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Summary

Behçet’s syndrome (BS) is a complex disease with different organ involve-
ment. The vascular one is the most intriguing, considering the existence 
of a specific group of patients suffering from recurrent vascular events 
involving the venous and, more rarely, the arterial vessels. Several clinical 
clues suggest the inflammatory nature of thrombosis in BS, especially of 
the venous involvement, thus BS is considered a model of inflammation-
induced thrombosis. Unique among other inflammatory conditions, venous 
involvement (together with the arterial one) is currently treated with  
immunosuppressants, rather than with anti-coagulants. Although many 
in-vitro studies have suggested the different roles of the multiple players 
involved in clot formation, in-vivo models are crucial to study this process 
in a physiological context. At present, no clear mechanisms describing 
the pathophysiology of thrombo-inflammation in BS exist. Recently, we 
focused our attention on BS patients as a human in-vivo model of in-
flammation-induced thrombosis to investigate a new mechanism of clot 
formation. Indeed, fibrinogen displays a critical role not only in inflam-
matory processes, but also in clot formation, both in the fibrin network 
and in platelet aggregation. Reactive oxygen species (ROS)-derived modi-
fications represent the main post-translational fibrinogen alterations re-
sponsible for structural and functional changes. Recent data have revealed 
that neutrophils (pivotal in the pathogenetic mechanisms leading to BS 
damage) promote fibrinogen oxidation and thrombus formation in BS. 
Altogether, these new findings may help understand the pathogenetic bases 
of inflammation-induced thrombosis and, more importantly, may suggest 
potential targets for innovative therapeutic approaches.
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Introduction

Behçet’s syndrome (BS) is a complex disease, accounting 
for several different organ involvements [1]. The vascular 
one is perhaps the most intriguing, as BS is considered 
a model of inflammation-induced thrombosis [2]. BS is 
not a unique disease, as many different clinical phenotypes 
have been described [3]. Among others, the ‘vascular 
cluster’ identifies a specific group of patients suffering 
from recurrent thrombotic events involving the venous 
and, more rarely, the arterial vessels [4].

Several pathophysiological mechanisms suggest the 
inflammatory nature of vascular manifestations in BS. 
Indeed, BS is a ‘neutrophilic vasculitis/perivasculitis’. 
Generally, vascular manifestations occur associated with 
signs of inflammatory activation (i.e. fever and constitu-
tional symptoms). More importantly, both venous and 
arterial involvements are currently treated with immuno-
suppressants (both conventional and biotechnological), 
rather than with anti-platelet or anti-coagulant drugs [5].

Interestingly, only few specific traditional thrombophilic 
factors have been described in BS patients so far, while 
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some immune-mediated pathogenetic mechanisms have 
been suggested [2]. Indeed, procoagulant mechanisms may, 
at least in part, link inflammation and thrombus forma-
tion in BS. In particular, specific components of the 
coagulation cascade (i.e. tissue factor, fibrinogen, thrombin 
and protein C) are able to hyperactivate the immune 
system in BS [6]. Moreover, Factor V Leiden mutation 
is reported to be more prevalent in some BS populations, 
as well as the prothrombin gene mutation [7]. However, 
clear and definite data on the contribution of such factors 
and mutations in thrombo-inflammation in BS are still 
not available to date.

In this context the results of our recent investigation, 
performed on a large cohort of BS patients, highlighted 
a new mechanism in thrombus formation in this condi-
tion [8].

In this review, the main clues (both clinic and patho-
genetic) dealing with the inflammatory nature of thrombo-
inflammation in BS will be briefly described. The main 
general mechanisms linking inflammation and thrombosis 
will be also outlined and, in particular, we will focus our 
attention particularly on fibrinogen modifications and 
consequent altered clot formation secondary to increased 
blood oxidative stress in BS.

Histological, clinical and therapeutic clues 
suggesting thrombo-inflammation in Behçet’s 
syndrome

BS is classified among the vasculitides of variable vessel 
size [9]. However, in contrast to other vasculitides, BS 
is usually characterized by the absence of granulomatous 
inflammatory lesions in the vessel wall. Despite the evi-
dence of vasculitic lesions involving smaller arteries, arte-
rioles and venules, neutrophils and lymphocytes can also 
have a perivascular localization in large vessel involvement 
in BS [7]. Regarding other typical involvements [10–12], 
this histological feature suggests that BS is also a perivas-
culitis, rather than only a vasculitic process.

