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Abstract

Motivation: PredMP is the first web service, to our knowledge, that aims at de novo prediction of the

membrane protein (MP) 3D structure followed by the embedding of the MP into the lipid bilayer for

visualization. Our approach is based on a high-throughput Deep Transfer Learning (DTL) method

that first predicts MP contacts by learning from non-MPs and then predicts the 3D model of the MP

using the predicted contacts as distance restraints. This algorithm is derived from our previous Deep

Learning (DL) method originally developed for soluble protein contact prediction, which has been of-

ficially ranked No. 1 in CASP12. The DTL framework in our approach overcomes the challenge that

there are only a limited number of solved MP structures for training the deep learning model. There

are three modules in the PredMP server: (i) The DTL framework followed by the contact-assisted fold-

ing protocol has already been implemented in RaptorX-Contact, which serves as the key module for

3D model generation; (ii) The 1D annotation module, implemented in RaptorX-Property, is used to

predict the secondary structure and disordered regions; and (iii) the visualization module to display

the predicted MPs embedded in the lipid bilayer guided by the predicted transmembrane topology.

Results: Tested on 510 non-redundant MPs, our server predicts correct folds for �290 MPs, which sig-

nificantly outperforms existing methods. Tested on a blind and live benchmark CAMEO from September

2016 to January 2018, PredMP can successfully model all 10 MPs belonging to the hard category.

Availability and implementation: PredMP is freely accessed on the web at http://www.predmp.

com.

Contact: realbigws@gmail.com or fengzhao21c@163.com or xin.gao@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Membrane proteins (MPs) are encoded by �30% genes and have

been targeted by �50% of therapeutic drugs. Compared to non-

membrane proteins (non-MPs), the determination of MP structures

is challenging in large part due to the difficulty in establishing ex-

perimental conditions where the correct conformation of the protein

in isolation from its native environment is preserved. Therefore, it is

important to develop computational methods to predict MP struc-

tures from sequence information.

Though homology modeling (or, template-based modeling)

works well for many non-MPs (such as soluble proteins), it encoun-

ters some difficulties for predicting MPs partially due to lack of
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sufficient MPs with solved structures. In particular, currently there

are only about 510 non-redundant MPs in Protein Data Bank

(PDB), which makes homology modeling infeasible for a large por-

tion of MPs. Thus, de novo prediction (or, ab initio folding) is

needed.

So far the most successful de novo prediction methods could be

categorized into two classes: fragment assembly, e.g. Rosetta (Kim

et al., 2004) and contact-assisted ab initio folding, e.g. CoinFold

(Wang et al., 2016b). Fragment assembly approach works mostly on

some small proteins but most of the multi-pass transmembrane pro-

teins are relatively large in size; contact-assisted approach heavily

depends on accurate prediction of protein contacts, which cannot be

achieved either by pure co-evolution methods, such as Gremlin

(Kamisetty et al., 2013) or by methods that exploit co-evolution fea-

tures using shallow neural networks, such as metaPSICOV (Jones

et al., 2015) on proteins without many sequence homologs (Wang

et al., 2017b).

Here we present PredMP, a web server that first predicts the

MP structure without using any structural templates, and then vis-

ualizes the predicted MP model embedded in the lipid bilayer. The

key part of PredMP is the 3D modeling module, which is imple-

mented in RaptorX-Contact. The underlying algorithm of this

module originates from a Deep Learning (DL) method mainly

developed for soluble protein contact prediction, which obtained

the highest F1 score in the contact prediction category in CASP12

(Wang et al., 2018). To overcome the insufficient training data for

MP contact prediction, we transfer the knowledge learned from

non-MPs to MP contact prediction, and thus call such a method

Deep Transfer Learning (DTL) (Wang et al., 2017a). Using the pre-

dicted contacts as distance restraints, the 3D model of the MP is

constructed by the Crystallography & NMR System (CNS) suite

(Brunger et al., 1998).

With the help of predicted transmembrane topology by

DeepCNF (Wang et al., 2015, 2016c), the 3D model of the query

MP is first embedded into the membrane bilayer using a depth- and

residue-dependent membrane burial potential (Wang et al., 2016d),

and then visualized by a WebGL-based protein viewer.

2 Workflow and implementation

The basic workflow of PredMP is shown in Supplementary Figure

S1. There are three modules in the PredMP server: (i) the 1D annota-

tion module for the prediction of secondary structure and disordered

regions by the RaptorX-Property server (Wang et al., 2016a); (ii) the

3D modeling module for de novo generating five 3D models of the

query MP by the RaptorX-Contact server (Wang et al., 2016b,

Wang et al., 2017a,b), and (iii) the visualization module to display

the predicted MPs embedded into the lipid bilayer. Below are the

major steps of how PredMP works.

