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Abstract

This is a time of substantial progress in the evaluation and care of patients with idiopathic 

pulmonary fibrosis (IPF). In addition to the approval and widespread availability of the first IPF-

specific therapies, there have been improvements in imaging interpretation and lung biopsy 

methods to enable more expeditious and more accurate diagnosis. Recent advances in identifying 

genetic factors that underlie susceptibility to IPF and affect prognosis have raised the possibility of 

personalized therapeutic approaches in the future. Further, evolving work is elucidating novel 

mechanisms influencing epithelial, mesenchymal, and inflammatory cell responses during the 

injury-repair process, thus advancing understanding of disease pathogenesis. As analytic 

approaches mature, the field is now poised to harness the power of rapidly advancing “omics” 

technologies to further accelerate progress.
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INTRODUCTION

Interstitial lung diseases (ILDs) represent a heterogeneous group of pulmonary parenchymal 

disorders resulting from a variety of environmental insults, systemic diseases, and idiopathic 

conditions. Of the ILDs, idiopathic pulmonary fibrosis (IPF) is the most common and most 

severe. Current estimates are that >100,000 people in the United States and Europe are 

living with IPF (1). These patients have an average life expectancy of 3–5 years after 

diagnosis in the absence of lung transplantation. While morbidity and mortality associated 

with this disease remain unacceptably high, there has been rapid progress in a number of 
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areas over the last several years, including improved approaches for diagnosis, development 

of two therapies that have been approved by the US Food and Drug Administration (FDA), 

and identification of underlying genetic predisposition. The term IPF has been in common 

use since the 1970s and is linked to the pathological entity of usual interstitial pneumonia 

(UIP), which is defined by predominant subpleural fibrosis with fibroblastic foci, temporal 

heterogeneity, and microscopic honeycombing. Understanding of the pathobiology of IPF 

continues to evolve, with strong evidence supporting the concept that repetitive injury to 

susceptible alveolar epithelial cells (AECs) drives pathological interactions with fibroblasts, 

leading to excessive matrix deposition that destroys gas-exchanging units. Progress in 

understanding and treating IPF has led some investigators to call for renaming this disease to 

better align with current understanding of disease pathogenesis, as well as its relationship 

with other ILDs (2). This review focuses on areas of recent progress and highlights areas 

where more work is needed.

CURRENT APPROACH TO DIAGNOSIS

Patients with IPF present with chronic exertional dyspnea, cough, bibasilar inspiratory 

crackles, and sometimes digital clubbing. IPF patients are more commonly male than 

female, frequently have a tobacco smoking history, and are typically greater than 60 years 

old. Pulmonary function testing reveals evidence of restriction and reduced diffusing 

capacity for carbon monoxide. A diagnosis of IPF requires exclusion of pneumoconiosis, 

hypersensitivity pneumonitis, drug-induced interstitial lung disease, and rheumatologic 

disease. High-resolution computerized tomography (HRCT) scanning is now the primary 

diagnostic modality for evaluating patients with suspected IPF.

Although heterogeneity in radiologic appearance, pathology, and patient characteristics can 

make the diagnosis of IPF challenging, the approach to diagnosis of IPF is becoming more 

standardized. In 2011, the American Thoracic Society (ATS), the European Respiratory 

Society (ERS), the Japanese Respiratory Society (JRS), and the Latin American Thoracic 

Association (ALAT) jointly issued clinical practice guidelines (3). The ATS/ERS/JRS/ALAT 

guidelines categorized HRCT appearance as (a) UIP pattern, (b) possible UIP pattern, or (c) 

inconsistent with UIP pattern based on defined CT scan criteria. The UIP pattern category 

was defined as subpleural basal predominance of reticular abnormalities and honeycombing 

with or without traction bronchiectasis, and the absence of features inconsistent with the UIP 

diagnosis. The possible UIP pattern category was assigned if honeycombing was absent. 

