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Abstract

Objective: Dry electrodes have an advantage over gel-based “wet” electrodes by providing 

quicker set-up time for electroencephalography (EEG) recording; however, the potentially poorer 

contact can result in noisier recordings. We examine the impact that this may have on brain 

computer interface communication and potential approaches for mitigation.

Approach: We present a performance comparison of wet and dry electrodes for use with the 

P300 speller system in both healthy participants and participants with communication disabilities 

(ALS and PLS), and investigate the potential for a data-driven dynamic data collection algorithm 

to compensate for the lower signal-to-noise ratio (SNR) in dry systems.

Results: Performance results from sixteen healthy participants obtained in the standard static 

data collection environment demonstrate a substantial loss in accuracy with the dry system. Using 

a dynamic stopping algorithm, performance may have been improved by collecting more data in 

the dry system for ten healthy participants and eight participants with communication disabilities; 

however, the algorithm did not fully compensate for the lower SNR of the dry system. An analysis 

of the wet and dry system recordings revealed that delta and theta frequency band power (0.1–4 

Hz and 4–8 Hz, respectively) are consistently higher in dry system recordings across participants, 

indicating that slow wave artifacts may be an issue for dry systems.

Significance: Using dry electrodes is desirable for reduced set-up time; however, this study 

demonstrates that online performance is significantly poorer than for wet electrodes for users with 

and without disabilities. We test a new application of dynamic stopping algorithms to compensate 

for poorer SNR. Dynamic stopping improved dry system performance; however, further signal 

processing efforts are likely necessary for full mitigation.

1. Introduction

A brain computer interface (BCI) system allows a person with severe motor impairments to 

control a device by interpreting measurements of electrical activity in the brain. While head 

and eye tracking systems may provide alternative methods for controlling a device, these 

systems still require some muscle function and can fail when this muscle function is lost 

(e.g., [1]). Thus, BCIs may provide communication assistance for people with disabilities 

that limit the utility of other communication aids due to their reliance on physical motion. 

BCIs that rely on various components of measured electroencephalographic (EEG) data have 

been proposed in the literature (see [2] for a review); one of which that has shown potential 
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as a communication device for people with severe physical limitations is the P300 speller 

[3]. Operation of the P300 speller relies on eliciting event-related potentials (ERPs) to 

enable the user to spell text on a computer letter by letter. An ERP is a neural response 

observed in human brain activity, and is produced by the brain’s reaction to a specific task or 

stimulus. The P300 component of the ERP is a positive voltage peak that occurs around 300 

ms after the presentation of a rare but relevant stimulus. The name P300 speller refers to the 

reliance of the speller on this evoked component in the EEG to determine the BCI user’s 

intent, although other ERPs may also be used for classification [4].

Despite encouraging improvements over the last decade, the P300 speller remains primarily 

a research device rather than a home-based communication aid. One limitation that inhibits 

its widespread use is the complex and time-consuming process of applying the electrodes to 

the scalp prior to EEG recording. Although an EEG-based approach has the advantage over 

implanted electrodes because it is immediately accessible to all users since it does not 

require surgery, it produces poorer quality signals because neural activity must be measured 

after it traverses layers of the skull, skin, and hair to reach the electrodes. In order to reduce 

skin impedance and ensure electrical contact with the scalp, gel-based “wet” electrodes 

require abrasive skin preparation and the application of conductive gel to each electrode. 

This process can require ten minutes or more for an experienced lab technician. For people 

with severe communication disabilities who need to use the system on a daily basis, 

minimizing this set-up time is highly desirable [5].

In an attempt to reduce the required set-up time, the use of dry electrodes for P300-based 

BCIs has been explored ([6]–[9]). Dry electrodes are much faster and easier to apply, as they 

do not require the application of gel to the scalp. Instead, contact dry electrodes contain 

several metal pins with sufficient length to reach through hair to the skin, coupling signals 

both resistively and capacitively. While noncontact dry electrodes, which operate primarily 

via capacitive coupling, have been shown to successfully record steady-state visual evoked 

potentials, signal quality is reduced when compared to contact dry electrodes [10]. 

