vary from 290x290 to 1375x1654. Figure 2 shows 
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Table 4. Detail of the layers and parameters defined in the standard CNN. The input of 
the network is an image of size 256x256x3 and the output are two scores of the two 

classes considered. In the parameters column K indicates the number of filters of the 
layer. After each convolution layer, batch normalization was applied. 

Layer Operation Input 
size 

Parameters Layer Operation Input size Parameters 

1 Convolution 256x256 3x3, K = 32 9 Max-pooling 57x57 2x2 

2 Convolution 254x254 3x3, K = 32 10 Convolution 28x28 3x3, K = 32 

3 Max-pooling 252x252 2x2 11 Convolution 26x26 3x3, K = 32 

4 Convolution 126x126 3x3, K = 32 12 Max-pooling 24x24 2x2 

5 Convolution 124x124 3x3, K = 32 13 Convolution 12x12 3x3, K = 32 

6 Max-pooling 122x122 2x2 14 Convolution 10x10 3x3, K = 32 

7 Convolution 61x61 3x3, K = 32 15 Convolution 8x8 K = 
128,Dropout, 

p = 0.5 
 

8 Convolution 59x59 3x3, K = 32 16 Soft-Max 128x1 2 classes 

 
As we confirmed in this work, the use of these architectures offers two valuable benefits. 

First, the design and architectural improvements of these CNNs can warranty superior 
performance ratios even in a training from scratch scheme. Second, the use of pre-trained 
deep CNNs and the subsequent fine-tune of the weights of the network applying the new 
labeled images, could lead to even better performance metrics and a potential reduction in 
training resources in terms of time, memory and computational operations. Besides the 
STANDARD CNN presented in Fig. 3, we selected other commonly used architectures 
(VGG19, GoogLeNet, and ResNet50) and the recently presented DENet, specifically 
designed for glaucoma screening detection. We prepared several experiments to analyze 
quantitatively the contribution of the selection of the architecture, the training scheme, fine-
tuning (VGG19 TL, GOOGLENET TL, RESNET50 TL, DENET DISC TL) versus full 
training (VGG19, GOOGLENET, RESNET50 and DENET DISC), and the data set used for 
training. 

VGG19 [53] is a publicly available CNN model that includes five stacks, each stack 
contains between two and four convolutional layer followed by a max-pooling layer, and it 
ends with three fully connected layers. The main contribution of this architecture was the 
increasing of the depth of the network (in this work we applied the version with 19 layers) 
and the use of very small (3x3) convolutional filters. We can find applications of this network 
in several studies, for the fixed features extraction in CADx for breast cancer detection with 
different imaging modalities [54] or for classification of 19 different skin diseases [55]. 

GoogLeNet proposed in [56] accomplished as main contribution the improved utilization 
of the computing resources inside the network, increasing the depth and width of the network 
but keeping the computational budget constant. It also proposed a new module called 
“Inception” which concatenates convolution layers with different kernel sizes and one 
pooling layer into a single new filter. The complete architecture contains 22 layers including 
two convolution layers, three pooling layers and nine inception layers. GoogLeNet was 
successfully used in the detection of lymph node metastases in women with breast cancer 
[57], in the classification of normal and cancerous lung tissues from CARS (Coherent anti-
Stokes Raman scattering) images [58] or retinal pathologies using optical coherence 
tomography (OCT) images [31]. 
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Residual Networks (ResNet) [59] have been broadly tested in general and medical image 
classification. The main characteristics of ResNet are the intensive application of batch 
normalization and the use of “shortcut connections” in order to tackle the low performance 
issues due to the vanishing divergence and the vanishing gradient problems in deep CNN. 
ResNet has been successfully adopted in recent works of glaucoma classification [43,45] and 
it has also been included in the ensemble CNN DENet [42]. 

The Disc-Aware Ensemble Network (DENet) [42,60] is a glaucoma screening network 
based on an ensemble of four networks. DENet considers various levels and modules of the 
fundus images. Two networks exploit global fundus images and are based on ResNet and U-
shape convolutional network (U-net). The other two networks are centered on the local optic 
disc region, previously cropped based on one of the previous networks, and use ResNet to 
classify the disc region and a polar transformed version of the same disc area. The authors 
provided the code of the four networks and the trained models using the ORIGA full data set. 
In this study we used DENet in two different contexts. First, we evaluated the ensemble 
network using the global fundus images from a subset of our data set (only ESPERANZA and 
DRISHTI-GS have global images) and the pre-trained models provided by the authors 
(DENET). Secondly, in order to assess the impact in the performance of the use of transfer 
learning, fine tuning a pre-trained glaucoma classification model, we used one of the 
networks of the ensemble, DENet Disc. This model uses segmented optic disc color fundus 
images and allows us to train the network with all our training data set from scratch (DENET 
DISC) and with transfer learning initializing it with the pre-trained models provided (DENET 
DISC TL). 