Deep vein thrombosis (DVT) and superficial venous 
thrombosis (SVT) are the most typical vascular involve-
ments, affecting up to 40% of patients with BS, sometimes 
simultaneously [1,2]. Although more rare, the occurrence 
of venous thrombosis in atypical sites, the presence of 
arterial involvement (mainly aneurysms or pseudo-aneu-
rysms) and the co-existence of venous and arterial involve-
ment are more specific vascular manifestations in BS [2].

Several clinical features indirectly suggest the inflam-
matory nature of vascular involvement in BS. First, the 
vascular manifestations (both venous and arterial) are 
associated with signs of inflammatory activity (i.e. fever, 
constitutional symptoms and an increased acute phase 
response) [13], despite usually without the occurrence of 

other typical disease manifestations (e.g. ocular, neurologi-
cal, etc.). Secondly, 18F-fluorodeoxyglucose positron emis-
sion tomography (FDG-PET) reveals a significant uptake 
in the arterial vessel wall, mainly of aneurysmatic and 
pseudoaneurysmatic lesions [14]. Arterial involvement is 
less frequent compared with venous involvement in BS, 
but the formation of aneurysms and pseudoaneuryms, 
especially of the pulmonary arteries, is a quite specific 
feature of the disease [2]. According to the more recent 
European League Against Rheumatism (EULAR) recom-
mendations, this kind of vascular involvement should 
always be treated with immunosuppressants, in particular 
with corticosteroids and cyclophosphamide as first-line 
treatment, or with anti-tumor necrosis factor (TNF)-α in 
refractory cases [15].

However, these findings can also be found in other 
systemic vasculitides, and are not sufficient to claim BS 
as the model of thrombo-inflammation. Indeed, in ANCA-
associated vasculitis (AAV) and in large-vessel vasculitis 
(LVV), the atherothrombotic events occur especially during 
disease activity [2]. Moreover, FDG-PET is an important 
diagnostic tool in LVV, due to the inflammatory process 
affecting the aorta and the consequent uptake of the arte-
rial wall [16]. Finally, the vasculitic process of the aorta 
and its branches in LVV (either giant cell arteritis and 
Takayasu arteritis) is currently treated with high-dose 
glucocorticoids and/or biologicals [anti-interleukin  
(IL)-6Ra or anti-TNF-α, respectively] [17].

Immunosuppressive treatment for venous 
thrombotic events in Behçet’s syndrome: a clinical 
proof-of-concept of thrombo-inflammation

A unique clinical feature suggesting BS as the best model 
of thrombo-inflammation is certainly the treatment of 
the venous thrombotic events. Indeed, according to the 
pathogenetic concept that thrombotic events in BS are 
sustained by an inflammatory process rather than a throm-
bophilic state, resolution of venous thrombosis is mainly 
achieved with immunosuppressants, rather than with anti-
coagulants. Except for the treatment of cerebral vein 
thrombosis [18], the use of anti-coagulants is generally 
not considered effective in BS for preventing recurrent 
venous thrombotic events [15].

There are three main retrospective studies suggesting 
that in DVT the use of immunosuppressants is able to 
significantly reduce thrombotic recurrences, whereas anti-
coagulants do not reduce the risk of DVT relapse [19–21]. 
In particular, for acute DVT, azathioprine, cyclophospha-
mide or cyclosporin, together with corticosteroids, are 
strongly recommended [15].

More recently, anti-TNF-α antibodies have been emerg-
ing as valuable treatment for different organ involvements 
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in BS patients [22–29]. Of note, we found in a recent 
retrospective study that the anti-TNF-α adalimumab 
(ADA), alone or associated with other traditional immu-
nosuppressive treatments, was significantly more effective 
than disease-modifying anti-rheumatic drugs (DMARDs) 
alone in resolving venous thrombosis, either DVT or SVT 
[28]. Notably, no additional benefits from anti-coagulation 
therapy were shown in our study in patients treated with 
the ADA-based regimen or with DMARDs alone, again 
suggesting the inflammatory nature of venous thrombosis 
in BS [28].

Inflammation and thrombosis: an emerging 
relationship

Inflammation and coagulation are two tightly linked inter-
dependent processes, and each one is able to activate and 
propagate the other [30,31]. However, the mechanisms 
underlying this phenomenon are still to be elucidated.