Therefore, the focus of this paper will be on contact dry electrodes. Active dry electrodes 

employ a local high input impedance amplifier attached to each electrode that rejects 

interference at the recording site. However, due to poor skin-to-electrode contact, dry 

systems are much more sensitive to noise and ERP variation [11]. The lower signal-to-noise 

ratio (SNR) can decrease the detectability of ERPs used for BCI control, which may 

negatively impact both the speed and accuracy of the system. For this reason, wet electrodes 

remain the standard for P300-based BCIs.

Several studies have evaluated the performance of dry electrodes in comparison to wet 

electrodes with P300-based BCI technology in healthy participants with mixed results. In a 

comparison of the hybrid dry electrode sensor array (HESA) system to a conventional wet 

system, Sellers et al. [6] observed higher P300 speller accuracy with the wet system for four 

out of eight healthy participants, although the difference in accuracies was not statistically 

significant. Zander et al. [7] introduced a dry system developed by Brain Products that only 

used three electrodes, but offline analysis revealed that a statistically significant difference 

existed between the P300 classification accuracies of the dry and wet system recordings. 

Grozea et al. [8] introduced a novel dry system using bristle sensors, but observed that 
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statistically significant differences exist between the wet and dry P300 signals for each 

participant. A study performed by Guger et al. [9] compared P300 speller accuracies with 

the g.Sahara dry system to accuracies obtained in a previous study [12] with a conventional 

wet system. The subject pools were different for these two studies. The wet system study 

[12] reported an average accuracy of 91.0% ± 18.5 across 81 subjects while the average 

accuracy in the dry system study [9] was 90.4% ± 17.2 across 23 subjects. Although no 

significant difference was observed between the accuracies across subject pools for the two 

systems, intra-subject variation across the two subject pools may have been a confounding 

factor.

The P300 speller typically collects multiple repetitions of the EEG response and averages 

them to improve the SNR of the P300 component. In the standard data collection 

environment, the number of repetitions collected for the average is held constant across 

participants and target characters (termed ‘static’ data collection). All of the previous “wet 

versus dry” studies mentioned ([6]–[9]) relied on static data collection for which the amount 

of data collected was identical for the wet and dry systems. However, given the poorer 

quality of the dry electrode recordings, these systems may have benefited from additional 

data collection to improve the SNR. In this study, we assess the potential for a data-driven 

dynamic stopping algorithm to compensate for the lower SNR of a dry system by 

automatically determining the amount of data to collect online in both healthy participants 

and participants with amyotrophic lateral sclerosis (ALS). Several methods for adaptively 

controlling data collection have been proposed in literature (e.g., [13]–[15]). However, these 

methods typically depend on some form of past performance of the subjects. For example, 

Serby et al. [13] and Lendhardt et al. [14] set a threshold for stopping data collection using 

averaged training data across a subject pool, which may not translate if the subject pool is 

changed. Throckmorton et al. [16] presented a probabilistic data collection algorithm that, 

based on the quality of in-coming data, automatically determined the amount of data to 

collect on a character-by-character and subject-by-subject basis. If data were of poor quality, 

additional data was collected to improve accuracy, and if data were of high quality, data 

collection was reduced to increase spelling speed. This algorithm resulted in significant 

improvements in accuracy and spelling speed for healthy participants. These results were 

validated in a study with participants with ALS, one of the target populations for P300 

spellers [17].

The hypothesis for this study is that the dynamic stopping algorithm will detect the need for 

additional data collection with the dry system and collect sufficient data to improve the BCI 

performance to wet system levels. Three experiments are conducted. In the first experiment, 

P300 speller performances with the g.Sahara dry system and a conventional wet system are 

compared using static data collection for healthy participants in order to assess differences in 

performance for consistent amounts of collected data across systems.

The second experiment applies the dynamic stopping algorithm [16] to online data 

collection and the P300 speller performances for healthy participants using wet and dry 

systems are compared. This will assess the algorithm’s ability to automatically compensate 

for any potential SNR differences between the two systems by increasing data collection as 

needed. Finally, results with the dynamic stopping algorithm are evaluated in participants 
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with ALS. An analysis of the differences in signal characteristics between EEG collected 

with wet and dry systems was conducted to clarify the observed performance results.

