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Abstract. Radiomic features extracted from magnetic resonance (MR) images have potential for diagnosis and
prognosis of breast cancer. However, presentation of lesions on images may be affected by biopsy. Thirty-four
nonsize features were extracted from 338 dynamic contrast-enhanced MR images of benign lesions and luminal
A cancers (80 benign/34 luminal A prebiopsy; 46 benign/178 luminal A postbiopsy). Feature value distributions
were compared by biopsy condition using the Kolmogorov–Smirnov test. Classification performance was
assessed by biopsy condition in the task of distinguishing between lesion types using the area under the receiver
operating characteristic curve (AUCROC) as performance metric. Superiority and equivalence testing of
differences in AUCROC between biopsy conditions were conducted using Bonferroni–Holm-adjusted signifi-
cance levels. Distributions for most nonsize features for each lesion type failed to show a statistically significant
difference between biopsy conditions. Fourteen features outperformed random guessing in classification. Their
differences in AUCROC by biopsy condition failed to reach statistical significance, but we were unable to prove
equivalence using a margin of ΔAUCROC ¼ �0.10. However, classification performance for lesions imaged
either prebiopsy or postbiopsy appears to be similar when taking into account biopsy condition. © 2019 Society
of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.3.031408]

Keywords: radiomics; computer-aided diagnosis; breast cancer; magnetic resonance imaging; biopsy.

Paper 18203SSR received Sep. 13, 2018; accepted for publication Jan. 14, 2019; published online Feb. 18, 2019.

1 Introduction
Radiomic features, such as those describing lesion shape, mor-
phology, texture, and kinetics, extracted from breast magnetic
resonance (MR) images have been shown to be useful for breast
cancer diagnosis and prognosis.1–4 In clinical practice, breast
MR images may be acquired before or after biopsy of a breast
lesion.

MR imaging may be done postbiopsy if MRI is used for
assessing extent of disease and/or treatment planning. For exam-
ple, if a lesion is detected using MR imaging as part of a (high-
risk) screening program, imaging is usually done prebiopsy. On
the other hand, if a lesion is first detected through another
means, e.g., through palpation or mammography, or if MR im-
aging is used for treatment planning, the images are acquired
postbiopsy. While an early study published in 2004 of a
small number of cases (less than 40) suggested that core-needle
biopsy performed preimaging did not affect the clinical efficacy
of MR for breast cancer evaluation,5 the sequence of imaging
with respect to biopsy is of interest because it has been demon-
strated that biopsy procedures can introduce changes to the
lesion, such as hemorrhage and cyst formation. Biopsy may
also result in epithelial displacement6 and implantation,7

which may progress to neoplastic seeding of tumor cells.8

To our knowledge, there has been no investigation into the
possible effect of biopsy on the use of radiomic features for
breast cancer assessment, i.e., diagnosis and prognosis. It is
our hypothesis that similar radiomic features are useful in lesion
characterization and classification by biopsy condition. The pur-
pose of this study was to investigate radiomic features of benign
lesions and luminal A cancers extracted from dynamic contrast-

enhanced (DCE) MR image series and compare the distributions
of feature values pre- and postbiopsy, as well as their perfor-
mance in distinguishing between benign lesions and luminal
A cancers relative to biopsy condition. The study focused on
luminal A breast cancers, as opposed to cancers of other molecu-
lar subtypes, because it has been shown that values of some
radiomic features differ for different molecular subtypes.2

Therefore, the study investigated differences in feature value
distributions by biopsy condition of luminal A cancers and
of benign lesions, and the associated classification performance.

2 Methods
DCE-MR images, acquired at either 1.5 T or 3.0 T using Philips
scanners at the University of Chicago Medical Center during the
time period of 2005 to 2016, were collected retrospectively
under IRB/HIPAA compliance. The inclusion criteria were
that the biopsy condition was known, i.e., that it was known
whether the MR imaging was performed pre- or postbiopsy,
and that each lesion displayed mass enhancement (as opposed
to nonmass enhancement). We included one image series for
each lesion.