Inflammation imbalances pro- and anti-coagulant equi-
librium promoting coagulation through several processes. 
First, inflammation involves the activation of several cell 
types (including platelets, leukocytes and endothelial cells) 
and the production of inflammatory molecules as cytokines, 
chemokines, adhesion molecules, tissue factor expression 
and microparticles. Proteases derived from activated leu-
kocytes inhibit anti-thrombin and thrombomodulin pro-
moting a procoagulant state in the endothelium. Secondly, 
inflammation increases procoagulant factors and inhibits 
anti-coagulant pathways and fibrinolytic activity causing 
a thrombotic state. Finally, it is also responsible for 
endothelial damage by an increased expression of tissue 
factor, superoxide-dependent nitric oxide inactivation and 
inhibition of the protein C pathway, resulting in the loss 
of physiological anti-coagulant/anti-aggregant function of 
endothelium. Interestingly, it has been shown that inflam-
mation might directly promote clot formation, even in 
the absence of endothelial damage [32,33]. In this context, 
inflammation-dependent platelet activation plays a fun-
damental role by enhancing tissue factor expression, 
thrombin production and activation of coagulation factors 
leading to a hypercoagulable state [34]. This concept is 
supported by accumulating evidence highlighting the role 
of inflammation in venous thromboembolism (VTE), a 
condition where endothelial damage is not mandatory and 
can occur without the traditional risk factors for athero-
thrombosis [32,33,35].

The existence of an increased thrombotic risk in patients 
with systemic inflammatory diseases (BS, systemic lupus 
erythematosus, AAV, Takayasu arteritis, inflammatory 
bowel diseases, rheumatoid arthritis, Sjögren’s syndrome 
and systemic sclerosis) underlines the link between 

inflammation and thrombosis [2,36–39]. Collectively, the 
results of basic science and clinical epidemiological studies 
confirm the strict relation between inflammation and 
thrombosis [40–42].

The results of clinical trials with anti-inflammatory 
agents reinforce this concept, demonstrating the anti-
thrombotic effect of anti-inflammatory treatment during 
the active phases of several types of diseases. It is now 
accepted that the anti-thrombotic properties of statins, 
beyond their effect on lipids, are likely to be linked to 
their anti-inflammatory properties that are independent 
of changes in cholesterol profile [43]. Indeed, patients 
who achieve lower C-reactive protein (CRP) levels on 
statin therapy have better clinical outcomes regardless of 
low-density lipoprotein (LDL) cholesterol levels [44].

To address the hypothesis that lowering inflammation 
will lower vascular event rates, the CANTOS (Canakinumab 
Anti-Inflammatory Thrombosis Outcomes Study) trial was 
performed. CANTOS was a large-scale placebo-controlled 
trial which used canakinumab as targeted anti-inflamma-
tory agent for the secondary prevention of myocardial 
infarction. This trial, which enrolled more 10 000 thousand 
patients with a previous history of myocardial infarction, 
demonstrated that canakinumab, a human monoclonal 
antibody that selectively neutralizes IL-1β, significantly 
reduces the rates of recurrent myocardial infarction, stroke 
and cardiovascular death in the absence of lipid lowering 
[45]. In particular, in CANTOS, canakinumab treatment 
significantly decreased high-sensitivity C-reactive protein 
(hsCRP) levels and major adverse cardiovascular events 
in comparison with placebo, despite having no effect on 
LDL cholesterol [46]. Clinical benefits were smaller among 
individuals who achieved less robust hsCRP reductions, 
suggesting a key role for inflammation in thrombotic 
process [46].

This, together with other ongoing trials [47] could 
provide fundamental clinical confirmation of the direct 
role played by inflammation in the pathogenesis of vas-
cular events.

Fibrinogen oxidation as a new link between venous 
and arterial thrombosis

Although inflammation-induced arterial thrombosis has 
been known for many years, the relationship between 
inflammation and venous thrombosis has only recently 
been clarified [32,33]. Venous and arterial thrombi have 
been historically considered as being very different in 
terms of composition and structure. While fibrin and 
erythrocytes are the major components of the ‘red clot’ 
in venous thrombosis, ‘white clot’ arterial thrombus has 
been traditionally proposed to be composed mainly of 
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fibrin and platelets. In recent years, much evidence sug-
gests that arterial and venous thrombi have similar com-
position, with a complex fibrin network with entrapped 
erythrocytes, platelets and leukocytes. Only the relative 
content of these elements seems to represent a distin-
guishing feature between venous and arterial clots [48–51]. 
Several studies have demonstrated high erythrocyte content 
in post-myocardial infarction intracoronary thrombi 
[48,49,52] and that erythrocyte content may influence 
thrombus stability [53,54]. At the same time, platelets, 
traditionally considered important components in arterial 
clot, are now also accepted as a main component in 
venous thrombi [55]. These data are supported by evidence 
that treatments usually associated with the prevention of 
arterial thrombosis may also have a role in venous throm-
bosis [56–59]. As a consequence, the classical view of 
separate mechanisms for arterial and venous thrombosis 
has recently been deeply challenged.