2. Methods

2.1 Participants and Equipment

In the first experiment of this study, P300 speller data was collected in the standard static 

data collection environment for sixteen healthy participants at East Tennessee State 

University. The second experiment used the dynamic stopping algorithm [16] for online data 

collection for ten healthy participants at Duke University. The third experiment recruited 

eleven participants with communication disabilities (ALS=10, PLS=1) to validate the results 

observed for the healthy participants in the second experiment. Three participants with ALS 

were dropped from the study due to vision loss or caregiver unavailability. Details of the 

study participants with communication disabilities used for data analysis can be found in 

Table 1. Participants in each experiment completed two P300 speller sessions; one using a 

wet system and one using a dry system. The two sessions were performed between one and 

54 days apart for the healthy participants and between one and 95 days apart for the 

participants with communication disabilities. The electrode type used in the first session was 

counter-balanced across participants. Participants were asked to remove any HF-

communication devices (e.g., mobile phones) that may interfere with the system and to 

avoid any type of movement during both sessions. This is imperative for dry electrode 

recordings, which may be more sensitive to these types of interferences. P300 speller 

sessions with healthy participants were performed in a laboratory setting, while sessions 

with participants with disabilities were performed in the Duke ALS clinic and participants’ 

homes. All experiments were approved by either the East Tennessee State University or 

Duke University IRB boards.

EEG signals were measured using electrodes positioned according to the International 10–20 

system and connected to a computer via a 16-channel g.USBAMP biosignal amplifier. The 

signals were sampled at 256Hz. The dry electrode cap utilized the g.Sahara active dry 

system, which is comprised of 8-pin golden alloy coated electrodes (7mm pin length). The 

wet electrode cap and electrolyte solution were purchased from Electro-Cap International. A 

picture of each cap is shown in Figure 1. The dry electrode cap includes a chin strap and the 

wet electrode cap does not. Three cap sizes (small, medium, and large) were available for 

both electrode types. Head circumference and the distance from the nasion to inion were 

measured to determine an appropriate cap size that provides gentle pressure for each 

participant. The caps were pulled over the ears and were then connected to the amplifier. 

Grounding bracelets were worn by both the experimenter and the participant during dry 

electrode recording sessions to avoid electrostatic charges. Eight electrodes (Fz, Cz, P3, Pz, 

P4, P07, P08, and Oz), with ground and reference electrodes attached to each mastoid, were 

used for data collection and classification. Dry electrodes were turned back and forth a few 

times to remove any hair between the electrode and the skin, ensuring proper electrical 

contact. These electrodes have been demonstrated to provide adequate information for P300 

speller communication [18]. The BCI2000 software package [19] was used for stimulus 
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presentation and data collection, with additional functionality added for the application of 

the dynamic stopping algorithm [16].

2.2 P300 Speller Paradigm

Healthy participants were presented with a 9 × 8 grid of characters on a computer screen 

while participants with communication disabilities were presented with a 6 × 6 grid of 

characters (see Figure 2). These grids match the grids used in Throckmorton et al. [16] and 

Mainsah et al. [17] for participants without disability and with ALS, respectively. Both grids 

were flashed based on the checkerboard paradigm to eliminate character adjacency and 

double flash errors [20]. Each character stimulus was flashed twice in a sequence of 24 

flashes. The flash duration was 62.5 ms followed by an inter-stimulus interval of 62.5 ms, 

with an inter-target interval of 3.5 seconds. EEG signals were recorded for 800 ms following 

each flash. The number of EEG signals collected for a given target character differ between 

experiments and are detailed in the following subsections.

2.3 Static Data Collection

Three calibration runs and three online test runs were recorded for both the wet and dry 

system sessions in the static data collection experiment. For each run, the participant was 

asked to copy-spell a six-character token randomly drawn from a subset of tokens from the 

English language. EEG response signals to five sequences or 120 flashes (5 sequences x 24 

flashes/sequence = 120 flashes) were collected for each target character presented to the 

participant. These data were preprocessed and features were extracted for classification 

according to Krusienski et al. [18]. Stepwise linear discriminate analysis (SWLDA) was 

performed on the calibration data to create the classifier weights for online testing. Although 

several learning algorithms are known to adequately classify P300 speller data, a statistical 

analysis of several classifiers has indicated that the SWLDA classifier is sufficient and the 

added complexity of nonlinear methods is not necessary [21].