Based on high-quality evidence that HRCT appearance can be highly specific for IPF, these 

guidelines indicated that the presence of a UIP pattern in combination with appropriate 

history and physical exam was sufficient for IPF diagnosis. Surgical lung biopsy was 

suggested for cases where IPF was suspected but the HRCT appearance did not show the 

UIP pattern. Using this approach, only about half of individuals with IPF/UIP have HRCT 

scans that are read as having a UIP pattern (4), so a large number of patients require 

additional diagnostic studies.

A recent Fleischner Society white paper (4) proposed a modification of these diagnostic 

criteria taking into account the clinical probability of IPF, which in increased in those who 

are older than 60, are current or former smokers, and have no history of other potential 
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causes of fibrosis. Under these recommendations, the HRCT pattern is categorized as 

definite UIP, probable UIP, pattern indeterminate for UIP, or features most consistent with 

non-IPF diagnosis. These guidelines suggest that a probable UIP pattern in which 

honeycombing is absent could still be diagnostic for UIP if the clinical probability of IPF is 

high. This classification also suggests that some patients who would be identified as 

inconsistent with UIP pattern under the 2011 guidelines could have a reasonable likelihood 

of UIP on biopsy; therefore, some patients in the category of pattern indeterminate for UIP 

could still benefit from biopsy if there is high clinical suspicion.

An increasingly frequent occurrence is the detection of asymptomatic interstitial changes on 

abdominal or chest CT imaging obtained for other purposes, as it is now recognized that up 

to 7% of former tobacco smokers over 50 years of age have identifiable interstitial 

abnormalities (5, 6). Although these interstitial changes can progress, development of 

clinical symptoms over five-year intervals appears infrequent in unselected populations (7). 

These patients present a challenge for clinicians, as there is potential for early diagnosis and 

treatment but also risk of overdiagnosis of ILD/IPF. Several ongoing cohort studies have 

been designed to provide more clarity as to which patients with early asymptomatic 

interstitial changes on CT warrant further evaluation and/or early treatment (NCT03437486, 

NCT03478553).

The recommended modality for lung biopsy is also evolving. While thoracoscopic biopsy is 

still the standard approach, in-hospital mortality is in the range of 1.7% for elective 

procedures and as high as 16% for nonelective procedures (8, 9). Although traditional 

transbronchial biopsies have limited utility, transbronchial cryobiopsy is emerging as an 

alternative to surgical biopsy. This procedure results in substantially larger biopsies than 

transbronchial forceps, and a successful diagnosis can be made in 70–80% of cases (10). 

This procedure, however, is not well standardized and is currently best used at experienced 

centers. In inexperienced hands, the diagnostic yield may not be sufficient, and the risk of 

bleeding and pneumothorax can be substantial.

Although the most recent clinical practice guidelines do not recommend serologic evaluation 

for patients with suspected IPF, emerging evidence suggests there may be a distinct 

subgroup of patients who meet current IPF criteria but have more prominent features of 

autoimmunity and a better prognosis (11). Further work will be needed to refine 

classification of these patients and understand whether distinct mechanisms are responsible 

for their disease.

Because of the uncertainty inherent in the clinical, radiological, and pathological evaluation 

of patients with suspected IPF, multidisciplinary conferences with interactions among 

clinicians, radiologists, and pathologists are increasingly seen as necessary for consistent 

evaluation of patients with ILD. Several studies have shown that multidisciplinary discussion 

increases diagnostic confidence and may change the final consensus diagnosis in up to 20% 

of cases (12). However, outside of academic referral centers, access to multidisciplinary 

conferences is limited. One promising approach calls for adopting the “virtual 

multidisciplinary team” model (13) from cancer care centers in order to rapidly expand 

access and improve diagnostic standardization.
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Since an accurate diagnosis of IPF has implications for prognosis and treatment, 

development of specific biomarkers would be beneficial if they could limit the need for 

surgical biopsy and improve specificity using noninvasive or minimally invasive techniques. 

