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Abstract

Summary: Synthetic lethality is a state when simultaneous loss of two genes is lethal to a cancer

cell, while the loss of the individual genes is not. We developed an R package DiscoverSL to predict

and visualize synthetic lethality in cancers using multi-omic cancer data. Mutation, copy number al-

teration and gene expression data from The Cancer Genome Atlas project were combined to de-

velop a multi-parametric Random Forest classifier. The effects of selectively targeting the predicted

synthetic lethal genes is tested in silico using shRNA and drug screening data from cancer cell line

databases. The clinical outcome in patients with mutation in primary gene and over/under-

expression in the synthetic lethal gene is evaluated using Kaplan–Meier analysis. The method

helps to identify new therapeutic approaches by exploiting the concept of synthetic lethality.

Availability and implementation: DiscoverSL package with user manual and sample workflow is

available for download from github url: https://github.com/shaoli86/DiscoverSL/releases/tag/V1.0

under GNU GPL-3.

Contact: uma@mail.nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In synthetic lethality, the mutant tumor cells are dependent upon

their synthetic lethal (SL) interactors for survival. So, in tumors

where the driver or oncogenes cannot be targeted, SL interactors can

potentially serve as a drug target (Ashworth, 2008). Some recently

published algorithms use cancer genomic data for prediction of SL

interactions (Jerby-Arnon et al., 2014; Sinha et al., 2017; Srihari

et al., 2015), still the problem of identifying clinically relevant SL

interactors persists. Cancers are driven by mutations and, there is a

need for an integrative resource that identifies targetable and clinic-

ally relevant SL interactions based on cancer gene mutations, along

with potential drugs for targeting them. Here we present an integra-

tive R package ‘DiscoverSL’ that predicts cancer-specific SL interac-

tions of any given susceptibility gene using a machine learning

approach. The clinical relevance of the predictions was assessed in

silico using cell line and patient data using the functional modules

provided, to estimate the relative sensitivity to shRNA silencing,

copy number changes, drugs and Kaplan–Meier (KM) analysis. The

package also includes additional plot modules for intuitive visualiza-

tion. Together, DiscoverSL R package offers an integrative ap-

proach to discover mutation-specific SL interactions in cancers.

2 The algorithm and modules

The potential SL interactions were predicted using a Random Forest

(RF) model trained on positive and negative SL genes collected from

published screens and applied to cancer data (see Supplementary

Methods). As shown in Figure 1, the training model includes,

reported SL interactions and select cancer types. Four features were

estimated using the following modules as shown in Step1: DiffExp

(differential expression of Gene2 þ/� mutation in Gene1),

ExpCorrelation (correlation of expression), Mutex (mutual
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exclusivity) and SharedPathway (association with common path-

ways) derived from mutation, gene expression, copy number alter-

ation (CNA) profiles from The Cancer Genome Atlas (TCGA)

patient samples and associated gene-pathway information using the

MsigDB (Subramanian et al., 2005). The predictive power is tested

using cross-validation and an independent test set from SynLethDB

(Guo et al., 2015) (Supplementary Fig. S1 and Supplementary

Table S1) (Step 2). To reinforce the importance of patient-specific

SL interactions in making therapeutic decisions, in-silico validation

was provided as shown in Step3. These include, (i) conditional

essentiality calculated from shRNA screens using module DiffRNAi

(visualization: plotRNAi), (ii) relative targetability calculated from

TCGA CNA data using module TTestMutAmp (visualization:

plotAmplificationDiff), (iii) drug sensitivity from cell line data using

module DrugSensitivity (visualization: plotSensitivitybyDrug) and

(iv) KM curve to show the effect of change in expression of SL inter-

actor gene in patient samples carrying mutation in the primary gene

which is available as plotSurvivalCurveSL. Detailed description of

the dataset and calculation of all functions are available in

Supplementary Material.

3 Case study

The utility of DiscoverSL is demonstrated with a case study on the

SL interactions for the known tumor suppressor gene TP53 in

Glioblastoma Multiforme (GBM). The model predicted 313 poten-

tial SL interactors for TP53 in GBM, filtered for conditional essenti-

ality or drug sensitivity (P-value<0.1). The predicted SL genes

included previously reported SL interactors Checkpoint Kinase 1

and 2 (CHEK1/CHEK2) (Origanti et al., 2013) (Supplementary Fig.

S2). KM analysis of disease-free survival for CHEK1 and CHEK2

under-expression versus over-expression in the presence of TP53

mutation was shown in GBM (P ¼ 0.06 and P ¼ 0.05)

(Supplementary Fig. S2e–f). Drug Sensitivity for targeting CHEK1/

CHEK2 could not be tested in TP53 mutated cells due to unavail-

ability of data. However, the predicted SL interactors of TP53

included cancer-related genes, targeted by drugs Ponatinib (FGFR2,

FGFR3, FGFR4, FLT3, RET), Pazopanib (FGFR3, FLT1, FLT4),

Axitinib (FLT1, FLT4) and Olaparib (PARP1) that show relative

sensitivity in presence of TP53 mutation in GDSC cancer cell lines

(Yang et al., 2013) (Supplementary Fig. S3a–d). Pathway enrich-

ment analysis showed that the predicted SL interactors of TP53 in

GBM were associated with PI3k-Akt signaling, Rap1 signaling,

RAF/MAP kinase cascade and Ras signaling pathways

(Supplementary Table S2). A recent publication reported that inhib-

ition of PI3K/Akt pathway selectively radiosensitized p53 mutant

GBM cell lines compared to cells with wild-type p53 (Palanichamy

et al., 2018). These observations show that DiscoverSL can be used

to identify SL candidates with potential clinical relevance.

4 Conclusion

Investigating cancer-specific SL interactions offers immense poten-

tial for targeted drug treatment for patients based on their mutation

profiles. DiscoverSL offers an integrative computational pipeline for

prediction and in-silico validation of SL interactions derived from

patient-specific mutations in cancer. It can be an excellent resource

for discovering clinically relevant and targetable synthetic lethal

interactions in cancer.
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Fig. 1. The workflow of the DiscoverSL showing the trained RF model on com-

bined multiple data types (Step1), applied to new data for prediction (Step 2)

and validation (Step 3)
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