2.4 Dynamic Data Collection

Calibration runs for the dynamic data collection experiment were gathered in a similar 

manner to static data collection. However, due to the performance results of the static data 

collection experiment, five calibration runs were collected instead of three to improve the 

weights of the classifier. For each calibration run, the participant was asked to copy-spell a 

six-character token from the English language. EEG response signals to seven sequences or 

168 flashes (7 sequences x 24 flashes/sequence = 168 flashes) were collected for each 

character. The preprocessing techniques, feature extraction and classification method were 

identical to the static experiment.

Five online test runs were collected with the dynamic stopping algorithm [16] applied. 

Instead of having a pre-set number of flash sequences for data collection, the dynamic 

stopping algorithm automatically determined the necessary amount of data to collect for 

each target character. The amount of data collected was controlled by a threshold (90%) on 

the probability that each character in the grid was the target character (c*). The initial 

probability of each character being the target was set to 1/N (where N is the total number of 

characters in the grid), i.e., no a priori knowledge was assumed. For each new response 
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signal (xj) obtained after a character group flash (Sj contains the characters in the group), a 

classifier score (yj = w * xj, where w represents the classifier weights) was calculated and 

stored in Yj = [y1,…,yj−1,yj] The probability for each character (cn) in group Sj was updated 

using the likelihood estimates from the training data (obtained from the probability density 

functions for the target, p(yi|H1), and non-target, p(yi|H0), response signals). The update 

equation is based on Bayes rule and implemented as in Equation 1, where P(cn = c*|Yj,Sj) is 

the posterior probability of a character cn being the target character, P(yj|ci = c*,Sj) is the 

likelihood of the classifier response given that ci was/was not in group Sj and P(ci = c*|

Yj−1,Sj−1) is the prior probability of a character ci being the target character.

P cn = c*|Y j, S j =
P y j cn = c*, S j P cn = c* Y j − 1, S j − 1

∑i = 1
N P y j ci = c*, S j P ci = c* Y j − 1, S j − 1

(1)

Character probabilities were updated after each response to a flash group was collected. 

Data collection stopped once one of the character probabilities in the grid exceeded 90%.

3. Results

Figure 3 plots the spelling accuracy and bit rate (related to spelling speed), respectively, for 

each participant using the dry system (circle) and wet system (triangle) in the static data 

collection experiment. Accuracy is defined as the percentage of characters spelled correctly 

in a copy-spelling session. Assuming a binomial distribution on the probability of correctly 

selecting a set of characters [22], chance level accuracy was 11.1% for this experiment. Bit 

rate is a measure of communication systems that incorporates accuracy, speed, and the 

number of selectable characters presented and is calculated in bits per minute [23].

The results in Figure 3 illustrate the impact of the lower SNR resulting from the dry system. 

Twelve out of the sixteen participants performed worse with the dry system when compared 

to the wet system. The average spelling accuracy and bit rate for the wet and dry systems are 

listed in Table 2. Two Wilcoxon signed-rank tests were performed to compare the 

participants’ accuracy and bit rate with dry and wet systems and the differences were 

statistically significant (p = 0.0007 and p = 0.0006, respectively). This implies that dry 

systems may benefit from additional data collection to improve the SNR.

The results for the dynamic data collection experiment are shown in Figure 4 and the 

average spelling accuracy and bit rate for both systems are listed in Table 3. Chance level 

accuracy for this experiment was 10.0%. With dynamic data collection, the differences in 

accuracy between wet and dry systems were small (<13%) for the majority of subjects (see 

Figure 4a). However, the differences in accuracy and bit rate were still statistically 

significant (p = 0.025 and p = 0.002, respectively) using Wilcoxon signed-rank tests. 

Although the average performance with dry electrodes remains lower than performance with 

wet electrodes despite using dynamic collection, the differences in BCI performance 

between wet and dry systems appear smaller than those observed using static data collection. 