The input in VGG19, GoogleNet, ResNet50 and DENet Disc networks were the 
preprocessed color fundus images from the data sets of the study with a final size of 
224x224x3 and centered at the optic disc. The input images in the case of the standard 
network were 256x256x3. The region of interest presented to all the networks was the same. 
We changed the last layer with the softmax classifier in VGG19, GoogleNet and ResNet50 to 
consider only the two classes of interest in our study (glaucoma and normal). 

2.4 Performance metrics 

To evaluate the performance of the algorithms Receiver Operating Characteristic (ROC) 
analysis was performed and sensitivity/specificity ratios were calculated. We defined 
sensitivity, or true positive rate, as the number of true positives (number of images with 
glaucoma correctly detected) divided by the sum of the number of true positives and false 
negatives (images incorrectly classified as normal). Therefore, the sensitivity shows the 
percentage of glaucoma cases correctly identified by the algorithm. We defined specificity as 
the number of true negatives (number of images normal correctly detected in our case) 
divided by sum of the number of true negatives and the false positives (images incorrectly 
classified as glaucoma). The specificity is a ratio that shows the percentage of normal cases 
correctly identified. We also considered the Balanced Accuracy (BAcc) as the mean of 
sensitivity and specificity to take into account the imbalance in the number of positive and 
negative cases in the testing data set. We used the ROC graph for visualizing the performance 
of the networks [61]. The ROC graph is a two dimensional representation with the sensitivity 
in the Y axis and 1-specificity in the X axes. We compared the performance of the algorithms 
using the area under the receiver operating curve (AUC) generated by ROC curve. For the 
calculation of the optimum threshold we considered the Youden index, defined as the index 
where the sum of the specificity −1 and sensitivity is maximum [62]. 

2.5 Training and testing processes 

The complete data set was randomly divided in three different groups: training, validation and 
test set with the distribution of images presented in Table 5. The validation set was used to 
monitor the number of epochs of the training process. The number of epochs with better 
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performance in terms of accuracy in both classes (glaucoma and normal) with the validation 
set is listed in Table 6. After the selection of the hyper-parameters and the cross validation 
experiments, the rest of the trainings in the study considered in the training set the images 
from validation set. The final training set contained 370 glaucoma and 1364 normal images. 
The test sets were the same during all the experiments (124 glaucoma and 455 normal 
images) 

Table 5. Distribution of images in the groups “glaucoma” and “normal”. 

Group Training Validation Test 
Glaucoma 333 37 124 

Normal 1227 137 455 

 
The overfitting it is a well-known issue in CNNs with limited training data. In order to 

limit this important problem in the training process we applied different strategies commonly 
used for this purpose. First, the selection of the number of epochs to complete the process was 
stopped when the performance on the validation set was reduced. Second, we applied 
dropout, the technique presented by [63] that consists in temporarily removing units along 
with all its incoming and outgoing connections in a neural network. We included dropout 
with p = 0.5 in the standard CNN. In the rest of the tested architectures we maintained the 
regularization schemes designed by the authors. Finally, we applied data augmentation. This 
technique consists of training and/or testing on systematically transformed images. The 
transformations used typically have to maintain the classification of the original image. In our 
study we first balanced the number of images in each group to 1400 in both groups (glaucoma 
and normal), with horizontal flips in the case of the normal images and with a random 
combination of flips and translations of 20 pixels for the glaucoma images. We also used data 
augmentation during training in all the networks. In each iteration, every image included in 
the batch could be transformed by a random combination of the operations: random flip, 
random small rotations between −10 degrees and + 10 degrees and random translation of 
maximum *-20 pixels in the x or y direction of the image. 

2.6 Implementation 

The preprocessing steps were implemented using Matlab R2016b 64-bits (Mathworks, Inc.) 
on a desktop computer equipped with an Intel Xeon CPU ES31245 and the CNN experiments 
were implemented in Python (version 2.7.12) using the libraries Lasagne (version 0.2) [64] 
and Theano (version 0.9) [65] in a desktop computer with a NVIDIA GeForce GTX Titan 
Pascal 12GB GPU. 

3. Results and discussion 

We defined several experiments to evaluate the best solution in terms of performance and to 
get more insight of the different alternatives tested. 

3.1 Hyper-parameter selection 

As described before we used the validation set to select the number of epochs for all the 
networks and types of training (full training/fine tuning) used during the study. In Table 6 we 
present the final values selected. 
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Table 6. Number of epochs selected after the monitoring of the training process using the 
validation set. 

