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Abstract

Objective—Amelogenesis imperfecta (AI) is a rare hereditary disorder affecting the quality and 

quantity of the tooth enamel. The purpose of this study was to identify the genetic etiology of 

hypoplastic AI families based on the candidate gene approach. Materials and methods We 

recruited three Turkish families with hypoplastic AI and performed a candidate gene screening 

based on the characteristic clinical feature to find the pathogenic genetic etiology.

Results—The candidate gene sequencing of the LAMB3 gene for family 1 revealed a 

heterozygous nonsense mutation in the last exon [c.3431C > A, p.(Ser1144*)]. FAM20A gene 

sequencing for families 2 and 3 identified a homozygous deletion [c.34_35delCT, p.

(Leu12Alafs*67)] and a homozygous deletion-insertion (c.1109 + 3_1109 + 7delinsTGGTC) 

mutation, respectively.
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Conclusion—The candidate gene approach can be successfully used to identify the genetic 

etiology of the AI in some cases with characteristic clinical features.

Clinical relevance—Identification of the genetic etiology of the AI will help both the family 

members and dentist understand the nature of the disorder. Characteristic clinical feature can 

suggest possible genetic causes.
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Introduction

The formation of tooth enamel (amelogenesis) is under strict control of ectomesenchyme 

interactions [1]. Once enamel forming cells (ameloblasts) are differentiated, the enamel 

matrix starts to be secreted on the initial dentin matrix which is secreted by dentin forming 

cells (odontoblasts). The secreted enamel matrix begins to calcify, and further maturation of 

the calcified enamel matrix results in sound enamel which is the hardest tissue in the human 

body [2].

Genetic and local (environmental) factors affecting any of the stages of amelogenesis can 

cause various types of enamel defects: hypoplastic, hypocalcified, and hypomatured [3]. 

Amelogenesis imperfecta (AI) is a collective term for a rare hereditary condition that mainly 

affects tooth enamel. AI can occur as an isolated form or as a syndromic manifestation.

AI is heterogeneous in clinical phenotype as well as in genetic etiology. To date, there are 

more than a dozen genes involved in the non-syndromic AI [4–19]. Additionally, several 

genes are known to cause the syndromic form of AI such as FAM20A in enamel renal 

syndrome and CNNM4 in Jalili syndrome [20–22].

Given the fact that there is an increasing number of candidate genes causing AI and the cost 

of next generation sequencing is decreasing, whole-exome sequencing seems to be a 

comprehensive way to identify the genetic etiology of unknown AI cases. However, 

candidate gene sequencing for several or a single gene could be a valuable way to find a 

genetic cause for certain cases based on the clinical characteristics and hereditary pattern, 

because it could provide a fast and economic diagnosis.

In this study, we recruited three AI families and performed mutation analyses using the 

candidate gene approach based on their characteristic clinical feature and pedigree analysis. 

Mutational analyses successfully identified underlying mutations in LAMB3 and FAM20A.

Materials and methods

Enrollment of human subjects

Three Turkish families with hypoplastic AI were recruited for this genetic study. The study 

protocol was reviewed and approved by the Institutional Review Board at Seoul National 

University Dental Hospital, the University of Istanbul, and the University of Michigan. 
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Clinical and radiological examinations were performed, and saliva or blood samples were 

collected with the understanding and written consent of each participant according to the 

Declaration of Helsinki.

Polymerase chain reaction (PCR) and sequencing

DNA was isolated from the peripheral whole blood or saliva of the participating family 

members with the NucleoSpin genomic DNA purification kit (Macherey-Nagel GmbH & 

Co., Düren, Germany). The primers and conditions for the Sanger sequencing of the exons 

and exon-intron boundaries of LAMB3 and FAM20A were described previously [23, 24]. 

PCR amplifications were done with the HiPi DNA polymerase premix (Elpis Biotech, 

Daejeon, Korea), and PCR amplification products were purified with a PCR Purification Kit 

and protocol (Elpis Biotech). DNA sequencing was performed at a DNA sequencing center 

(Macrogen, Seoul, Korea).

Splicing assay

A genomic fragment (988 bp) of the FAM20A gene including exons 6 and 7 was amplified 

with the Pfu DNA Polymerase (Elpis biotech) and cloned into the pTop Blunt V2 vector 

(Enzynomics, Seoul, Korea). Wild type and mutant sequences were subsequently subcloned 

into the pSPL3 vector after double digestion with EcoRI and XhoI restriction endonucleases. 

Cloned vectors were transfected into COS-7 cells, and total RNA was isolated after 36 h. 

Reverse transcriptase-PCR was performed using the vector primers (SD6: 5’-TCTGAGTC 

ACCTGGACAACC-3′; SA2: 5’-ATCTCAGTGGTATT TGTGAGC-3′). The amplification 

bands were excised from an agarose gel and characterized by sequencing.