In order to compare the static results to the dynamic results across the two subject pools, a 

subset of participants were selected from the static data collection experiment based on their 
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wet system performance. Eleven participants in the static data collection experiment had wet 

system spelling accuracies above 80%, similar to the ten participants in the dynamic data 

collection study. The average accuracy for this subset of participants with the wet system 

was 95.5%, similar to the 94.3% average accuracy observed for the dynamic data collection 

participants. However, the average dry system accuracy for these participants was 61.6%; 

still much lower than the 79% average accuracy observed in the dynamic data collection 

experiment, suggesting that dynamic data collection may mitigate some of the lost 

performance with dry electrodes.

As hypothesized, the dynamic stopping algorithm increased the amount of data collected for 

the dry system across all subjects (see Figure 4c), indicating that the algorithm can detect 

and respond to the need for additional data collection in low SNR scenarios. However, 

collecting more data did not increase the performance of the dry systems to the same level of 

performance as the wet systems.

The question of whether the raw data from the two electrode types looked similar was also 

addressed. In Figure 5, P300 latency and amplitude values were compared for signals 

measured over the electrode location Cz in the dynamic data collection study. These values 

were selected by taking the maximum from a window of the grand average between 0.2–

0.4s. The grand averages include P300 signals from both the training and testing stages; 

therefore, more data were averaged for the dry grand averages than the wet grand averages 

(see Figure 4c). The average P300 latency for the wet and dry systems were 0.262s ±0.031 

and 0.263s ±0.032, respectively, and the differences between systems were not statistically 

significant (p = 0.688). However, the differences in P300 amplitude were statistically 

significant (p = 0.027). The average dry system amplitude (2.55μV ±1.14) was lower than 

the wet system amplitude (3.29μV ±1.65), which may indicate that techniques other than 

additional data collection may be needed to improve the SNR of the dry system.

The results for healthy participants in the dynamic data collection experiment were 

confirmed for participants with communication disabilities (see Figure 6 and Table 4). Once 

again, the differences in accuracy and bit rate were statistically significant (p = 0.008 and p 

= 0.008, respectively) and the amount of data collected increased across all participants for 

the dry system. This further implies that the dynamic stopping algorithm improves the SNR 

of the dry system by collecting more data, but performance is still degraded when compared 

to the wet system. Improvements, either in signal processing or in hardware design, may be 

required to bring dry systems to the same level of performance as wet systems.

Participants with communication disabilities were also given a short survey after both the 

wet and dry system sessions. The survey consisted of six statements and the participants 

were asked to rate each statement with a number between one (strongly disagree) and seven 

(strongly agree). The average responses are shown in Table 5. These averages suggest that 

while the participants agree that the setup of the dry system was quick and not agitating, 

they also found the dry system to be slow and uncomfortable. However, the differences 

between the wet and dry system responses for each statement were not statistically 

significant.
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In order to determine the types of signal processing most likely to be beneficial for 

improving the performance of dry systems, the difference(s) between wet and dry electrode 

recordings need to be characterized. In a wet system, the conductive gel serves as buffer to 

bridge the gaps between the skin and the electrode as a participant moves during a recording 

session. Without this conductive gel, dry systems may be more sensitive to artefacts from 

movement. Therefore, one potential difference between data collected with the two systems 

may be the number of motion artefacts recorded.

Motion artefacts create large potentials that are superimposed onto neural signals and are 

known to impact the frequency content of EEG recordings [24]. These artefacts can have 

amplitudes of several millivolts and often have energy in the same frequency range as EEG 

events, such as the P300 component. To determine whether an increase in spectral amplitude 

occurred for the dry system in our experiments, the power spectral density (PSD) estimates 

were examined for each participant’s continuous dry and wet electrode recordings. Figure 7 

displays the dry and wet PSD results for a single electrode channel, Cz, in the dynamic data 

collection experiments with healthy participants (Figure 7a and 7b) and participants with 

communication disabilities (Figure 7c and 7d). Estimates below 3dB and above 30dB were 

clipped for visualization purposes. The PSD results displayed in Figure 7 indicate that low-

frequency noise may be higher in dry electrode recordings when compared to wet electrode 

recordings.