For the current study, a subset of the collected dataset was
used including all benign lesions and luminal A breast cancers
(Table 1). Lesion pathology, i.e., the ground truth, was deter-
mined by biopsy, except in some cases in which lesions were
deemed to be benign without the use of biopsy, as a part of
screening. Breast cancers were defined to be of molecular sub-
type luminal A when they were estrogen-receptor positive, pro-
gesterone-receptor positive or negative, human epithelial growth
factor negative, and low in the protein Ki-67.

The benign lesions were comprised of a variety of subtypes
according to pathology reports (Fig. 1).
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The voxel size varied between the MR images, but for
most lesions (86% and 85% of benign lesions imaged pre-
and postbiopsy, respectively, and 97% and 94% of luminal A
cancers imaged pre- and postbiopsy, respectively), the voxel
size was between 1 and 1.5 mm3. To assess the impact of
voxel size in the study, the voxel size distribution was com-
pared between lesion types for each biopsy condition, using
the Kolmogorov–Smirnov test9,10 to determine whether the
two groups being compared were drawn from the same
distribution.

The lesions were automatically segmented using a fuzzy C-
means method requiring only the manual indication of a seed-
point inside the lesion (Fig. 2).11

Thirty-eight quantitative radiomic features describing the
categories of size, shape, and morphology,12 texture enhance-
ment,13 and kinetic curve assessment and enhancement variance
kinetics14 were extracted automatically from the MR images of
the lesions (Table 2). Size features of the groups of lesions were
calculated and reported below but were excluded from statistical
analysis and conclusions because we were interested in the
impact of biopsy on features other than size. Moreover, in a pre-
vious study, a radiomic signature for the classification of benign
lesions and luminal A breast cancers that excluded size features
obtained performance equivalent to that of a signature that
included size.15 Thus, the work described here involves com-
parison of 34 nonsize features.

We performed two types of analyses: the first investigating
the distribution of feature values and the second one investigat-
ing classification performance of individual features in the task
of distinguishing between benign breast lesions and molecular
subtype luminal A breast cancers.

In the first analysis, the first step was to visually compare
feature values for all four lesion groups: benign prebiopsy,
benign postbiopsy, luminal A prebiopsy, and luminal A post-
biopsy. For visualization purposes, for each feature the values
f were normalized to fnorm with a range between 0 and 1
through

EQ-TARGET;temp:intralink-;sec2;326;455fnorm ¼ f − fmin

fmax − fmin

;

where fmin and fmax are the minimum and maximum values for
that feature for the entire set of lesions, respectively. The second
step was to quantitatively compare feature values for the two
lesion types, i.e., separately for benign and for luminal A lesion
types, by biopsy condition using the Kolmogorov–Smirnov
test9,10 to determine whether the two groups being compared
were drawn from the same distribution. For each feature, the
feature value distribution for the benign prebiopsy group was
compared to that for the benign postbiopsy group and the dis-
tribution for the luminal A prebiopsy group was compared to
that for the luminal A postbiopsy group. This was done to assess
whether biopsy had a significant effect on feature value distri-
butions. Because of the number of comparisons (Nf ¼ 34 fea-
tures), the Bonferroni–Holm correction16 was applied to features
only when the p-value for the Kolmogorov–Smirnov test was
less than 0.05. For these features, we adjusted the significance
level for each feature based on a significance level α ¼ 0.05 for
a single comparison. If for a given feature, for a given lesion
type, the p-value from the Kolmogorov–Smirnov test was
less than its adjusted significance level, the feature failed to
demonstrate a statistical significant difference between pre-
and postbiopsy conditions and was considered to be potentially
robust with respect to biopsy condition for that lesion type.

In the second analysis, the classification performance in the
task of distinguishing benign versus luminal A lesions was com-
pared by biopsy condition, that is, for each feature the classifi-
cation performance for the prebiopsy condition was compared to
that for the postbiopsy condition. This was accomplished using
two methods. First, the area under the receiver operating char-
acteristic curve17 (AUCROC) served as a performance metric
and was estimated from the nonparametric Wilcoxon area.
Bootstrapping (2000 iterations) was used to determine, for

Table 1 Description of the database: number of cases (with percent-
ages in parentheses) per lesion type by biopsy condition, by field
strength of image acquisition, and maximum linear size (radiomic fea-
ture S4, described as follows).