To date, individual protein biomarkers in blood or bronchoalveolar lavage have not proven to 

be sensitive or specific enough to improve the accuracy of diagnosis of IPF. Several 

investigators have studied transcriptional signatures in peripheral blood cells and shown that 

these differ between IPF patients and controls (14–16), but the potential utility of the 

peripheral blood transcriptome in IPF diagnosis is uncertain. A more promising approach 

may be to utilize transcriptional profiling of samples obtained by transbronchial biopsy (17). 

Several studies have now used a machine learning approach to develop algorithms with high 

specificity for UIP/IPF that could prove to be clinically useful for improving diagnostic 

accuracy and minimizing the need for surgical biopsy (18, 19).

CLINICAL ADVANCES AND ONGOING CHALLENGES

The approach to treatment of ILD has changed dramatically over the last several years. The 

PANTHER-IPF study published in 2012 showed not only that immune-suppressive therapy 

is ineffective in IPF but that the combination of prednisone, azathioprine, and N-acetyl 

cysteine (NAC) is harmful (20). This study was followed by landmark studies in 2014 

indicating that two antifibrotic therapies, pirfenidone (21) and nintedinab (22), were 

effective in reducing the decline in forced vital capacity (FVC) in patients with moderately 

advanced IPF. These studies led to FDA approval of both drugs. Nintedinab is an 

intracellular tyrosine kinase inhibitor. Pirfenidone is an antifibrotic molecule whose target(s) 

remains uncertain; however, this drug has been shown to reduce fibroblast proliferation and 

differentiation (23). Although each of these treatments has substantial gastrointestinal side 

effects, it is becoming clear that most patients can tolerate these therapies for an extended 

period and that continued therapy remains effective at reducing FVC decline (24, 25). In 

addition, new studies have suggested that patients with milder disease (FVC > 90% 

predicted) have similar reduction in FVC decline compared to patients with more advanced 

disease, suggesting that early treatment is warranted (26–28). While some investigators have 

questioned the relevance of reduced FVC decline as an important surrogate endpoint for 

clinical efficacy in IPF (28a), pooled analyses of clinical trials with pirfenidone (which has 

been studied in more patients than nintedanib) suggest that long-term treatment modestly 

reduces all-cause and IPF-related mortality (29). This finding suggests that FVC decline is a 

relevant surrogate endpoint and that these drugs may have long-term disease-modifying 

effects. However, neither drug has been shown to reduce symptoms or improve quality of 

life for patients with IPF. At present, there is no compelling reason to choose one drug over 

the other in most patients, and patient preference related to administration and potential side 

effects may sway the choice of treatment. Available data do not provide clear guidance as to 

the approach to treating a patient who is progressing on pirfenidone or nintedanib. While in 

practice many experts recommend switching to the other agent, criteria for defining 

treatment failure have not yet been established. Further, an obvious question is whether 

combination therapy might have added benefit. Although this remains to be answered, the 

INJOURNEY trial has recently shown that combination therapy is feasible and tolerable 

(30).
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A 2015 update to the clinical practice guidelines for IPF by ATS/ERS/JRS/ILAT (31) gave 

conditional recommendations for use of both pirfenidone and nintedinab and recommended 

against use of other therapies tested to date, with the exception of antacid therapy, which has 

been suggested as an interdiction to reduce the injurious effects of gastric acid aspiration in 

this disease. Despite some contradictory data (32), use of proton pump inhibitors or 

histamine-2 receptor antagonists was recommended on the basis of retrospective studies. For 

patients with end-stage or progressive disease, lung transplantation remains the treatment of 

choice. Available data suggest that IPF patients who undergo bilateral lung transplantation 

may have improved survival compared to those who undergo single lung transplantation 

(33).