Patients with arterial thrombosis have been shown to 
also be at increased risk for venous thrombosis, and over-
lapping risk factors (age, obesity, hypertension, diabetes, 
metabolic syndrome, hypertriglyceridemia) have been 
found to be associated with both arterial and venous 
thrombotic events [32,33]. Furthermore, it has been shown 
that inflammation and platelet activation are also involved 
in the pathogenesis of venous thrombosis [33,60]. In line 
with these observations, many diseases are characterized 
by both venous and arterial thrombosis, such as cancer 
[61–64] and infections [65], as well as anti-phospholipid 
antibody syndrome [66,67], AAV [68–70], LVV [71–73] 
and BS [74,75].

Therefore, it can be speculated that the two vascular 
complications are simultaneously triggered by common 
biological stimuli responsible for activating coagulation 
and inflammatory pathways in both the arterial and venous 
systems.

Fibrinogen and clot formation

Clot formation involves thrombin-mediated cleavage of 
soluble fibrinogen to insoluble polymerized fibrin  
(Fig. 1a). Fibrinogen displays a critical role in the forma-
tion of the clot, both in the fibrin network and in platelet 
aggregation. Clot biochemical features, including its rate 
of formation, structure and mechanical fibrinolytic stabil-
ity, are strictly dependent on fibrinogen.

Fibrinogen is a trimeric340-kDa glycoprotein, primarily 
synthesized in hepatocytes. Upon thrombin-mediated 
cleavage of short N-terminal peptides from the Aα (FpA) 
and Bβ (FpB) chains of fibrinogen, fibrin polymerization 
induces double-stranded protofibril formation followed by 
thickening of protofibril chains and, finally, the formation 

of a fibrin clot [76] which can be monitored spectropho-
tometrically easily and reliably [77]. The initial formation 
of protofibrils  –  monitored as a ‘lag’ phase  –  is charac-
terized by no increase in turbidity. Subsequent lateral 
aggregation of fibrin protofibrils induces a turbidity 
increase whose magnitude is related to the structure of 
the formed clot. Formation of thicker fibers corresponds 
to a greater increase in final turbidity [77].

Several variables such as ionic strength, pH, calcium, 
fibrinogen and thrombin concentrations can deeply influ-
ence clot formation, structure and stability [78,79]. 
Different clot structures are generated in the presence of 
different thrombin concentrations. Highly permeable fibrin 
clots with thick, loosely woven fibrin strands or less per-
meable clots composed of dense networks of relatively 
thin fibrin strands have been reported, depending on 
thrombin concentrations [80]. However, the absence of 
a general consensus on this issue can, at least in part, 
be ascribed to the different experimental conditions used 
in the experiments.

Several studies have shown that clot structure also 
strongly influences the viscoelastic clot properties. In par-
ticular a complex relationship, depending on fiber proper-
ties (such as thickness, length, density, degree of branching 
and extent of cross-linking) between fibrin structure and 
clot stiffness, has been shown [81]. However, discrepan-
cies in the results of the various studies exist. Fibrin 
structure also influences clot susceptibility to fibrinolysis. 
It has been reported that thin fibrin fibers show a slower 
rate of tissue-type plasminogen activator (tPA)-mediated 
plasmin generation, reducing the rate of fibrinolysis [82]. 
Moreover, while thin fibers are lysed more quickly than 
thick fibers, clots composed of thin fibers are more resist-
ant to fibrinolysis than clots composed of thick fibrin 
fibers [83]. Interestingly, clot stiffness results increased 
both in coronary artery disease patients and in subjects 
presenting with a high risk of thrombotic events (smokers 
and diabetic patients). Importantly, stiffer clots, character-
ized by increased fiber density and lower fibrin diameter, 
have been shown to exhibit delayed lysis [84,85]. As a 
whole, these findings indicate the complex achievement 
of reliable experimental conditions for clot structural and 
functional studies.