Biopsy condition

Prebiopsy Postbiopsy

Lesion type

Benign 80 (70%) 46 (21%)

Luminal A 34 (30%) 178 (79%)

Field strength of acquisition

Benign n ¼ 80 n ¼ 46

1.5 T 43 (54%) 30 (65%)

3.0 T 37 (46%) 16 (35%)

Luminal A n ¼ 34 n ¼ 178

1.5 T 13 (38%) 111 (62%)

3.0 T 21 (62%) 67 (38%)

Maximum linear size (mm)

Benign n ¼ 80 n ¼ 46

≤5 0 (0%) 0 (0%)

>5 and ≤10 25 (31%) 8 (17%)

>10 and ≤20 47 (59%) 22 (48%)

>20 and ≤50 8 (10%) 15 (33%)

>50 and ≤100 0 (0%) 1 (2%)

>100 0 (0%) 0 (0%)

Luminal A n ¼ 34 n ¼ 178

≤5 0 (0%) 0 (0%)

>5 and ≤10 4 (12%) 6 (3%)

>10 and ≤20 19 (56%) 68 (38%)

>20 and ≤50 10 (29%) 89 (50%)

>50 and ≤100 1 (3%) 13 (7%)

>100 0 (0%) 2 (1%)

Journal of Medical Imaging 031408-2 Jul–Sep 2019 • Vol. 6(3)

Whitney et al.: Effect of biopsy on the MRI radiomics classification of benign. . .



each feature, the confidence interval of AUCROC for each
biopsy condition and the confidence interval of the difference
in AUCROC (ΔAUC) between biopsy conditions. Features
for which classification outperformed random guessing for
both biopsy conditions, i.e., the 95% confidence interval of
the AUCROC did not include AUCROC ¼ 0.5 for both the
pre- and postbiopsy groups, were considered potentially robust.

For these, we assessed whether (1) there was a statistically sig-
nificant difference in AUCROC between biopsy conditions
(two-tailed test) and (2) whether we could demonstrate equiv-
alence by biopsy condition for those features failing to demon-
strate a statistical significance between biopsy conditions (two-
tailed test). For the features outperforming random guessing, the
Bonferroni–Holm correction was used to adjust the significance
level of the p-value and corresponding confidence interval for
the difference in AUCROC (ΔAUC) by biopsy condition rela-
tive to α ¼ 0.05. For example, an adjusted significance level
α 0 ¼ 0.025 corresponded to a two-sided 97.5% confidence
interval in superiority and equivalence testing. The equivalence
margin has not been established for evaluating the equivalence
of AUCROC in radiomics or computer-aided diagnosis, let
alone radiology at large,18 so we evaluated similarity prima
facie with an equivalence margin of 0.1.

As a supplement to the second analysis, we investigated the
area under the precision–recall curve (AUCPRC) as an auxiliary
performance metric (see Sec. 5 Appendix) for the features that
outperformed random guessing for both biopsy conditions
according to AUCROC. Although the AUCROC is insensitive
to prevalence,17 precision, as an alternative measure of accuracy
that depends on the number of true positives and false positives
in a group, is sensitive to it.19

Finally, as a pilot study, we investigated the effect of magnet
strength on the identification of potentially robust features by
completing the analysis described above separately by field
strength. The difference in magnet field strength itself may pro-
vide variations that affect the kinetic curve assessment and
enhancement variance features.20,21 In addition, enhancement
texture features (calculated at the first post-contrast DCE
time point) may be affected by the accompanying differences
in image resolution that are tied to differences in imaging pro-
tocols at different field strengths, although not inherently.22,23

A summary of the feature extraction and analysis pipeline is
shown in Fig. 3.

Fig. 1 Distribution of benign lesions by subtype, according to pathology reports. Fibroadenomas com-
prised 49% and 43% of the benign lesions imaged prebiopsy and postbiopsy, respectively, and 21% and
22% of each sample, respectively, were characterized by fibrocystic change. Subtype information was
not available from pathology reports for ∼12% and 7% of the benign lesions imaged prebiopsy and post-
biopsy, respectively.