The difference in frequency content between data collected with the wet and dry systems 

was further analyzed by examining four frequency band powers: (1) Delta (0.1 – 4 Hz), (2) 

Theta (4 – 8 Hz), (3) Alpha (8 – 13 Hz), and (4) Beta (13 −30 Hz). Delta and theta band 

power were repeatedly higher in the continuous dry electrode recordings than wet electrode 

recordings. A statistical analysis of the wet and dry power bands across all participants, 

using Wilcoxon signed-rank tests, demonstrated that these differences in delta and theta 

band power between the two systems were significant for 8 out of the 8 electrode channels 

(p < 0.05). The alpha band power differences were significant for 7 channels, while the 

differences for the beta band power were significant for 3 channels. This indicates that as 

frequency decreases, the differences between wet and dry system recordings increases across 

channels. A spectral analysis of all eight electrode channels demonstrated that the low-

frequency power is generally higher for the dry system recordings, which suggests that low-

frequency artefact noise may be negatively impacting dry system performance given that the 

P300 component also lies in this frequency band ([25]–[26]).

To measure possible artefact noise, two techniques that have been well-studied in seizure 

detection literature (e.g., [28]–[33]) were used to detect large transient voltages in P300 

speller EEG recordings between characters (when characters were not flashing, eliminating 

the possibility of inadvertently detecting ERPs). The first technique used an autoregressive 

model of order 7 on the inter-target intervals of the EEG data (3.5 second segments), where 

the model coefficients were estimated with the Yule Walker equations. Assuming transient 

artefacts are non-stationary phenomena, the model detected large peaks in error (exceeding a 

given threshold) when artefacts may have occurred. The mean number of artefacts detected 

for a set of thresholds were averaged across the participants in each experiment and the 

results are displayed in Figure 8. Although the differences between the number of possible 
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artefacts detected with the wet and dry systems for healthy participants seem small (Figure 

8a and 8b), two Wilcoxon sign-ranked test revealed that statistically significant differences 

exist (p < 0.001 for both the static and dynamic experiments). The second technique used 

wavelet analysis with a Daubechies-4 mother wavelet [31]. Peaks in the low-frequency 

wavelet approximation coefficients above a certain threshold were measured as artefacts. 

The results were averaged across the participants in each experiment and are shown in 

Figure 9. Once again, the differences in the number of possible artefacts detected with the 

wet and dry systems for healthy participants seem small (Figure 9a and 9b), but are indeed 

statistically significant (p < 0.001 for both the static and dynamic experiments). The results 

in Figure 8 and 9 show that for thresholds above 30–40μV, both techniques detected a larger 

number of possible artefacts in the dry electrode recordings when compared to the wet 

electrode recordings. The results for participants with communication disabilities (Figure 8c 

and 9c) reveal much larger differences between the number of possible artefacts detected for 

the wet and dry systems. Given that these experiments were performed either in the 

participant’s home or a clinical setting (as opposed to the healthy participants who 

performed experiments in a laboratory setting), the larger differences may be due to an 

increase in environmental noise that dry electrodes, with their high impedance levels, may 

be more sensitive to such as artefacts from external devices or electrostatic charges. These 

results suggest that there may be a benefit to applying signal processing approaches that 

target low-frequency noise without attenuating low-frequency ERPs such as the P300 

component.

4. Discussion

While some previous studies have suggested that dry electrode recordings are comparable to 

wet electrode recordings for P300-based BCI applications, our performance results suggest 

that dry electrodes produce lower SNRs in the recorded responses, which negatively impacts 

classification accuracy and reduces their potential utility for a home-based communication 

aid. Using a data-driven dynamic stopping algorithm compensates for the additional noise 

by collecting more data, but performance is still reduced when compared to signals recorded 

with the wet electrodes. Although a variety of commercially available contact dry electrode 

systems exist (e.g., systems designed by Cognionics, Brain Products, Emotiv and Wearable 

Sensing), the results presented in this study would likely translate to these systems since the 

issue of poor skin-to-electrode contact remains. However, certain design criteria might 

reduce some of the artefact noise. A wireless dry system that limits cable movement might 

have been beneficial for ambulatory participants in this study. Flexible dry electrodes that 

conform to the scalp could have helped provide the right amount of contact pressure for 

individual sensors, minimizing participant discomfort and possibly reducing motion artefact 

noise in cases where the cap was ill-fitted. While testing with additional systems would 

provide validation of the results, without skin abrasion or a conductive gel to create a stable, 

low impedance path between the skin and the electrode, dry electrodes are likely to be more 

susceptible to skin potentials and motion artefacts.