Among hemostatic proteins, fibrinogen is the main 
target of different types of post-translational modifications 
such as phosphorylation, glycosylation and nitration. In 
addition, reactive oxygen species (ROS)-derived modifica-
tions represent the main post-translational fibrinogen 
alterations responsible for structural and functional changes 
[86].

It is known that biological systems are continuously 
exposed to endogenous and/or exogenous ROS, which at 
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low doses display crucial roles in cell signalling processes, 
while at high doses induce oxidative stress and conse-
quently serious metabolic dysfunctions and damage to 
biological macromolecules [87].

In-vitro evidence has suggested that blood coagulation 
is activated by oxidative stress, although the mechanisms 
that link these events have not been clarified in humans 
[88]. A recent study performed on a group of young 
healthy volunteers exposed to acute  hypoxia,  maximal 
physical exercise (in condition of ‘oxidative stress’), with 
or without anti-oxidant supplementation, found that anti-
oxidant prophylaxis increased thrombin generation which 

was normalized only in the presence of oxidizing 
conditions.

It is well known that ROS can damage proteins through 
carbonyl group formation, hydrogen ion abstraction, pro-
tein–protein cross-linkages formation and protein fragmenta-
tion [89] causing marked alterations in their structure and 
function. Indeed, oxidatively damaged proteins accumulate 
during ageing and as result of a variety of diseases [90,91].

Fibrinogen is a probable target for oxidants relative to 
other plasma proteins [92], and specific sites in each of 
its chains are subjected to oxidative modifications. 
Accordingly, some authors observed the formation of 

Fig. 1. (a) Maintenance of blood fluidity is essential to preserve physiological function of tissues supplying the body with oxygen and other nutrients 
and removing waste products. Hemostasis consists of a series of enzymatic steps activated in response of vessel injury by forming a fibrin plug that 
serves to limit bleeding/hemorrhage. It is affected by many factors, including cellular and plasma components. It starts with platelets adhesion to 
damaged endothelium, and concludes with clot retraction and finally fibrinolysis. Numerous circulating proteins constitutively survey the vasculature 
to prevent unnecessary clot formation or its premature degradation. Under normal physiological conditions a delicate equilibrium is maintained 
between the pathological states of hypercoagulability and hypocoagulability in the circulating blood. (b) Oxidative stress and inflammation as 
interconnected processes that co-exist in the inflamed milieu. Reactive oxygen species (ROS) are released by vascular and inflammatory cells at the 
site of inflammation leading to oxidative damage; conversely, ROS production enhances proinflammatory responses. Our experimental data indicate 
that ROS promote fibrinogen oxidation (carbonylation) leading to fibrinogen secondary structure modifications which affect its biological activity. 
Fibrinogen oxidation induces the build-up of an altered thrombogenic clot mainly characterized by a tight fibrin network composed of filaments with 
slightly decreased fiber size that are resistant to plasmin-induced lysis. This oxidized fibrin network persists in the vascular bed and contributes to 
vascular occlusion and thrombus development. In BS, the use of traditional disease-modifying anti-rheumatic drugs (DMARDs) (mainly 
azathioprine and cyclophosphamide) and/or anti-tumor necrosis factor (TNF)-α (namely infliximab and adalimumab) is effective for the treatment 
of both venous and arterial manifestations. The efficacy of immunosuppressants might be due partly to their ability to interfere with the mechanisms 
described above.
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thin-fibered fibrin clots and the inhibition of fibrin protofi-
brils lateral aggregation [93] upon treatment with hypochlo-
rus acid (a molecule predominantly generated in the plasma 
by neutrophil lysosomal myeloperoxidase) [94]. The formed 
altered clots appear mechanically weak and are paradoxi-
cally less susceptible to fibrinolysis in vitro due to decreased 
clot porosity [95].

Among the oxidative post-translational modifications 
of fibrinogen, dityrosine cross-links formation and marked 
protein carbonyl content have been also detected. These 
alterations exert a deep impact on the kinetics of fibrin 
formation as well as on the structure and biomechanical 
properties of fibrin, ultimately producing dysfunctional 
hemostatic clots.

