Table 4. Detail of the layers and parameters defined in the standard CNN. The input of the network is an image of size 256x256x3 and the output are two scores of the two classes considered. In the parameters column K indicates the number of filters of the layer. After each convolution layer, batch normalization was applied.
Layer | Operation | Input size | Parameters | Layer | Operation | Input size | Parameters |
---|---|---|---|---|---|---|---|
1 | Convolution | 256x256 | 3x3, K = 32 | 9 | Max-pooling | 57x57 | 2x2 |
2 | Convolution | 254x254 | 3x3, K = 32 | 10 | Convolution | 28x28 | 3x3, K = 32 |
3 | Max-pooling | 252x252 | 2x2 | 11 | Convolution | 26x26 | 3x3, K = 32 |
4 | Convolution | 126x126 | 3x3, K = 32 | 12 | Max-pooling | 24x24 | 2x2 |
5 | Convolution | 124x124 | 3x3, K = 32 | 13 | Convolution | 12x12 | 3x3, K = 32 |
6 | Max-pooling | 122x122 | 2x2 | 14 | Convolution | 10x10 | 3x3, K = 32 |
7 | Convolution | 61x61 | 3x3, K = 32 | 15 | Convolution | 8x8 | K = 128,Dropout, p = 0.5 |
8 | Convolution | 59x59 | 3x3, K = 32 | 16 | Soft-Max | 128x1 | 2 classes |