Fig. 2 Four example images from the dataset, with segmentation indi-
cated by red lines. (a) Benign lesion imaged prebiopsy. (b) Benign
lesion imaged postbiopsy. (c) Luminal A cancer imaged prebiopsy.
(d) Luminal A cancer imaged postbiopsy.
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Table 2 Radiomic feature names and descriptions. Size features (designated by abbreviations S1, S2, S3, and S4) are included for reference, but
the statistical analysis was not performed using these features.

Image feature Feature description Reference

Volume (mm3) (S1) Volume of lesion [12]

Effective diameter (mm) (S2) Greatest dimension of a sphere with the same volume as the lesion

Surface area (mm2) (S3) Lesion surface area

Maximum linear size (mm) (S4) Maximum distance between any two voxels in the lesion

Sphericity (G1) Similarity of the lesion shape to a sphere

Irregularity (G2) Deviation of the lesion surface from the surface of a sphere

Surface area/volume (1/mm) (G3) Ratio of surface area to volume

Margin sharpness (M1) Mean of the image gradient at the lesion margin

Variance of margin sharpness (M2) Variance of the image gradient at the lesion margin

Variance of radial gradient histogram (M3) Degree to which the enhancement structure extends in a radial pattern
originating from the center of the lesion

Contrast (T1) Location image variations [13]

Correlation (T2) Image linearity

Difference entropy (T3) Randomness of the difference of neighboring voxels’ gray-levels

Difference variance (T4) Variations of difference of gray-levels between voxel-pairs

Energy (T5) Image homogeneity

Entropy (T6) Randomness of the gray-levels

Inverse difference moment (homogeneity) (T7) Image homogeneity

Information measure of correlation 1 (T8) Nonlinear gray-level dependence

Information measure of correlation 2 (T9) Nonlinear gray-level dependence

Maximum correlation coefficient (T10) Nonlinear gray-level dependence

Sum average (T11) Overall brightness

Sum entropy (T12) Randomness of the sum of gray-levels of neighboring voxels

Sum variance (T13) Spread in the sum of the gray-levels of voxel-pairs distribution

Sum of squares (variance) (T14) Spread in the gray-level distribution

Maximum enhancement (K1) Maximum contrast enhancement [14]

Time to peak (s) (K2) Time at which the maximum enhancement occurs

Uptake rate (1/s) (K3) Uptake speed of the contrast enhancement

Washout rate (1/s) (K4) Washout speed of the contrast enhancement

Curve shape index (K5) Difference between late and early enhancement

Enhancement at first postcontrast time point (K6) Enhancement at first postcontrast time point

Signal enhancement ratio (K7) Ratio of initial enhancement-to-overall enhancement

Volume of most enhancing voxels (mm3) (K8) Volume of the most enhancing voxels

Total rate variation (1∕s2) (K9) How rapidly the contrast will enter and exit from the lesion

Normalized total rate variation (1∕s2) (K10) How rapidly the contrast will enter and exit from the lesion

Maximum enhancement-variance (E1) Maximum spatial variance of contrast enhancement over time

Enhancement-variance time to peak (s) (E2) Time at which the maximum variance occurs

Enhancement variance-increasing rate (1/s) (E3) Rate of increase of the enhancement-variance during uptake

Enhancement-variance decreasing rate (1/s) (E4) Rate of decrease of the enhancement-variance during washout
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3 Results

3.1 Differences in Voxel Size

The voxel size distributions failed to demonstrate significant dif-
ference when compared between lesion types for a given biopsy
condition, according to the Kolmogorov–Smirnov test to deter-
mine whether the two groups being compared were drawn from
the same distribution. For lesions imaged prebiopsy, the p-value
from the Kolmogorov–Smirnov test to compare voxel size was
0.051, while for lesions imaged postbiopsy, the p-value
was 0.86.

3.2 Feature Value Distributions

An example distribution of normalized feature values for each
lesion type (benign or luminal A) by condition with respect to
biopsy condition (prebiopsy or postbiopsy) is shown for two
features (irregularity and difference variance) in Fig. 4.

Distributions for all features using box plots of normalized
feature values for each lesion type (benign or luminal A) by con-
dition with respect to biopsy (prebiopsy or postbiopsy) are
shown in Fig. 5. Visual inspection shows for some features
large differences in the median values of both lesion types by
biopsy condition, for example the irregularity (G2) of benign
lesions and luminal A cancers compared pre- and postbiopsy.
Some features show a wide range of values in one biopsy con-
dition but not the other; for example, the texture features of
energy (T5) and entropy (T6), for which the range of feature
values for luminal A cancers imaged postbiopsy is much smaller
than for luminal A cancers imaged prebiopsy.