2.1 Multiple sequence alignment construction
When the amino acid sequence of an MP is submitted by the user,

the server first generates the multiple sequence alignment (MSA) to

retrieve the sequence homologs from the protein family to which the

input MP belongs.

2.2 1D annotation module for local structural property

prediction
The MSA is utilized to predict two structural properties of an MP,

namely the secondary structure elements and the disordered regions.

Specifically, these properties are predicted by RaptorX-Property

(Wang et al., 2016a).

2.3 3D modeling module for de novo generating MP

models
This module consists of two parts: (i) contact map prediction, and

(ii) 3D model construction. For contact map prediction, the MSA is

exploited to predict the residue–residue contact map of an MP by a

Deep Transfer Learning (DTL) model that learns from non-MPs

(Wang et al., 2017a). For 3D model construction, the 3D models of

the input MP are constructed by feeding the predicted secondary

structures and predicted contacts to the Crystallography & NMR

System (CNS) suite (Brunger et al., 1998). In brief, the predicted sec-

ondary structure is converted into distance, angle and h-bond

restraints. We also convert the top predicted contacts to distance

restraints. Finally, we build 3D structure models using the CNS suite

and select top five models according to the CNS energy function

(Wang et al., 2016b). The entire approach is implemented in

RaptorX-Contact (Wang et al., 2017b).

2.4 Visualization module for the display of the

embedded MPs
The final step is the visualization of the embedded 3D model of the

input MP into the bilayer membrane, which consists of two proce-

dures: (i) transmembrane topology prediction, and (ii) MP embed-

ding. For transmembrane topology prediction, we train a machine

learning model DeepCNF (Wang et al., 2015, 2016c) to predict the

9-label transmembrane region at each residue (Supplementary

Section S3). For MP embedding, we use a similar approach as the

Positioning of Proteins in Membranes (PPM) method (Lomize et al.,

2006), which calculates rotational and translational positions of the

3D membrane protein model inside the membrane. The membrane

potential is obtained from the statistics of a curated training set of

non-homologous transmembrane proteins (Wang et al., 2016d).

3 Performances

The underlying DL method (Wang et al., 2018) has been blindly

tested in CASP12 in 2016 and officially ranked first in the category

of protein contact prediction (Schaarschmidt et al., 2018). Tested on

a blind and live benchmark CAMEO (Haas et al., 2013) from

September 2016 to January 2018, the key module RaptorX-Contact

in our server PredMP can successfully model all 10 MPs belonging

to the hard category (Supplementary Section S4).

Here we briefly describe the results on all 510 non-redundant

MPs with solved structures in PDB (Supplementary Table S1).

According to the CASP official definition (Kryshtafovych et al.,

2018), for each target the predictor could provide five models. If the

best TM-score among the five models is larger than 0.5 to the native

structure, then we can claim that this target is correctly predicted

(Xu and Zhang, 2010). As shown in Table 1, PredMP significantly

exceeds the other methods in terms of accuracy of the TM-score for

3D models and accuracy of the top L/5 (L is the protein length) for

predicted contacts. For each target in the 510 dataset, we provide a

URL to display/download the 3D models generated by PredMP

(http://predmp.com/#/detail/5c6oA).

4 Conclusions and discussions

In this work, we introduced PredMP for de novo prediction of mem-

brane proteins (MPs). The server not only allows the accurate
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modeling of the membrane protein 3D structure, but also enables

the embedding of the MP into the lipid bilayer. PredMP was cali-

brated on a blind and live benchmark CAMEO (Haas et al., 2013)

from September 2016 to January 2018 and successfully modelled 10

MPs. We also constructed a reliable correlation curve between the

3D modelling accuracy and the number of effective sequence homo-

logs (Supplementary Section S5), and estimated that our server could

predict correct folds for �1500 among 2215 human multi-pass MPs

including a few hundred new folds (Wang et al., 2017a). This web-

site is free and open to all users and there is no login requirement.

The only required input is the putative membrane protein sequence

and the running time of our server is about 2 hours per target with

about 500 residues. Supplementary Section S6 details the input/out-

put format of the PredMP server.

We have made available the predicted models as well as the na-

tive structures of the 510 non-redundant MP dataset, which is free

to access at http://www.predmp.com/#/download. Users can evalu-

ate the quality of the results generated by PredMP. We hope that

this 510 dataset could serve as an MP benchmark for the protein

prediction community.
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Methods TMscore #TM> 0.5 #TM> 0.6 long med

Gremlin 0.384 122 56 0.40 0.23

metaPSICOV 0.413 147 77 0.49 0.34

PredMP 0.547 298 223 0.69 0.48

Note: A contact is short-, medium and long-range when the sequence sep-

aration of two residues in a contact falls into [6, 11], [12, 23], and � 24 resi-

dues, respectively.
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