ROS-induced fibrinogen modification in Behçet’s 
syndrome: an in-vivo proof-of-concept of 
inflammatory thrombus

A recent study, aimed at elucidating the mechanisms of 
inflammation-induced thrombosis, investigated fibrinogen 
oxidative-derived structural and functional modifications 
in a large population of BS patients which represented 
an excellent model of inflammation-induced thrombosis 
(Fig. 1b). Systemic oxidative stress (lipid peroxidation 
markers and protein carbonyls) has been suggested as a 
prognostic factor in vasculitis, particularly in BS [96]. 
Considering the existing relationship among oxidative 
stress, inflammation and endothelial dysfunction [97], 
fibrinogen structure and its possible relationship with 
neutrophil-dependent ROS production was also explored. 
Nicotinamide adenine dinucleotide phosphate hydrogen 
(NADPH) oxidase-derived ROS play fundamental roles 
both in oxidative stress and in inflammation, and in 
phagocytic activity of neutrophils and monocytes [98,99]. 
Consequently, this study not only revealed significantly 
increased oxidative stress markers in blood and in fibrino-
gen fractions purified from BS patients, but also a dramatic 
enhancement in NADPH oxidase activity in the neutrophil 
population of these patients. In line with this, in-vitro 
experiments showed that purified fibrinogen resulted mark-
edly carbonylated when incubated with neutrophils, but 
not with monocytes or lymphocytes, from BS patients. 
In BS patients, fibrinogen carbonyl content significantly 
correlated with neutrophil-derived ROS, but not with 
lymphocyte- or monocyte-derived ROS. These findings 
are in line with the concept that fibrinogen is more prone 
to oxidation than albumin, and upon oxidation clot for-
mation rate tends to decrease [100].

In the same recent study involving a group of BS 
patients the assessment of thrombin catalysed fibrin polym-
erization revealed a slower rate and turbidity (compared 

with healthy controls), which resulted significantly and 
inversely correlated with fibrinogen carbonyl content, thus 
suggesting a direct influence of carbonylation on fibrin 
polymerization. Moreover, in patients, only neutrophil 
(but not lymphocyte or monocyte) ROS production 
inversely and significantly correlated with the polymeriza-
tion kinetic parameters. Fibrinogen secondary structure 
analysis revealed a decrease in α-helix content, with con-
sequent effects on the biological activity of fibrinogen. 
This is in line with other authors, who reported that 
fibrinogen oxidation impairs the capacity of isolated 
fibrinogen to form a fibrin clot under the effect of throm-
bin [101].

To examine another important feature of fibrinogen 
function in relation to carbonylation, in the same study 
fibrin resistance to plasmin-induced lysis was determined 
both in BS patients and controls.

Interestingly, fibrin from BS patients was characterized 
by a marked resistance to plasmin-induced lysis with 
respect to healthy controls. Moreover, fibrin resistance to 
lysis significantly correlated with fibrinogen carbonyl con-
tent and with neutrophil ROS production (but not with 
lymphocyte- or monocyte-derived ROS). These findings 
are consistent with previous studies performed in patients 
with acute coronary syndrome, where it was shown that 
clots composed of dense networks were more resistant 
to lysis. These parameters also correlated with inflamma-
tion and oxidative stress [102].

In BS patients, clot structure was analysed by electron 
and differential interference contrast microscopy. The 
results of these investigations revealed an altered clot 
architecture, mainly characterized by a tight fibrin network 
composed of filaments with slightly decreased average 
fiber size, which was resistant to plasmin-induced lysis 
compared to control subjects (Fig. 2). Thin fibers and 
small pores have been suggested to be typical features of 
thrombogenic clots, but the mechanisms underlying the 
formation of these abnormal fibrin clots have not yet 
been established [103]. Undoubtedly, fibrinogen oxidative 
modification could play an important role in this 
context.

Conclusions

BS is a systemic vasculitis characterized by different disease 
phenotypes, the vascular one being the most intriguing 
for histological and clinical features. Only a few patho-
genetic mechanisms suggest the relationship between 
thrombosis (especially of the venous district) and inflam-
mation. Recently, we suggested a new in-vivo mechanism 
of thrombo-inflammation in a large BS patient population. 
These new data point out that neutrophil activation 
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promotes fibrinogen oxidation and thrombus formation 
in BS. In particular, neutrophil activation leads to NADPH 
oxidase-derived ROS production, which is associated with 
altered fibrinogen structure and impaired fibrinogen func-
tion. Interestingly, all these data were influenced neither 
by the activity status of the disease nor by the presence 
of vascular involvement in the BS cohort of patients, sug-
gesting that BS is per se a model of inflammation-induced 
thrombosis.
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