Using adjusted significance levels from Bonferroni–
Holm multiple comparison testing and p-values from the
Kolmogorov–Smirnov test, most features failed to demonstrate
a significant difference in their distribution between the pre-
biopsy and postbiopsy conditions (Fig. 6), suggesting that the
occurrence of a biopsy event did not impact most of the extracted

Fig. 3 Schematic of the workflow for the extraction and evaluation of radiomic features from DCE-MR
images.
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feature values. For benign lesions, the features of irregularity
(G2), inverse difference moment (T7), and enhancement variance
time to peak (E2) demonstrated significant differences in the dis-
tribution of feature values between the pre- and postbiopsy

conditions. For luminal A lesions, the features of normalized
total rate variation (K10) and enhancement variance time to
peak (E2) demonstrated significant differences in distribution
of feature values between pre- and postbiopsy conditions.

Fig. 4 Examples of distributions of normalized feature values for each lesion type by biopsy condition:
(a) irregularity and (b) difference variance.

Fig. 5 Box plots of normalized feature values for benign (green bars) and luminal A lesions (red bars)
from DCE-MR image series acquired either pre- or postbiopsy. The horizontal lines within the boxes
indicate the median of a set, while the edges of the boxes indicate the 25th and 75th percentiles.
The thin vertical lines for each box indicate the range of data values that are not considered outliers.
The dots indicate outliers. Dashed vertical lines are drawn to separate each set of four groups of features
by lesion status and biopsy conditions for a given feature, while solid vertical lines are drawn to indicate
groups of features by category. Normalized values for size features are shown within a shaded box but
were not included in statistical analysis. (S, size features; G, shape features; M, morphology features;
T, enhancement texture features; K, kinetic curve assessment features; E, enhancement-variance
kinetics). Full feature names are given in Table 2.
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3.3 Classification Performance

For the classification task of distinguishing between benign
lesions and luminal A breast cancers for each biopsy condition,
14 features outperformed random guessing for both biopsy con-
ditions as assessed by AUCROC (Fig. 7).

For all features outperforming random guessing classifica-
tion according to AUCROC, we failed to find a statistically sig-
nificant difference in AUCROC between biopsy conditions.
However, using the equivalence margin of 0.1, we were unable
to demonstrate equivalence in AUCROC between the biopsy
conditions. According to the AUCPRC metric, most features
that outperformed random guessing according to the AUCROC
metric performed better than baseline (i.e., cancer prevalence),
the comparison for random guessing for precision–recall curves
(see Sec. 5 Appendix).

3.4 Evaluation by Field Strength

When lesions were separated by field strength, results in feature
distributions and classification performance differed. For benign
lesions, the feature of normalized total rate variation (K10) and
for luminal A cancers the features of energy (T5), entropy (T6),
sum entropy (T12) demonstrated significant difference in fea-
ture value distribution when compared across biopsy condition
for lesions imaged at 1.5 T. Additionally, at this field strength,
only five features demonstrated classification performance bet-
ter than random guessing, according to AUCROC, but for these
five, no features demonstrated significant difference in feature
value distribution for either lesion type. For lesions imaged
at 3.0 T, eight features demonstrated significant difference in
feature value distributions for benign lesions and 19 features
did so for luminal A lesions. Eight features demonstrated clas-
sification performance better than chance for both prebiopsy

Fig. 6 P-values for the Kolmogorov–Smirnov test comparing the distributions of extracted feature values
for benign (green) and luminal A lesions (red) by biopsy condition. The solid horizontal lines indicate the
significance level each feature, α ¼ 0.05 for p > 0.05 and otherwise according to the Bonferroni–Holm
correction for multiple comparisons. Squares indicate a feature for which p < 0.05 according to the
Kolmogorov–Smirnov test but there was failure to demonstrate significant difference after correction
for multiple comparisons. Stars indicate features for which a statistically significant difference was
observed. Size features are shown within a shaded box but were not included in statistical analysis.
Full feature names are given in Table 2.