Motion artefacts have a wide frequency range, which is maximal at 30 Hz [24]. An analysis 

of the recorded EEG signal characteristics revealed that the delta and theta frequency band 

power (0.1 Hz - 4 Hz and 4 Hz - 8 Hz, respectively) are consistently higher in dry electrode 
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recordings across participants. Two transient artefact detection techniques (autoregressive 

modeling and wavelet analysis) revealed an increased number of possible skin and motion 

artefacts for the dry system when compared to the wet system, suggesting that both transient 

and slow artefacts may be contributing to the lower SNRs in dry systems, potentially 

resulting in decreased system performance.

Thus a potential future approach to make dry electrodes in P300-based BCI systems feasible 

as a home-based communication aid may be to develop methods to mitigate the effects of 

excessive low-frequency noise. While several artefact removal techniques exist, their 

application in BCI is limited because they may attenuate the desired signal (e.g., linear 

filtering [34]), require a priori knowledge of the desired/artefact signal (e.g., adaptive 

filtering [34]), not detect small amplitude artefacts (e.g., thresholding [35]) or require that 

the artefact and desired signal are minimally correlated or maximally independent (e.g., 

blind source separation [35]). However, it may be possible to use machine learning to 

separate undesirable artefacts from ERP responses and thereby improve ERP-based BCI 

performance with dry electrodes. The current standard learning algorithm operates under the 

assumption that an increase in energy only occurs for an appropriate stimulus, ignoring 

voltages that can originate from the user’s physical activity or external movements in the 

surrounding environment. Dry electrodes, with their higher contact impedance, may be 

particularly sensitive to these types of artefact interference. Therefore, an additional 

classification stage could be developed that separates detected artefacts into two classes, 

ERP responses and artefacts. The exploration of features beyond spatiotemporal 

characteristics, such as statistical moments and power spectral density estimates, may help 

increase artefact classification performance. Unsupervised learning techniques could also 

facilitate further discrimination between different types of artefacts, leading to improved 

artefact detection methods. The focus of future work will be on incorporating artefact 

separation into the dynamic stopping algorithm to reduce the system’s response to false 

energy responses and produce a more accurate learning algorithm in dry electrode systems.

5. Conclusion

Using a dry electrode cap with the P300 speller would greatly reduce the complexity and 

time it takes to set up the system, creating a more practical home-based communication aid 

for locked-in patients. In the static data collection environment, performance was shown to 

drop in dry systems, and our results suggest that collecting more data does not fully 

compensate for the lower SNR when compared to wet systems. Higher low-frequency power 

and an increased number of large voltage peaks in the dry electrode recordings suggest that 

transient artefacts may be an issue. To further improve the performance of dry electrodes, a 

process to mitigate the effects of low-frequency artefact noise may need to be developed.
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Figure 1: 
This figure shows the caps used for this study. The g.Sahara dry electrode cap is shown for 

the (a) outside and (b) inside of the cap. The Electro-cap International wet electrode cap is 

shown for the (c) outside and (d) inside of the cap.
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Figure 2: 
Screen captures of the character grid used for healthy participants (left) and participants with 

ALS (right).
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Figure 3: 
This figure shows the results for the static data collection experiment performance 

comparison of wet (triangles) and dry (circles) electrode systems for sixteen healthy 

participants. The x-axis represents the participants in this study and the y-axis represents the 

results for (a) spelling accuracy, in percent correct, and (b) bit rate, in bits per minute.
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Figure 4: 
This figure shows the results for the dynamic data collection experiment performance 

comparison of wet (triangles) and dry (circles) electrode systems for healthy participants. 