Several important questions related to the care of IPF patients remain unanswered. Acute 

exacerbations remain a major cause of morbidity and mortality among IPF patients, and 

there has been limited progress towards understanding the causes, mechanisms, and optimal 

treatment of these life-threatening disease complications (33a). Pulmonary hypertension is 

common in severe IPF and leads to worse outcomes (34), yet it is uncertain whether treating 

secondary pulmonary hypertension could be beneficial, and studies to date have been 

negative. In addition, obstructive sleep apnea and sleep-disordered breathing are vastly 

overrepresented in the IPF population (35), often in the absence of typical symptoms (36), 

and some investigators have suggested there may be reason to perform sleep studies on all 

IPF patients (36a). However, it remains to be seen whether obstructive sleep apnea treatment 

impacts disease outcome. Exercise training can improve six-minute-walk distance in patients 

with IPF (37), but whether this intervention has durable effects requires additional study. 

Another important question is whether pirfenidone and nintedinab, approved for IPF, have 

efficacy in other forms of ILD. Numerous ongoing trials are addressing this issue.

Although there is a clear need for additional therapeutic options, the results of most recent 

studies involving new agents have been disappointing. A large randomized placebo-

controlled study targeting lysyl oxidase-like 2 (LOXL2), which catalyzes collagen cross-

linking, was terminated early for futility (38). A randomized study of CC-chemokine ligand 

2 (39), which regulates recruitment of monocyte-derived macrophages, was also stopped 

early, and a randomized study of an anti-IL-13 monoclonal antibody did not achieve efficacy 

endpoints (40). However, despite these results, the field of IPF clinical research has been 

buoyed by the introduction of pirfenidone and nintedinab, and more studies with novel 

therapeutics are planned or ongoing. Some studies have shown promising early-phase data 

(41).

An important issue in the field of IPF clinical studies relates to the design of future phase III 

clinical trials. Should potential therapies be evaluated in direct comparison to current 

therapies or as add-on therapies to one of the approved agents? This issue is especially 

relevant since many investigators believe that rational combination therapies targeting both 

upstream factors in the injury-repair process and fibroblast activity/matrix deposition are the 

best strategy for achieving maximal efficacy. In addition, given the rapid advancement in 

understanding of genetic susceptibility to IPF (discussed below), it will likely be important 

to stratify patients in future studies based on genetic variables. The best example of the 

potential importance of this approach to date is a re-evaluation of the PANTHER-IPF study 
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in which patients were genotyped for common single-nucleotide polymorphisms (SNPs) 

associated with risk for IPF. These investigators found a significant interaction between 

response to NAC therapy and a SNP in TOLLIP that correlated with efficacy in this 

subgroup (42), suggesting that personalized pharmacogenetics approaches could be a 

productive strategy for testing new therapies.

PROGRESS IN UNDERSTANDING GENETIC PREDISPOSITION TO 

IDIOPATHIC PULMONARY FIBROSIS

It is now recognized that IPF is a gene-by-environment disease with a heterogeneous set of 

susceptibility genes, along with an ill-defined group of environmental risk factors that 

includes tobacco smoking. Both common SNPs and rare genetic mutations have been linked 

to development of IPF (Table 1) (43). To assess the role of common genetic variation in IPF, 

several genome-wide association studies (GWAS) have now been performed (44–46), 

resulting in identification of SNPs at 17 different loci that associate with development of 

IPF, most notably in the promoter region of the Mucin 5B gene, MUC5B (47). This SNP 

(rs35705950), which has now been confirmed in multiple studies, is located adjacent to a 

FOXA2 binding site in a region of the MUC5B promoter that is differentially methylated in 

IPF (48). The minor (T) allele is present in ~18% of the Caucasian population, compared to 

60–70% of IPF patients of European ancestry and is associated with increased MUC5B 
mRNA expression in normal (although not IPF) lungs (47). Although minor allele carriers of 

rs35705950 have increased risk of developing disease, IPF patients who carry the risk allele 

appear to have slower disease progression than noncarriers (49). rs35705950 is much rarer 

among IPF patients of Asian ancestry (49a), underscoring a need for further study of genetic 

risk for IPF in ethnically diverse populations. Animal studies have suggested that MUC5B 
regulates airway host defense (50); however, the mechanisms by which altered MUC5B 
expression influences fibrotic remodeling remain uncertain.