Fig. 7 AUCROC for features extracted from images acquired post-
biopsy versus those extracted from images acquired prebiopsy, in
the task of distinguishing between benign lesions and luminal A breast
cancers. The data points indicate the median value (2000 bootstrap
iterations). Large black circles with feature abbreviations represent
those that outperformed random guessing for both biopsy conditions.
The data points for T1, T2, and T13 overlap in the figure. Error bars
represent 95% confidence intervals. Small circles represent features
which did not outperform random guessing for both biopsy conditions,
and their error bars are not shown for figure clarity. The solid vertical
and horizontal lines indicate AUCROC ¼ 0.5 (random guessing). Full
feature names are given in Table 2.
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conditions, but all of these coincided with at least one feature
which demonstrated significant difference in feature value dis-
tribution. However, because the separation of the dataset by field
strength reduces the number of cases for each evaluation, these
assessments may be affected by the relatively low sample sizes.

3.5 Summary of Results

A summary of results for the tests of significant difference in
nonsize feature value for each lesion type and of significant dif-
ference in AUCROC in the task of classification between benign
lesions and luminal A cancers for features that performed better
than chance, all compared by lesion status as pre- or postbiopsy,
shows that all features of the lesions in the full dataset failed to
demonstrate significant difference in both lesion value distribu-
tions and in AUCROC when compared against biopsy status
(Fig. 8). The number of cases separated by field strength
does not provide definitive insight into the classification perfor-
mance of radiomic features by field strength within the context
of biopsy condition of the lesions, but offers initial results on
this issue.

4 Discussion and Conclusion
Most radiomic features of benign lesions and luminal A cancers
failed to show a significant difference in their distribution of val-
ues when extracted from either pre- or postbiopsy images, indi-
cating that the effects of biopsy on radiomic characterization
may be minimal and that the features may be robust. The fea-
tures that demonstrated significant differences in distribution of
the feature values may have been affected because of disruptions
in the lesion from the removal of tissue and the resulting effect
on the intake and uptake of the contrast agent. One feature,
enhancement-variance time to peak (E2), demonstrated signifi-
cant difference in distribution of values in both groups of

lesions, but this feature did not perform better than chance in
the classification of lesions as benign or luminal A. In classifi-
cation of benign lesions versus luminal A cancers, our results
suggest that the introduction of the biopsy needle and/or clip
failed to have a significant effect on the classification
performance of those features that proved to be useful for
classification, as measured by ROC curve performance
(AUCROC > 0.5), suggesting that those features were poten-
tially robust for the classification task by biopsy condition.
The lack of demonstrable equivalence, however, limits the abil-
ity to absolutely affirm the robustness of features extracted from
the lesions in this dataset. It is important to note that the irregu-
larity of luminal A cancers has been shown to play an important
role in their classification compared to benign lesions.15 In this
study, the irregularity of benign lesions was significantly differ-
ent between lesions imaged pre- or postbiopsy. The introduction
of the biopsy needle and biopsy clip appears to disrupt the sur-
face of the lesions, increasing their irregularity compared to
other lesions that have not undergone biopsy; but in this
study, this did not appear to have a significant effect on classi-
fication when considered separately by biopsy condition.

One limitation of this study is that the prevalence of luminal
A lesions differs in each biopsy condition. To investigate the
effect this could have on using a classification performance met-
ric that is sensitive to the difference in prevalence, we investi-
gated the AUCPRC; see the Sec. 5 Appendix for more
information. As expected, because precision is dependent
upon prevalence, the median AUCPRC was generally higher
for these features in lesions imaged postbiopsy, compared to
those that were imaged prebiopsy. However, this reflects the
clinical nature of the dataset, influenced by typical scheduling
of MR imaging and biopsy with respect to lesions first detected
by, for example, mammography, versus high-risk screening pro-
grams involving MR imaging.

