Skip to main content
. 2019 Feb 4;2019:5156416. doi: 10.1155/2019/5156416

Table 1.

Detailed configuration of the proposed deep convolutional neural network architecture.

# Type Input Kernel Output
1 Convolutional 64 × 64 × 1 5 × 5 64 × 64 × 64
2 Convolutional 64 × 64 × 64 5 × 5 60 × 60 × 64
3 Convolutional 60 × 60 × 64 5 × 5 56 × 56 × 64
4 Max pooling 56 × 56 × 64 2 × 2 28 × 28 × 64

5 Convolutional 28 × 28 × 64 3 × 3 26 × 26 × 128
6 Convolutional 26 × 26 × 128 3 × 3 24 × 24 × 128
7 Convolutional 24 × 24 × 128 3 × 3 22 × 22 × 128
8 Max pooling 22 × 22 × 128 2 × 2 11 × 11 × 128

9 Convolutional 11 × 11 × 128 3 × 3 11 × 11 × 256
10 Convolutional 11 × 11 × 256 3 × 3 11 × 11 × 256
11 Convolutional 11 × 11 × 256 3 × 3 11 × 11 × 256
12 Max pooling 11 × 11 × 128 2 × 2 5 × 5 × 256

13 Fully connected 5 × 5 × 256 N/A 512

14 Dropout 512 N/A 512

15 Fully connected 512 N/A 2