Group Number of epochs 
VGG19 TL 20 

VGG19 100 
RESNET TL 45 

RESNET 80 
GOOGLENET TL 40 

GOOGLENET 100 
DENET DISC TL 25 

DENET DISC 130 
STANDARD CNN 50 

 
For the STANDARD CNN we used Stochastic Gradient Descent (SDG) updates, a binary 

cross entropy loss function, a learning rate of 0.005 and a batch size of 64. In the case of the 
transfer learning networks (VGG19, RESNET50, GOOGLENET and DENET DISC) we 
selected SDG updates with Nesterov momentum 0.9, a learning rate of 0.0001, the categorical 
cross entropy loss function and a batch size of 32. 

3.2 CNN algorithm comparison 

After the selection of the hyper-parameters we evaluated all the architectures under study 
(STANDARD CNN, VGG19, RESNET, GOOGLENET and two versions of DENET) in 
terms of the performance metrics, using all the data included in the training and validation 
subsets for training, and for testing the full test set. In Table 7 and Fig. 4 we present the ROC 
curves and the performance metrics. The two first options were VGG19 TL and RESNET50 
TL with an AUC of 0.942 and 0.930 and in the case of RESNET TL the best sensitivity 
91.94%. It is also remarkable that DENET DISC TL (based on ResNet50) and fine tuned 
from ORIGA data set did not outperform RESNET50 TL fine-tuned from ImageNet. The 
impact from fine-tuning from a general data set (ImageNet) is clear if we consider the 
difference between the performance of both trainings (full training and transfer learning) in 
VGG19 and RESNET50. In the case of DENET DISC, that used fine tuning from a targeted 
model (ORIGA), we noticed the biggest improvement in AUC (from 0.8371 to 0.9142) 
compared with the rest of the networks that used ImageNet. 

VGG19 TL performed with the highest AUC, 0.9420, which is in the range of state of art 
results of the last published studies (AUCs between 0.91 and 0.985) [42–45]. The 
performance of the VGG19 TL was even higher (AUC 0.9640, sensitivity 94.51%, specificity 
90.99% and BAcc 92.75%) if we considered only the glaucoma images at any stage of the 
disease, without the cases represented as glaucoma-suspect present in the ESPERANZA data 
set. 

As we mentioned before, DENET uses global fundus images. As all the images in RIM-
ONE data sets were centered in the optic disc, the number of data sets that we considered to 
evaluate DENET were limited to ESPERANZA and DRISHTI-GS data sets. Taking into 
account these two data sets we evaluated DENET directly without further training. The 
performance ratios (AUC 0.7507, sensitivity 70.45%, specificity 70.26% and BAcc 70.35%) 
were inferior to the performance of all other networks for this sub-test data set (Table 8). 

These results demonstrate that CNNs can be trained, using large data sets and without 
having to specify lesion-based features, to identify glaucoma in retinal fundus images with 
high sensitivity and high specificity. Besides, the best option achieved state-of-the art 
performance ratios with images coming from multiples sources and different sizes and 
formats. According to our results this heterogeneity of the data sets could represent a 
differential value for the training of this type of classification strategies, and suppose a 
relevant parameter to consider respect to other issues like the complexity of the network or a 
great amount of more homogeneous images, where the capacity of the network to learn new 
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3.6 Integration of medical data and CNNs 

The final experiment consisted in the integration of clinical history data collected during 
patient’s screening visit with color fundus images. As we have mentioned, CNNs are 
especially successful analyzing medical images. But the clinical diagnosis usually involves 
the assessment of a variety of exams that includes medical images but also data coming from 
different sources, like the medical history of the patient or from tests where the output could 
be a simple value. From this perspective, the exclusive use of one test could limit the final 
diagnosis and represent only a part of the global disease complexity. In order to consider a 
broader view in the diagnosis, some studies have explored the application of CNN integrating 
different imaging modalities [67,68] but also combining images with raw data, like in [69] 
where histological images and genomic data were integrated in a single CNN. Following this 
approach, we designed one experiment with the ESPERANZA data set integrating color 
fundus images with medical history data collected from the same patient during the screening 
campaign. The data selected from the screening visit were: the age, the intraocular pressure 
(IOP) in both eyes, the family history of glaucoma, the personal record of glaucoma and 
glaucoma related therapy. The selection of the data was based on some of the major risk 
factors for glaucoma described in the literature [1,70]. In the next tables we present more 
information of the clinical data used in the experiment. This data was collected during the 
examination of the patients in the ophthalmological screening campaign described in section 
2.1. 