Fig. 8 Summary of statistical test results. Each comparison is made for groups of lesions by biopsy
status. For each set, a check mark indicates that the feature distributions (rows 1 and 2) or difference
in AUCROC (row 3) failed to demonstrate a statistically significant difference, and thus the feature may be
robust. For the null-hypothesis for AUCROC comparison, only features with both AUCROC > 0.5 for both
biopsy conditions were assessed. Full feature names are given in Table 2.
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There could be variations in imaging protocol inherent to our
dataset beyond image resolution. It is possible that there was
variance in DCE-MR imaging protocol as a function of clinical
contrast agent administration. For example, the dose of contrast
agent may have been reduced for any patients with renal con-
cerns. However, information regarding this was not available for
our dataset. The relatively low numbers of cases when separated
by field strength and the differences in prevalence between the
groups by field strength limits the ability to comment conclu-
sively on the differences in statistical conclusions when the
lesions are separated in this manner, but is included for com-
pleteness. Because a different set of features performed better
than random guessing according to AUCROC when the lesions
were separated by field strength, further investigation into these
differences is needed.

An additional area of limitation is that the cases in our study
imaged under the pre- and postbiopsy condition were different,
i.e., we did not haveMR images of the same lesions imaged both
pre- and postbiopsy, which would have increased statistical
power. The number of cases was also limited by the selection
of mass lesions only; our database did not have a sufficient num-
ber of nonmass enhancing lesions to be included in this study as
a separate investigation. Our dataset also did not retain informa-
tion that could identify the amount of time between prebiopsy
and postbiopsy imaging, as these dates were removed as part of
the patient anonymization process.

Our pilot study showed promising results regarding robust-
ness of radiomic features by biopsy condition and more inves-
tigations are warranted using larger, preferably paired, datasets.
The difference in robustness according to field strength and
associated variables, such as associated differences in spatial
resolution and how field strength itself can affect radiomic

features related to contrast agent enhancement, is a topic of cur-
rent investigation by our group. Future work will also expand
analysis to cancers of different molecular subtypes.

5 Appendix

5.1 Methods

Due to the differences in cancer prevalence in the two biopsy-
condition groups (30% for prebiopsy lesions, 79% for post-
biopsy lesions), the AUCPRC was investigated as a complement
to the assessment of classification performance using the
receiver operating characteristic curve for features with
AUCROC >0.5. When using precision–recall, the baseline per-
formance in AUCPRC equals the disease prevalence (in our
case, the prevalence of luminal A cancers) and represents ran-
dom guessing, similar to 0.5 for AUCROC. Thus, AUCPRC
classification performance with respect to the baseline was in
the same manner as for AUCROC (2000 bootstrap iterations,
using the same seeds for bootstrap sampling). We also assessed
AUCPRC for a second subset with matched prevalence, drawn
from the full sample. In this scenario, for each biopsy condition,
the number of samples randomly drawn for each lesion type was
limited to the size of the smallest set (i.e., the number of luminal
A lesions imaged prebiopsy and the number of benign lesions
postbiopsy).

5.2 Results

As expected, the AUCPRC for each group of lesions by biopsy
condition differs in accordance with the difference in cancer
prevalence (Fig. 9).

Fig. 9 Classification performance in terms of AUCPRC versus AUCROC for (a) the full data set and (b) a
subset of the data matched for prevalence during bootstrapping. The data points indicate the median
value (2000 bootstrap iterations). The error bars represent the 95% confidence intervals. In each figure,
squares represent prebiopsy lesions and diamonds represent postbiopsy lesions. The large, labeled data
points represent features which performed better than random guessing according to AUCROC, while
small, unlabeled points represent the remaining features and are shown for completeness. In (a), dotted
and dashed horizontal lines represent baseline (e.g., random guessing) for AUCPRC in the prebiopsy
and postbiopsy groups, respectively. In each figure, the vertical line represents random guessing for
AUCROC. In (b), the baseline for each group is the same (0.5) and thus the horizontal lines overlap.
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When the assessing the entire dataset, the AUCPRC was gen-
erally higher than the baseline performance level (baseline
AUCPRC ¼ 0.3 and AUCPRC ¼ 0.7 for prebiopsy and post-
biopsy conditions, respectively). For the prevalence-matched
subsets, AUCPRC values clustered together and were generally
greater than the equal baselines (baseline AUCPRC ¼ 0.5). In
this work, most features that performed better than guessing
according to AUCROC did so as well according to AUCPRC,
in both prevalence scenarios.
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