Skip to main content
. 2019 Jan 25;10(2):892–913. doi: 10.1364/BOE.10.000892

Table 4. Detail of the layers and parameters defined in the standard CNN. The input of the network is an image of size 256x256x3 and the output are two scores of the two classes considered. In the parameters column K indicates the number of filters of the layer. After each convolution layer, batch normalization was applied.

Layer Operation Input size Parameters Layer Operation Input size Parameters
1 Convolution 256x256 3x3, K = 32 9 Max-pooling 57x57 2x2
2 Convolution 254x254 3x3, K = 32 10 Convolution 28x28 3x3, K = 32
3 Max-pooling 252x252 2x2 11 Convolution 26x26 3x3, K = 32
4 Convolution 126x126 3x3, K = 32 12 Max-pooling 24x24 2x2
5 Convolution 124x124 3x3, K = 32 13 Convolution 12x12 3x3, K = 32
6 Max-pooling 122x122 2x2 14 Convolution 10x10 3x3, K = 32
7 Convolution 61x61 3x3, K = 32 15 Convolution 8x8 K = 128,Dropout, p = 0.5
8 Convolution 59x59 3x3, K = 32 16 Soft-Max 128x1 2 classes