Table 10. Mean IOP and standard deviation and mean age and standard deviation in the 
training set and test set in the glaucoma and normal classification. 

Data Glaucoma Set 
Mean ± standard deviation 

Normal set 
Mean ± standard deviation 

IOP training set (mmHg) 13.94 ± 3.16 13.97 ± 2.79 
IOP test set (mmHg) 13.64 ± 2.79 14.20 ± 2.87 

Age training set (years) 70.99 ± 8.56 68.81 ± 7.42 
Age test set (years) 70.81 ± 8.51 68.34 ± 6.94 

Table 11. Percentage of cases with glaucoma family history, personal record of glaucoma 
and personal related therapy in the training and test set of the glaucoma and normal 

classification. 

Data Glaucoma Set Normal set 
Family history of glaucoma (Training set) 8.75% 11.76% 

Family history of glaucoma (Test set) 12.12% 11.83% 
Personal record of glaucoma (Training set) 16.25% 2.61% 

Personal record of glaucoma (Test set) 12.12% 2.66% 
Personal glaucoma related therapy (Training set) 0% 0.80% 

Personal glaucoma related therapy (Test set) 0% 0.59% 

 
Color fundus images and the examination data were used together during the training by 

including the raw data into the last fully connected layer of the network. We present more 
details of the integration in Fig. 10. The clinical data were used in its raw format without 
post-processing. The value of the “Family record of glaucoma”, “Personal record of 
glaucoma” and “Personal glaucoma related therapy” had values 0 or 1. All the cases from the 
training and validation subsets from ESPERANZA were used for training (80 glaucoma and 
995 normal) and the ESPERANZA cases from the test data set were used for testing (33 
glaucoma and 338 normal). For this experiment we performed a full training and we only 
used the ESPERANZA data set, because is the only data set that contains information of the 
examination of the patients. We trained the network for 100 epochs. We performed two 
different experiments: the first one using all previous data and the second only with the age 
and the personal record of glaucoma because according with Tables 10 and 11 are the only 
data which appears different in the glaucoma and normal groups. As we can see in Table 12 
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Table 12. AUC, specificity and sensitivity values corresponding with the result of 
applying the network trained with the ESPERANZA data set considering only the color 

fundus images (reference), integrating the images with all the data collected from the 
examination of the patient (fusion all data) and integrating only the age and personal 

record of glaucoma (fusion age/personal record glaucoma). 

Group AUC Sensitivity (%) Specificity (%) 
Reference 0.8443 81.82 76.92 

Fusion all data 0.8405 81.82 80.18 
Fusion age/personal record glaucoma 0.8443 84.85 78.99 

 
In this study we have concentrated in a direct classification approach but other strategies 

and tools could be considered in order to aid the clinicians in the final diagnosis. The 
integration of clinical data from different sources or considering other imaging modalities 
could improve the performance of the classification, but other techniques that give insight and 
help to visualize and understand the features that have a relevant role in the final 
classification represent a valuable option. In this sense we highlight alternatives like the use 
of occlusion testing to recognize areas of the image with more impact in the classification 
[43,71] or saliency maps where the clinicians could be informed of the areas of the images 
with more influence in the prediction [72]. 

4. Conclusion 

In this paper, we exploited and evaluated the application of deep convolutional neural 
networks for glaucoma detection using color fundus images in the context of large screening 
campaigns. We studied the influence of the architecture, the data set size, the training strategy 
and the integration of data collected from the clinical history and the patient examination. We 
used three different data sets, two publicly available DRISHTI-GS and RIM-ONE, and other 
created from a glaucoma screening campaign to assess the performance of the alternatives. 
The five architectures tested, standard CNN, VGG19, ResNet50, DENet and GoogLeNet 
offered good performance ratios in terms of AUC, sensitivity and specificity. The best option 
for the data set used was VGG19 with transfer learning and fine tuning, with an AUC of 0.94, 
a sensitivity of 87.01% and a specificity of 89.01%, which showed a similar performance 
with respect to the expert evaluators of the screening campaign. We confirmed the great 
influence of the number of images and data sets using CNNs. The AUC of the VGG19 with 
fine tuning increased from 0.85 with one data set to 0.94 with all the data sets of the study. 
Finally, we evaluated the performance of the integration of the data from the clinical history 
and tonometry tests with the color fundus images. The results show a slight improvement in 
sensitivity and specificity with similar AUCs. Further tests with more data and new 
architectural approaches should be developed and assessed to confirm this line of work. The 
good results presented demonstrated that CNNs are a valuable alternative for CAD systems to 
assess and classify fundus images for glaucoma detection campaigns. 
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