Information regarding rare genetic variants has been generated primarily from studies in 

individuals with the familial form of IPF, known as familial interstitial pneumonia (FIP). 

Currently identified disease-associated genes fit into either the telomerase pathway 

[telomerase reverse transcriptase (TERT) (51, 52), regulator of telomere elongation helicase 

(RTEL1) (53–55), telomerase RNA component (TERC) (51, 52), dyskerin (DKC1) (57), 

telomere interacting factor 2 (TINF2) (59), poly(A)-specific ribonuclease (PARN) (55, 60)], 

nuclear assembly factor 1 (NAF1) (60a) or the surfactant protein pathway [surfactant protein 

C (SFTPC) (61–63), surfactant protein A2 (SFTPA2) (64), and ATP-binding cassette 

member A3 (ABCA3) (65, 66)]. Our current estimate is that 15–20% of FIP families share a 

loss-of-function mutation in one of the telomerase pathway genes, with TERT and RTEL1 
being the most common (43). Rare genetic variants in the surfactant protein pathway are 

much less common in FIP, accounting for no more than 1–2% of cases. Patients with 

telomerase pathway rare variants have very short telomeres as measured in white blood cells, 

more rapid disease progression, and often other manifestations of the short-telomere 

syndrome, including liver and bone marrow disease (51, 52, 67, 68).
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The degree of similarity in the genetic underpinnings of familial and sporadic IPF has been 

an unresolved question in the field. The prevalence of the MUC5B SNP minor allele appears 

to be similar in patients with familial and sporadic IPF (47), suggesting that common genetic 

variants are shared in both forms of the disease. For rare genetic variants, prior studies have 

shown that mutations in the surfactant protein pathway are uncommon in sporadic IPF (69). 

In contrast, recent data indicate that rare variants in the telomerase pathway occur at a 

relatively high frequency in patients with sporadic IPF. A recent study using whole-exome 

sequencing data from 262 subjects with sporadic IPF and unaffected controls found that rare 

variants in TERT, RTEL1, and PARN were overrepresented in sporadic IPF cases (70). We 

recently reported data from whole-genome sequencing of 1,510 patients with sporadic IPF 

and demonstrated that rare variants in TERT, RTEL1, TERC, and PARN were present in 

~8.5% of IPF patients, significantly higher than the percentage of control populations (71). 

In addition, this study identified an interaction between rare variants in TERT and the 

MUC5B promoter SNP. These findings showed that the MUC5B risk allele was substantially 

less common in IPF patients who harbored a TERT rare variant than in IPF patients without 

a telomerase mutation, thus suggesting that the MUC5B polymorphism and TERT rare 

variants may be separable, independent risk pathways for development of IPF. The finding 

that rare genetic variants in telomerase pathway genes occur frequently in sporadic IPF 

points to a potential role for genetic testing. We recently published recommendations for 

genetic testing in familial IPF (72), and ongoing discussions regarding the role for genetic 

testing in sporadic IPF are warranted.

Although increasing knowledge regarding the genetics of ILD has not yet translated to 

improved treatment approaches, identification of disease-associated genes has enhanced 

understanding of the pathobiology of IPF. The identification of a mutant form of surfactant 

protein C that segregated with disease in a large FIP family in 2002 (61) led to the 

identification of endoplasmic reticulum (ER) stress as a common abnormality in IPF 

epithelium that likely contributes to disease pathogenesis through regulation of epithelial 

cell survival and repair after injury (73–75). Likewise, the description of telomerase pathway 

mutations in FIP in 2007 (51, 52) led to the identification of short telomeres as a common 

phenotype in both familial and sporadic IPF. Overall, peripheral blood cell telomere length is 