Results

Family 1

The proband was a 10-year-old female in a non-consanguineous nuclear family (Fig. 1a). 

The proband had irregular hypoplastic pits and grooves on all permanent teeth (Fig. 1b–d). 

Her remaining deciduous molars exhibited dentin on occlusal surfaces due to the loss of the 

thin enamel by presumably attrition. Panoramic radiograph revealed similarly affected 

developing permanent teeth (Fig. 1e). Her father had many prosthetics, but he reported his 

teeth were not as bad as the teeth of his daughter. Careful examination of the father showed 

several hypoplastic pits and grooves on the remaining permanent teeth (Fig. 1f–h).

LAMB3 mutational analysis of the proband identified a heterozygous mutation 

(NM_000228.2; c.3431C > A) caused by a transversion change from cytosine to adenine 

(Suppl. Fig. 1). This mutation would introduce a premature stop codon [NP_000219.2; p.

(Ser1144*)] in the last exon. This nonsense mutation being located in the last exon would 

escape from the nonsense mediated decay system (NMDS) translating into a truncated 

LAMB3 mutant protein. The father also had this mutation.

Family 2

The proband was an 8-year-old female who was a second child from a consanguineous 

marriage (Fig. 2a). Her enamel was smooth hypoplastic, and the gingival tissue was 
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generally hyperplastic (Fig. 2b–d). The left side deciduous molars (both maxillary and 

mandibular) were ankylosed causing a posterior open bite on the left side. Panoramic 

radiograph showed signs of eruption disturbances for all second permanent molars (Fig. 2e).

Mutation analysis of FAM20A identified a homozygous 2-bp deletion mutation 

(NM_017565.3; c.34_35delCT) in the proband (Suppl. Fig. 2). This mutation would 

introduce a translation codon frameshift changing leucine at amino acid position 12 to 

alanine with a novel 66-amino-acid sequence [NP_060035.2; p.(Leu12Alafs*67)]. This 

mutant transcript with an early termination codon would be degraded by NMDS, and the 

proband would have no functional FAM20A protein at all.

Family 3

The proband was a first child, a 17-year-old female, from a consanguineous family (Fig. 3a). 

She had generalized gingival hyperplasia and a bilateral posterior open bite (Fig. 3b–d). Her 

teeth had generally hypoplastic enamel and black pigmentations. Rough enamel surfaces 

will make it difficult to maintain good oral hygiene. She still had several deciduous teeth 

(the right maxillary deciduous canine, left maxillary deciduous second molar, and left 

mandibular deciduous second molar), and multiple permanent teeth could not erupt into the 

oral cavity (Fig. 3e). The third child, a 7-year-old male, also had a similar clinical phenotype 

except for the retained deciduous teeth (Fig. 3f). A panoramic radiograph (Fig. 3g) showed 

severe pulpal calcification and root malformations (especially in the molars).

FAM20A mutational analysis of the proband revealed a homozygous 5-bp deletion and 

insertion in the donor site of intron 7 (NM_017565.3; c.1109 + 3_1109 + 7delinsTGGTC) 

changing the donor site sequence from GTGAGTT to GTTGGTC (Suppl. Fig. 3). The 

affected brother also had a homozygous mutation. A splicing assay of the wild type vector 

showed a single strong band with normal splicing, while the mutant vector resulted in 

abnormal splicing products (Fig. 4). The longest product had an additional intron and the 

cloning vector sequence after exon 7. The splicing product with a similar length had the 

GTTG sequence after exon 7. The strongest splicing product of the mutant vector had an 

exon 7 deletion, and some splicing products had both exon 6 and 7 deletions. All these 

mutant splicing products would result in a frameshift and introduce an early termination 

codon causing these transcripts to be degraded by the NMDS.

Discussion

Laminin-332 (laminin-5) is a basement membrane component and formed by three subunits 

encoded by LAMA3, LAMB3, and LAMC2 [25]. Recessive mutations in these genes cause 

junctional epidermolysis bullosa (JEB), a syndrome featuring skin fragility with enamel 

hypoplasia [26]. A person with a single allele defect is a carrier of JEB and usually does not 

have a clinical phenotype. However, some heterozygous mutations have been shown to cause 

enamel malformations with characteristic hypoplastic pits and grooves [10, 23, 27–29]. 

These mutations are frameshift or nonsense mutations that can escape from the NMDS. 

Expressed mutant proteins with a truncated C-terminus seem to interfere with the proper 

functioning of the laminin-332 basement membrane beneath ameloblasts by a dominant 

negative mechanism.
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The mutation identified in family 1 (NM_000228.2; c.3431C > A) has been reported before 

in another family [23]. The nucleotide after the mutation position is G, and this change (c.