The x-axis represents the participants in this study and the y-axis represents the results for 

(a) spelling accuracy, in percent correct, and (b) bit rate, in bits per minute, and (c) total 

number of flashes collected.
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Figure 5: 
This figure shows the latency and amplitude values for the grand average P300 signals over 

electrode location Cz in the dynamic data collection experiment. The x-axis represents the 

healthy participants in this study and the y-axis represents the P300 values for (a) latency, in 

seconds, and (b) amplitude, in microvolts.
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Figure 6: 
This figure shows the results for the dynamic data collection experiment performance 

comparison of wet (triangles) and dry (circles) electrode systems for participants with 

communication disabilities. The x-axis represents the participants in this study and the y-

axis represents the results for (a) spelling accuracy, in percent correct, and (b) bit rate, in bits 

per minute, and (c) total number of flashes collected.
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Figure 7: 
This figure displays the power spectral density estimates for continuous P300 speller EEG 

data. The estimates are shown for ten healthy participants using the (a) dry system and (b) 

wet system and eight participants with communication disabilities using the (c) dry system 

and (d) wet system. The y-axis denotes the participant and the x-axis denotes frequency (in 

Hz). The color axis displays the power (in dB), where the values are mapped to a color 

according to the color bar on the right (e.g., power values ≥30dB are shown in solid white 

and values ≤3dB are shown in solid black).
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Figure 8: 
These plots show the results for possible artefact detection using an autoregressive model. 

The results were averaged across participants in (a) the healthy static data collection 

experiment, (b) the healthy dynamic data collection experiment and (c) the ALS dynamic 

data collection experiment. Each plot displays the number of possible artefacts detected (y-

axis) for a threshold (x-axis) in the dry electrode recordings (circles) and the wet electrode 

recordings (triangles).
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Figure 9: 
This figure shows the results for possible artefact detection using wavelet analysis. The 

results were averaged across participants in (a) the healthy static data collection experiment, 

(b) the healthy dynamic data collection experiment and (c) the ALS dynamic data collection 

experiment. Each plot displays the number of possible artefacts detected (y-axis) for a 

threshold (x-axis) in the dry electrode recordings (circles) and the wet electrode recordings 

(triangles).
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Table 1.

Demographic information of study participants with communication difficulties

Participant Number ALSFRS-R Experiment Location Additional Information

1 4 Clinic Movement via wheelchair, respirator-dependent, feeding tube

2 25 Home Movement via wheelchair

3 20 Home Movement via wheelchair

4 20 Home Ambulatory

5 46 Home Ambulatory

6 8 Home Movement via wheelchair, respirator-dependent, feeding tube

7 39 Home Ambulatory

8 41 Clinic Ambulatory
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Table 2.

Static data collection performance averages.

Average Accuracy (%) Average Bit Rate (bits/minute)

Dry System 42.8 7.3

Wet System 72.8 13.6
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Table 3.

Dynamic data collection (healthy participants) performance averages.

Average Accuracy (%) Average Bit Rate (Bits/minute) Average # Flashes

Dry System 79.0 17.9 3,915

Wet System 94.3 38.7 1,615
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Table 4.

Dynamic data collection (ALS/PLS participants) performance averages

Average Accuracy (%) Average Bit Rate (Bits/minute) Average # Flashes

Dry System 50.9 8.9 3,604

Wet System 87.9 32.5 1,278
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Table 5.

Survey results for participants with communication difficulties

Statement
(1 = Strongly Disagree, 7 = Strongly Agree)

Wet (Average) Dry (Average)

1) The time required to setup the cap was reasonable 5.70 (±2.20) 6.50 (±0.79)

2) The setup of the cap was frustrating/agitating 2.28 (±1.89) 1.00 (±0.00)

3) I found the cap comfortable 5.42 (±1.81) 4.00 (±1.95)

4) I could see myself wearing this cap for more than two hours at a time 5.00 (±2.08) 2.50 (±2.07)

5) The speed and accuracy of the system was acceptable 5.71 (±1.11) 3.25 (±2.70)

6) If this were my primary method of controlling a computer, I would use it daily 5.14 (±2.27) 2.75 (±1.98)

J Neural Eng. Author manuscript; available in PMC 2019 February 18.


	Abstract
	Introduction
	Methods
	Participants and Equipment
	P300 Speller Paradigm
	Static Data Collection
	Dynamic Data Collection

	Results
	Discussion
	Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.