much shorter in IPF than in other chronic degenerative and inflammatory diseases. Short 

telomeres in peripheral white blood cells (<10th percentile adjusted for age) are identified in 

at least a third of patients with familial and sporadic IPF (67, 68). Short peripheral blood 

telomeres are an important biomarker that is independently associated with a worse 

prognosis (76). Telomere length measured in type II AECs, in contrast to peripheral blood 

cells, is uniformly reduced in IPF (58, 67) and may not correlate well with peripheral blood 

telomere length (77). A recent study shows that telomere shortening in the lungs is limited to 

AECs, and telomeres are shorter in cells from fibrotic areas compared to nonfibrotic areas in 

the IPF lung (79). Although the interpretation of the studies is not entirely clear, one 

explanation for these findings could be that peripheral blood telomere length primarily 

reflects genetic risk, whereas telomere shortening in the alveolar epithelium is a common 

factor in disease progression. Severe reduction in telomere length is known to result in 

senescence and cell cycle arrest; however, the exact mechanisms relating telomerase 

mutations and telomere shortening to fibrotic remodeling in the lung are still being explored. 
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Although prior animal model studies were disappointing in explicating telomere-related 

disease mechanisms, two recent papers have shown that epithelial specific deletion of the 

shelterin protein telomere repeat binding factor 1 (TRF1) results in spontaneous fibrotic 

remodeling with evidence of DNA damage and accumulation of senescent lung epithelial 

cells (80, 81).

Despite rapid progress in understanding the genetics of pulmonary fibrosis, much remains 

unknown. The underlying genetic predisposition is unknown in 80% of FIP patients, and 

current evidence suggests that a variety of genes may be involved, making identification of 

additional disease-associated genes challenging. In addition, the relationship between rare 

and common genetic variants is incompletely understood; however, an important clue might 

be that several common polymorphisms in telomere-associated genes, including TERT, 

TERC, and OBFC1, are overrepresented in IPF (44), suggesting that combinations of 

common and rare genetic variants could work in concert to regulate disease-associated 

phenotypes like telomere shortening. Further progress in the genetics of IPF will likely 

require large, well-phenotyped cohorts with expanded genetic search space (i.e., whole-

genome sequencing) to investigate promoter, intronic, and other regulatory regions, coupled 

with assessment of gene expression data and in vitro functional evaluation of individual 

genetic variants.

EVOLVING UNDERSTANDING OF IDIOPATHIC PULMONARY FIBROSIS 

PATHOGENESIS

In UIP, collagen deposition in the distal lung parenchyma is thought to occur in association 

with accumulation of activated (myo)fibroblasts in areas subjacent to the epithelial surface, 

which is composed of hyperplastic type II AECs or epithelium with a bronchiolar 

appearance. Collapse of remodeled alveoli creates focal areas of fibrosis and stretches the 

adjacent lung parenchyma, resulting in microhoneycombing and traction bronchiolectasis, 

which are characteristic of the disorder. In addition to AECs and fibroblasts, inflammatory 

cells are thought to contribute to the pathogenesis of this disorder by modulating epithelial–

fibroblast interactions. The predominant hypothesis explaining disease pathogenesis is that 

repetitive, environment-derived (micro)injuries to susceptible AECs result in increased cell 

death, impaired re-epithelialization, and pathological interactions with fibroblasts that lead 

to persistent activation with excessive collagen and matrix production. AEC susceptibility is 

thought to be related to genetic predisposition, aging, or senescence. This paradigm has been 

bolstered in recent years by genetic data and preclinical models showing that epithelial 

injury can drive subsequent fibrosis.