3432A > G) is a single nucleotide polymorphism (rs1049607) with a 0.463 minor allele 

frequency. Because family 1 in this study and another family in a previous study share the 

same mutation sequence (TAG at the 1144 codon position) and ethnic background, it is 

possible they have inherited it from a common ancestor.

Fam20A, acting as a homodimer, is a pseudokinase that forms a functional complex with 

Fam20C, and this complex is involved in extracellular protein phosphorylation [30, 31]. 

Recessive mutations in FAM20A were identified, for the first time, in a family with 

amelogenesis imperfecta and gingival hyperplasia (AI and gingival fibromatosis syndrome; 

OMIM #614253) [20, 24]. Soon after, it was found that FAM20A recessive mutations cause 

renal calcification as well (Enamel-Renal syndrome; OMIM #204690) [21, 32]. Analysis of 

a Fam20a knockout mouse revealed ectopic calcification in multiple tissues with severe 

calcification in the kidney [33]. This finding was strengthened by a new family with 

pulmonary calcification as well [34].

Both homozygous FAM20A mutations identified in this study (c.34_35delCT in the family 1 

and c.1109 + 3_1109 + 7delinsTGGTC in the family 2) would result in a frameshift 

introducing an early termination codon and therefore be degraded by the NMDS. All 

affected individuals in both families showed a very similar clinical phenotype. Especially 

severe intrapulpal calcification was seen in family 3 as evidence of ectopic calcification (Fig. 

3g). The mutation in family 2 has also been reported before in a family with the same 

genetic background; therefore, it could be a mutational hotspot or an example of the 

identical by descent [24].

In this study, we used the candidate gene approach based on unique clinical phenotypes. In 

family 1, characteristic irregular hypoplastic pits and grooves suggested LAMB3 as a prime 

candidate gene. In families 2 and 3, consanguinity in the pedigree analysis and the clinical 

features such as generalized hypoplastic enamel, gingival hyperplasia, and eruption failures 

in the molar region suggested FAM20A. A similar characteristic phenotype can be seen in 

ENAM mutations as horizontal hypoplastic grooves and in AMELX mutations in affected 

females as vertical irregular hypoplastic grooves due to a lyonization (random X-

inactivation) pattern [35, 36].

In conclusion, we recruited three AI families and performed mutational analysis with the 

candidate gene approach based upon the clinical phenotype and inheritance patterns. 

Mutational analysis successfully identified mutations in LAMB3 and FAM20A that cause 

characteristic enamel malformations with or without other clinical symptoms. The candidate 

gene approach can be a valuable tool to identify the genetic etiology of AI families and 

further strengthen genotype-phenotype correlations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Pedigree and clinical photos of family 1. a Pedigree of family 1. Family members who 

participated in this study are indicated with a plus (+) symbol. An arrow indicates the 

proband, and black symbols indicate the affected individuals. b–d Frontal, maxillary, and 

mandibular clinical photos of the proband at age 11. e Panoramic radiograph of the proband 

at age 10. f–h Frontal, maxillary, and mandibular clinical photos of the father of the proband 

at age 40

Kim et al. Page 9

Clin Oral Investig. Author manuscript; available in PMC 2019 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Pedigree and clinical photos of family 2. a Pedigree of family 2. Family members who 

participated in this study are indicated with a plus (+) symbol. An arrow indicates the 

proband, and the black symbol indicates the affected individual. Numbers in the subject 

symbol indicate the number of siblings. b–d Maxillary, frontal, and mandibular clinical 

photos of the proband at age 8. e Panoramic radiograph of the proband at age 8
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Fig. 3. 
Pedigree and clinical photos of family 3. a Pedigree of family 3. Family members who 

participated in this study are indicated with a plus (+) symbol. An arrow indicates the 

proband, and black symbols indicate the affected individuals. Number in the subject symbol 

indicates the number of siblings. b–d Frontal, maxillary, and mandibular clinical photos of 

the proband at age 17. e Panoramic radiograph of the proband at age 17. f Frontal clinical 

photo of the affected brother (V:3) of the proband at age 12. g Panoramic radiograph of the 

affected brother (V:3) of the proband at age 12
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Fig. 4. 
In vitro splicing assay. A genomic fragment that included exons 6 and 7 was cloned into the 

pSPL3 splicing vector using EcoRI and XhoI restriction endonucleases. Boxes in the 

diagram indicate the exons in the pSPL3 vector. The number of base pairs (bp) of the exons 

and intron is shown below the exon and the intron. RT-PCR with the vector primers (SD6 

and SA2) revealed four weaker amplicons in the mutant vector compared to the single one in 

the wild type vector (WT, wild type; Mut, mutant). Sequencing identified abnormal splicing 

products in the Mut instead of in the normal splicing product in the WT
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