The importance of stress responses modulating injury-repair responses in AECs has been an 

area of active investigation in IPF, and altered mitochondrial function has emerged as a 

potential factor in AEC dysfunction. In AECs, expression of the mitochondrial protective 

factor PTEN-induced putative kinase 1 (PINK1) is reduced by aging and ER stress (82), 

resulting in accumulation of damaged mitochondria and decreased cell viability, both of 

which are characteristic of AECs in IPF. Recently, it was shown that activating transcription 

factor 3 (ATF3) can mediate downregulation of the PINK1 promoter (83), thus identifying a 
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mechanism linking these processes. Impairment of mitochondrial bioenergetics potentially 

leads to a feedback loop with persistent ER stress that facilitates fibrotic remodeling. In this 

regard, it was recently shown that iodothyronine deiodinase 2 (DIO2), an enzyme that 

activates thyroid hormone, is increased in lungs of patients with IPF (84). This study also 

showed that DIO2-deficient mice had more severe fibrosis following bleomycin treatment 

and that supplementation with active thyroid hormone reduced fibrosis and improved 

mitochondrial bioenergetics through interactions with peroxisome proliferator-activated 

receptor γ coactivator α (PGC-1α) and PINK1 (84). Together, these studies (82–84) suggest 

that interventions to improve mitochondrial function in AECs could reduce vulnerability of 

these cells to injury, thus reversing fibrotic susceptibility.

Recovery from injury of the distal lung requires proliferation and differentiation of AECs to 

reestablish barrier and gas exchange functions. Identification of subpopulations of AECs that 

are responsible for regeneration and repair of the injured alveolus is an area of intense 

interest. Several recent high-profile papers have markedly advanced the field by identifying 

a progenitor cell niche for AECs that appears to be regulated by Wnt signaling (85, 86), 

along with other pathways (87), and may be critical for AEC self-renewal and restoration of 

homeostasis after injury.

Pathological persistence and activation of fibroblasts are responsible for the excess collagen 

and other matrix products in IPF. Although the origin of pathogenic fibroblasts remains a 

topic of debate, it was recently shown that the transcription factor T-box gene 4 (TBX4) is 

an important lineage marker for myofibroblasts that participate in lung fibrosis (88). In 

addition, it is increasingly recognized that extracellular matrix is functionally abnormal in 

IPF and may itself drive fibroblast activation (89). Increased matrix stiffness has been shown 

to activate fibroblasts via mechanosensing pathways (90), resulting in a feed-forward 

mechanism of progressive fibrotic remodeling once architectural distortion reaches a tipping 

point.

In addition to epithelial cells and fibroblasts, recent progress has focused on elucidating the 

role of macrophages in mediating lung fibrosis. Recent papers have indicated that production 

of transforming growth factor–β (TGF-β) by alternatively activated macrophages plays an 

important role in fibroblast activation (91, 92). Also, an atypical monocyte population, 

identified as segregated-nucleus-containing atypical monocytes (SatM) (93), was shown to 

activate fibroblasts through non-TGF-β-dependent mechanisms during lung fibrosis, thus 

indicating that several subpopulations of monocytes/macrophages could be involved in 

regulation of the fibrotic process.

FUTURE DIRECTIONS

We have highlighted recent progress in improving IPF diagnosis and treatment, defining the 

underlying genetic susceptibility, and advancing understanding of disease pathogenesis. This 

is a time of rapid progress in IPF, and there are a number of new techniques and approaches 

whose promise is yet to be fully realized. Expression profiling of lung and peripheral blood 

cells has been helpful in identifying pathways that are dysregulated in IPF; however, new 

techniques such as single-cell RNA sequencing show promise to elucidate key factors that 
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contribute to profibrotic interactions between epithelial (94, 95), mesenchymal (96), and 

immune/inflammatory cells. This approach can be layered onto next-generation sequencing 

data, epigenetic data, and other “omics” information to elucidate a more complete picture of 

the pathobiology of IPF. Advances in primary cell and organoid culture have the potential to 

provide important information about cellular interactions that regulate differentiation and 

reparative capacity. Together, these approaches hold promise for identifying disease-relevant 

pathways and cellular phenotypes that can be targeted for therapeutic benefit.
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